Improving Steel Buildings Resilience through Innovative Design Strategies

The objective of the proposed project is to explore innovative strategies for improving steel buildings resilience through an approach that actively integrate the architectural and structural design processes.This project will be divided in two focus areas, the first phase will focus on developing t...

Full description

Autores:
Padilla, Samuel
Padilla, David
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7010
Acceso en línea:
https://hdl.handle.net/11323/7010
https://repositorio.cuc.edu.co/
Palabra clave:
Steel Buildings
Resilience
Innovative Design Strategies
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_cea81e3ae81f06ff1b415621ddcb0d56
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7010
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Improving Steel Buildings Resilience through Innovative Design Strategies
dc.title.translated.spa.fl_str_mv Mejorar la resiliencia de los edificios de acero mediante estrategias de diseño innovadoras
Estado del arte del proyecto
title Improving Steel Buildings Resilience through Innovative Design Strategies
spellingShingle Improving Steel Buildings Resilience through Innovative Design Strategies
Steel Buildings
Resilience
Innovative Design Strategies
title_short Improving Steel Buildings Resilience through Innovative Design Strategies
title_full Improving Steel Buildings Resilience through Innovative Design Strategies
title_fullStr Improving Steel Buildings Resilience through Innovative Design Strategies
title_full_unstemmed Improving Steel Buildings Resilience through Innovative Design Strategies
title_sort Improving Steel Buildings Resilience through Innovative Design Strategies
dc.creator.fl_str_mv Padilla, Samuel
Padilla, David
dc.contributor.author.spa.fl_str_mv Padilla, Samuel
Padilla, David
dc.subject.spa.fl_str_mv Steel Buildings
Resilience
Innovative Design Strategies
topic Steel Buildings
Resilience
Innovative Design Strategies
description The objective of the proposed project is to explore innovative strategies for improving steel buildings resilience through an approach that actively integrate the architectural and structural design processes.This project will be divided in two focus areas, the first phase will focus on developing the integrated architectural-structural design framework that includes a set of computational tools (both commercial and in-house developed code) to incorporate actively the structural engineering processes into the architectural design. The second focus area will deal with developing strategies to improve steel building resilience through the use of energy-dissipating strategies and facilitated by work emerging from the research plan for the first research focus area.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-25T17:10:06Z
dc.date.available.none.fl_str_mv 2020-08-25T17:10:06Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7010
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7010
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv American Society of Civil Engineers (Ed.). (2017). Minimum design loads and associated criteria for buildings and other structures. Reston, Virginia: American Society of Civil Engineers.
Skinner, R.I., Kelly, J., & Heine, A. (1975). Hysteretic dampers for earthquake resistant structures. Earthquake engineering and structural dynamics, pp. 287-297
Applied Technology Council. 2009. “FEMA P-695: Quantification of Building Seismic Performance Factors. FEMA P695.” (June):421
Clayton, Patricia M., Daniel M. Dowden, Chao Hsien Li, Jeffrey W. Berman, Michel Bruneau, Laura N. Lowes, and Keh Chuan Tsai. 2016. “Self-Centering Steel Plate Shear Walls for Improving Seismic Resilience.” Frontiers of Structural and Civil Engineering 10(3):283–90.
Cui, Ye, Xilin Lu, and Chun Jiang. 2017. “Experimental Investigation of Tri-Axial Self-Centering Reinforced Concrete Frame Structures through Shaking Table Tests.” Engineering Structures 132:684–94.
Dowden, Daniel M. and Michel Bruneau. 2019. “Quasi-Static Cyclic Testing and Analytical Investigation of Steel Plate Shear Walls with Different Post-Tensioned Beam-to-Column Rocking Connections.” Engineering Structures 187(November 2018):43–56.
Eatherton, Matthew, Jerome Hajjar, Xiang Ma, Helmut Krawinkler, and Greg Deierlein. 2010. “Seismic Design and Behavior of Steel Frames with Controlled Rocking - Part I: Concepts and Quasi-Static
Eatherton, Matthew R. and Jerome F. Hajjar. 2010. “Large-Scale Cyclic and Hybrid Simulation Testing and Development of a Controlled- Rocking Steel Building System with Replaceable Fuses. Report No. NSEL-025.” NSEL Report Series (September).
Fan, Xiaowei, Longhe Xu, and Zhongxian Li. 2019. “Seismic Performance Evaluation of Steel Frames with Pre-Pressed Spring Self-Centering Braces.” Journal of Constructional Steel Research 162:105761.
Harash, M. T. Al, A. Rathore, and N. Panahshahi. 2010. “Inelastic Seismic Response of Rectangular RC Buildings with Plan Aspect Ratio of 3:1 with Floor Diaphragm Openings.” Structures Congress 2010 41130(March):1971–80.
Henry, Richard S., S. Sritharan, and J. M. Ingham. 2011. “Recentering Requirements for the Seismic Design of Self-Centering Systems.” 9th Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society (104).
Kamperidis, Vasileios C., Theodore L. Karavasilis, and George Vasdravellis. 2018. “Self-Centering Steel Column Base with Metallic Energy Dissipation Devices.” Journal of Constructional Steel Research 149:14–30.
Lu, Xilin, Chun Jiang, Boya Yang, and Liumeng Quan. 2019. “Seismic Design Methodology for Self-Centering Reinforced Concrete Frames.” Soil Dynamics and Earthquake Engineering 119(May 2018):358–74
Maurya, Abhilasha, Matthew R. Eatherton, Roberto T. Leon, Ioannis Koutromanos, and Mahendra P. Singh. 2016. EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF A SELFCENTERING BEAM MOMENT FRAME (SCB-MF)
Speicher, Matthew S., Reginald DesRoches, and Roberto T. Leon. 2017. “Investigation of an Articulated Quadrilateral Bracing System Utilizing Shape Memory Alloys.” Journal of Constructional Steel Research 130:65–78.
Tsampras, G., R. Sause, R. B. Fleischman, and J. I. Restrepo. 2015. “An Earthquake-Resistant Building System to Reduce Floor Accelerations.” New Zealand Society for Earthquake Engineering 445–53.
Walter Yang, Chuang Sheng, Reginald DesRoches, and Roberto T. Leon. 2010. “Design and Analysis of Braced Frames with Shape Memory Alloy and Energy-Absorbing Hybrid Devices.” Engineering Structures 32(2):498–507.
Wang, Bin, Songye Zhu, Can Xing Qiu, and Hao Jin. 2019. “High-Performance Self-Centering Steel Columns with Shape Memory Alloy Bolts: Design Procedure and Experimental Evaluation.” Engineering Structures 182(December 2018):446–58
Wang, Xian Tie, Chuan Dong Xie, Lin Hui Lin, and Jin Li. 2019. “Seismic Behavior of Self-Centering Concrete-Filled Square Steel Tubular (CFST) Column Base.” Journal of Constructional Steel Research 156:75–85.
Xu, Longhe, Shuijing Xiao, and Zhongxian Li. 2018. “Hysteretic Behavior and Parametric Studies of a Self-Centering RC Wall with Disc Spring Devices.” Soil Dynamics and Earthquake Engineering 115(September):476–88.
Pérez, C. (2019). Business innovation at the service of the micro and small business of North-Santander: for regional competitiveness. ECONÓMICAS CUC, 40(1), 91- 104. https://doi.org/10.17981/econcuc.40.1.2019.06
Zhang, Changxuan, Taylor C. Steele, and Lydell D. A. Wiebe. 2018. “Design-Level Estimation of Seismic Displacements for Self-Centering SDOF Systems on Stiff Soil.” Engineering Structures 177(February 2017):431–43.
Zhang, Zhi, Robert B. Fleischman, Jose I. Restrepo, Gabriele Guerrini, Arpit Nema, Dichuan Zhang, Ulina Shakya, Georgios Tsampras, and Richard Sause. 2018. “Shake-Table Test Performance of an Inertial Force-Limiting Floor Anchorage System.”
Earthquake Engineering and Structural Dynamics 47(10):1987–2011
AUTODESK, (2016). Dynamo [Online]. Available: http://dynamobim.org/ [Accessed 10 March 2020]
Davidson, S. (2017). Grasshopper - Algorithmic Modeling for Rhino [Online], Available: www.grasshopper3d.com [Accessed 10 March 2020]
AUTODESK, (2017). Robot Structural Analysis Professional [Online]. Available: www.autodesk.com/products/robot-structural-analysis/overview [Accessed 10 March 2020].
Preisinger, C. (2020). Karamba - parametric engineering [Online]. Available: http://www.karamba3- D.com/ [Accessed 10 March, 2020]
Mazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L. Open System for Earthquake Engineering Simulation User CommandLanguage Manual, OpenSees Version 2.0, Berkeley, California, 2009
H. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, COMPUTERS IN PHYSICS, VOL. 12, NO. 6, NOV/DEC 1998.
OpenFOAM Wiki (2019), Retrieved 17:00, March 14, 2020 from https://wiki.openfoam.com/index.php?title=Main_Page&oldid=2897.
ABAQUS. ABAQUS Documentation 2019, Dassault Systèmes Simulia Corp., Providence, RI, USA, 2019
LSTC (2018). LS-DYNA User’s Manuals R11, Livermore Software and Technology Corporation, Livermore, CA, USA.
Caro Moreno, J. (2016). Funding of technological innovation in the services sector in Colombia. ECONÓMICAS CUC, 37(2), 89-114. https://doi.org/10.17981/econcuc.37.2.2016.05
Padilla-Llano, D.A., Madhavan, M.B., Briggs, N.E., Hajjar, J.F. (2019). “Cyclic Fracture Simulation for Steel and Concrete in Steel-Concrete Composite Diaphragms.” ASCE Structures Congress 2019.
Padilla-Llano, D. A., Hajjar, J. F., Eatherton, M. R., and Schafer, B. W. (2018). “Cyclic Fracture Simulation Framework for Modeling Collapse in Steel Structures.” Proceedings of the 11th U.S. National Conference on Earthquake Engineering, Los Angeles, CA, June 25-29
Eatherton, Matthew, Jerome Hajjar, Xiang Ma, Helmut Krawinkler, and Greg Deierlein. 2010. “Seismic Design and Behavior of Steel Frames with Controlled Rocking - Part I: Concepts and Quasi-Static Subassembly Testing.” Structures Congress 2010 41130(February 2015):1523–33.
Chancellor N, Eatherton M, Roke D, Akbas T. Self-centering seismic lateral force resisting systems: High performance structures for the city of tomorrow. Buildings, 2014;4(3):520–48.
Mirzai NM, Attarnejad R, Hu JW. Enhancing the seismic performance of EBFs with vertical shear link using a new self-centering damper. Int J 2018;35(4):57–75.
Xiaogang H, Matthew R. E, Zhen Z., Initial stiffness of self-centering systems and application to self-centering-beam momentframes, Engineering Structures, 203, 2020.
Xiaogang H, Matthew R. E, Zhen Z., Initial stiffness of self-centering systems and application to self-centering-beam momentframes, Engineering Structures, 203, 2020.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/80099efa-aa42-4ac4-ab21-1bf2af7f077a/download
https://repositorio.cuc.edu.co/bitstreams/a19ceb7a-2a94-47d2-a4b5-d487521829bc/download
https://repositorio.cuc.edu.co/bitstreams/38b0e116-f456-4e77-be68-81013331a33d/download
https://repositorio.cuc.edu.co/bitstreams/ac96e9c1-1d5c-4c15-b0e2-07a2155b8403/download
https://repositorio.cuc.edu.co/bitstreams/6210b114-d431-45fc-bfad-8665be10cda0/download
bitstream.checksum.fl_str_mv fdc0ba0a484d06a4d05165b19a8826db
934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
f7da57aae5ad94c648ba547ff1ce616f
35d7ca68e962b15a86316ba92228b8a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166833220354048
spelling Padilla, SamuelPadilla, David2020-08-25T17:10:06Z2020-08-25T17:10:06Z2020https://hdl.handle.net/11323/7010Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The objective of the proposed project is to explore innovative strategies for improving steel buildings resilience through an approach that actively integrate the architectural and structural design processes.This project will be divided in two focus areas, the first phase will focus on developing the integrated architectural-structural design framework that includes a set of computational tools (both commercial and in-house developed code) to incorporate actively the structural engineering processes into the architectural design. The second focus area will deal with developing strategies to improve steel building resilience through the use of energy-dissipating strategies and facilitated by work emerging from the research plan for the first research focus area.El objetivo del proyecto propuesto es explorar estrategias innovadoras para mejorar la resiliencia de los edificios de acero a través de un enfoque que integra activamente los procesos de diseño arquitectónico y estructural. marco de diseño estructural que incluye un conjunto de herramientas computacionales (tanto código comercial como desarrollado internamente) para incorporar activamente los procesos de ingeniería estructural en el diseño arquitectónico. La segunda área de enfoque se ocupará del desarrollo de estrategias para mejorar la resiliencia de la construcción de acero mediante el uso de estrategias de disipación de energía y facilitado por el trabajo que surge del plan de investigación para la primera área de enfoque de investigación.Padilla, SamuelPadilla, DavidspaCorporación Universidad de la CostaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Steel BuildingsResilienceInnovative Design StrategiesImproving Steel Buildings Resilience through Innovative Design StrategiesMejorar la resiliencia de los edificios de acero mediante estrategias de diseño innovadorasEstado del arte del proyectoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAmerican Society of Civil Engineers (Ed.). (2017). Minimum design loads and associated criteria for buildings and other structures. Reston, Virginia: American Society of Civil Engineers.Skinner, R.I., Kelly, J., & Heine, A. (1975). Hysteretic dampers for earthquake resistant structures. Earthquake engineering and structural dynamics, pp. 287-297Applied Technology Council. 2009. “FEMA P-695: Quantification of Building Seismic Performance Factors. FEMA P695.” (June):421Clayton, Patricia M., Daniel M. Dowden, Chao Hsien Li, Jeffrey W. Berman, Michel Bruneau, Laura N. Lowes, and Keh Chuan Tsai. 2016. “Self-Centering Steel Plate Shear Walls for Improving Seismic Resilience.” Frontiers of Structural and Civil Engineering 10(3):283–90.Cui, Ye, Xilin Lu, and Chun Jiang. 2017. “Experimental Investigation of Tri-Axial Self-Centering Reinforced Concrete Frame Structures through Shaking Table Tests.” Engineering Structures 132:684–94.Dowden, Daniel M. and Michel Bruneau. 2019. “Quasi-Static Cyclic Testing and Analytical Investigation of Steel Plate Shear Walls with Different Post-Tensioned Beam-to-Column Rocking Connections.” Engineering Structures 187(November 2018):43–56.Eatherton, Matthew, Jerome Hajjar, Xiang Ma, Helmut Krawinkler, and Greg Deierlein. 2010. “Seismic Design and Behavior of Steel Frames with Controlled Rocking - Part I: Concepts and Quasi-StaticEatherton, Matthew R. and Jerome F. Hajjar. 2010. “Large-Scale Cyclic and Hybrid Simulation Testing and Development of a Controlled- Rocking Steel Building System with Replaceable Fuses. Report No. NSEL-025.” NSEL Report Series (September).Fan, Xiaowei, Longhe Xu, and Zhongxian Li. 2019. “Seismic Performance Evaluation of Steel Frames with Pre-Pressed Spring Self-Centering Braces.” Journal of Constructional Steel Research 162:105761.Harash, M. T. Al, A. Rathore, and N. Panahshahi. 2010. “Inelastic Seismic Response of Rectangular RC Buildings with Plan Aspect Ratio of 3:1 with Floor Diaphragm Openings.” Structures Congress 2010 41130(March):1971–80.Henry, Richard S., S. Sritharan, and J. M. Ingham. 2011. “Recentering Requirements for the Seismic Design of Self-Centering Systems.” 9th Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society (104).Kamperidis, Vasileios C., Theodore L. Karavasilis, and George Vasdravellis. 2018. “Self-Centering Steel Column Base with Metallic Energy Dissipation Devices.” Journal of Constructional Steel Research 149:14–30.Lu, Xilin, Chun Jiang, Boya Yang, and Liumeng Quan. 2019. “Seismic Design Methodology for Self-Centering Reinforced Concrete Frames.” Soil Dynamics and Earthquake Engineering 119(May 2018):358–74Maurya, Abhilasha, Matthew R. Eatherton, Roberto T. Leon, Ioannis Koutromanos, and Mahendra P. Singh. 2016. EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF A SELFCENTERING BEAM MOMENT FRAME (SCB-MF)Speicher, Matthew S., Reginald DesRoches, and Roberto T. Leon. 2017. “Investigation of an Articulated Quadrilateral Bracing System Utilizing Shape Memory Alloys.” Journal of Constructional Steel Research 130:65–78.Tsampras, G., R. Sause, R. B. Fleischman, and J. I. Restrepo. 2015. “An Earthquake-Resistant Building System to Reduce Floor Accelerations.” New Zealand Society for Earthquake Engineering 445–53.Walter Yang, Chuang Sheng, Reginald DesRoches, and Roberto T. Leon. 2010. “Design and Analysis of Braced Frames with Shape Memory Alloy and Energy-Absorbing Hybrid Devices.” Engineering Structures 32(2):498–507.Wang, Bin, Songye Zhu, Can Xing Qiu, and Hao Jin. 2019. “High-Performance Self-Centering Steel Columns with Shape Memory Alloy Bolts: Design Procedure and Experimental Evaluation.” Engineering Structures 182(December 2018):446–58Wang, Xian Tie, Chuan Dong Xie, Lin Hui Lin, and Jin Li. 2019. “Seismic Behavior of Self-Centering Concrete-Filled Square Steel Tubular (CFST) Column Base.” Journal of Constructional Steel Research 156:75–85.Xu, Longhe, Shuijing Xiao, and Zhongxian Li. 2018. “Hysteretic Behavior and Parametric Studies of a Self-Centering RC Wall with Disc Spring Devices.” Soil Dynamics and Earthquake Engineering 115(September):476–88.Pérez, C. (2019). Business innovation at the service of the micro and small business of North-Santander: for regional competitiveness. ECONÓMICAS CUC, 40(1), 91- 104. https://doi.org/10.17981/econcuc.40.1.2019.06Zhang, Changxuan, Taylor C. Steele, and Lydell D. A. Wiebe. 2018. “Design-Level Estimation of Seismic Displacements for Self-Centering SDOF Systems on Stiff Soil.” Engineering Structures 177(February 2017):431–43.Zhang, Zhi, Robert B. Fleischman, Jose I. Restrepo, Gabriele Guerrini, Arpit Nema, Dichuan Zhang, Ulina Shakya, Georgios Tsampras, and Richard Sause. 2018. “Shake-Table Test Performance of an Inertial Force-Limiting Floor Anchorage System.”Earthquake Engineering and Structural Dynamics 47(10):1987–2011AUTODESK, (2016). Dynamo [Online]. Available: http://dynamobim.org/ [Accessed 10 March 2020]Davidson, S. (2017). Grasshopper - Algorithmic Modeling for Rhino [Online], Available: www.grasshopper3d.com [Accessed 10 March 2020]AUTODESK, (2017). Robot Structural Analysis Professional [Online]. Available: www.autodesk.com/products/robot-structural-analysis/overview [Accessed 10 March 2020].Preisinger, C. (2020). Karamba - parametric engineering [Online]. Available: http://www.karamba3- D.com/ [Accessed 10 March, 2020]Mazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L. Open System for Earthquake Engineering Simulation User CommandLanguage Manual, OpenSees Version 2.0, Berkeley, California, 2009H. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, COMPUTERS IN PHYSICS, VOL. 12, NO. 6, NOV/DEC 1998.OpenFOAM Wiki (2019), Retrieved 17:00, March 14, 2020 from https://wiki.openfoam.com/index.php?title=Main_Page&oldid=2897.ABAQUS. ABAQUS Documentation 2019, Dassault Systèmes Simulia Corp., Providence, RI, USA, 2019LSTC (2018). LS-DYNA User’s Manuals R11, Livermore Software and Technology Corporation, Livermore, CA, USA.Caro Moreno, J. (2016). Funding of technological innovation in the services sector in Colombia. ECONÓMICAS CUC, 37(2), 89-114. https://doi.org/10.17981/econcuc.37.2.2016.05Padilla-Llano, D.A., Madhavan, M.B., Briggs, N.E., Hajjar, J.F. (2019). “Cyclic Fracture Simulation for Steel and Concrete in Steel-Concrete Composite Diaphragms.” ASCE Structures Congress 2019.Padilla-Llano, D. A., Hajjar, J. F., Eatherton, M. R., and Schafer, B. W. (2018). “Cyclic Fracture Simulation Framework for Modeling Collapse in Steel Structures.” Proceedings of the 11th U.S. National Conference on Earthquake Engineering, Los Angeles, CA, June 25-29Eatherton, Matthew, Jerome Hajjar, Xiang Ma, Helmut Krawinkler, and Greg Deierlein. 2010. “Seismic Design and Behavior of Steel Frames with Controlled Rocking - Part I: Concepts and Quasi-Static Subassembly Testing.” Structures Congress 2010 41130(February 2015):1523–33.Chancellor N, Eatherton M, Roke D, Akbas T. Self-centering seismic lateral force resisting systems: High performance structures for the city of tomorrow. Buildings, 2014;4(3):520–48.Mirzai NM, Attarnejad R, Hu JW. Enhancing the seismic performance of EBFs with vertical shear link using a new self-centering damper. Int J 2018;35(4):57–75.Xiaogang H, Matthew R. E, Zhen Z., Initial stiffness of self-centering systems and application to self-centering-beam momentframes, Engineering Structures, 203, 2020.Xiaogang H, Matthew R. E, Zhen Z., Initial stiffness of self-centering systems and application to self-centering-beam momentframes, Engineering Structures, 203, 2020.PublicationORIGINALESTADO DEL ARTE DEL PROYECTO Improving Steel Buildings Resilience through Innovative Design Strategies.pdfESTADO DEL ARTE DEL PROYECTO Improving Steel Buildings Resilience through Innovative Design Strategies.pdfapplication/pdf103450https://repositorio.cuc.edu.co/bitstreams/80099efa-aa42-4ac4-ab21-1bf2af7f077a/downloadfdc0ba0a484d06a4d05165b19a8826dbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/a19ceb7a-2a94-47d2-a4b5-d487521829bc/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/38b0e116-f456-4e77-be68-81013331a33d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILESTADO DEL ARTE DEL PROYECTO Improving Steel Buildings Resilience through Innovative Design Strategies.pdf.jpgESTADO DEL ARTE DEL PROYECTO Improving Steel Buildings Resilience through Innovative Design Strategies.pdf.jpgimage/jpeg77657https://repositorio.cuc.edu.co/bitstreams/ac96e9c1-1d5c-4c15-b0e2-07a2155b8403/downloadf7da57aae5ad94c648ba547ff1ce616fMD54TEXTESTADO DEL ARTE DEL PROYECTO Improving Steel Buildings Resilience through Innovative Design Strategies.pdf.txtESTADO DEL ARTE DEL PROYECTO Improving Steel Buildings Resilience through Innovative Design Strategies.pdf.txttext/plain12890https://repositorio.cuc.edu.co/bitstreams/6210b114-d431-45fc-bfad-8665be10cda0/download35d7ca68e962b15a86316ba92228b8a7MD5511323/7010oai:repositorio.cuc.edu.co:11323/70102024-09-17 14:15:35.772http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==