Two mathematical approaches to study the phosphorus eutrophication of a wetland in Puerto Rico
Introduction− Laguna Cartagena (LC), a wetland in Lajas, Puerto Rico, has been negatively impacted by nutrients, main-ly phosphorus run-off from agricultural activities until the end of sugar cane cultivation in the late 1900s. This led to P concentration remain high at hypereutrophic state that was...
- Autores:
-
Paredes, Marlio
Torres Velasquez, Brenda Carolina
Sanchez Colon, Yashira Marie
Schaffner, Fred
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5626
- Acceso en línea:
- https://hdl.handle.net/11323/5626
https://doi.org/10.17981/ingecuc.15.1.2019.06
https://repositorio.cuc.edu.co/
- Palabra clave:
- Phosphorus dynamics
Total phosphorus
Soluble reactive phosphorus
Total nitrogen
Equilibrium point
Eutrophication
Hypereutrophication
Grey cluster method
Método de agrupamiento de grises
Dinámica del fósforo
Fósforo total
Fósforo soluble reactivo
Nitrógeno total
Punto de equilibrio
Eutrofización
Hipereutrofización
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_bf80bb1859cf3c6a7fe46f365168d940 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5626 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Two mathematical approaches to study the phosphorus eutrophication of a wetland in Puerto Rico |
dc.title.translated.spa.fl_str_mv |
Dos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico |
title |
Two mathematical approaches to study the phosphorus eutrophication of a wetland in Puerto Rico |
spellingShingle |
Two mathematical approaches to study the phosphorus eutrophication of a wetland in Puerto Rico Phosphorus dynamics Total phosphorus Soluble reactive phosphorus Total nitrogen Equilibrium point Eutrophication Hypereutrophication Grey cluster method Método de agrupamiento de grises Dinámica del fósforo Fósforo total Fósforo soluble reactivo Nitrógeno total Punto de equilibrio Eutrofización Hipereutrofización |
title_short |
Two mathematical approaches to study the phosphorus eutrophication of a wetland in Puerto Rico |
title_full |
Two mathematical approaches to study the phosphorus eutrophication of a wetland in Puerto Rico |
title_fullStr |
Two mathematical approaches to study the phosphorus eutrophication of a wetland in Puerto Rico |
title_full_unstemmed |
Two mathematical approaches to study the phosphorus eutrophication of a wetland in Puerto Rico |
title_sort |
Two mathematical approaches to study the phosphorus eutrophication of a wetland in Puerto Rico |
dc.creator.fl_str_mv |
Paredes, Marlio Torres Velasquez, Brenda Carolina Sanchez Colon, Yashira Marie Schaffner, Fred |
dc.contributor.author.spa.fl_str_mv |
Paredes, Marlio Torres Velasquez, Brenda Carolina Sanchez Colon, Yashira Marie Schaffner, Fred |
dc.subject.proposal.eng.fl_str_mv |
Phosphorus dynamics Total phosphorus Soluble reactive phosphorus Total nitrogen Equilibrium point Eutrophication Hypereutrophication Grey cluster method Método de agrupamiento de grises |
topic |
Phosphorus dynamics Total phosphorus Soluble reactive phosphorus Total nitrogen Equilibrium point Eutrophication Hypereutrophication Grey cluster method Método de agrupamiento de grises Dinámica del fósforo Fósforo total Fósforo soluble reactivo Nitrógeno total Punto de equilibrio Eutrofización Hipereutrofización |
dc.subject.proposal.spa.fl_str_mv |
Dinámica del fósforo Fósforo total Fósforo soluble reactivo Nitrógeno total Punto de equilibrio Eutrofización Hipereutrofización |
description |
Introduction− Laguna Cartagena (LC), a wetland in Lajas, Puerto Rico, has been negatively impacted by nutrients, main-ly phosphorus run-off from agricultural activities until the end of sugar cane cultivation in the late 1900s. This led to P concentration remain high at hypereutrophic state that was irremediable even after a 5-fold reduction in source water nutrient concentration. Objective−The main goal of this research paper is to apply two different mathematical approaches to assess the eutrophi-cation level of a wetland in Puerto Rico. Methodology−Grey Cluster Method (GCM) was used to classify LC’s eutrophic state by applying the International and Chinese trophic standards and two parameters, Total Phosphorous (TP) and Total Nitrogen (TN). Mean TP and TN from LC consolidated bottom substrate and flocculence samples were used to classify LC. To address whether LC can recover, soluble reactive phosphorus (SRP) and TP from LC inlet, outlet, and center water samples were used to model (dif-ferential equation) the input and loss of phosphorus in LC and determine whether an equilibrium point exists. GCM analysis classified LC as a eutrophic wetland using the International standard and hypereutrophic using the chinese standard. Results− Trophic state classification did not vary with use of consolidated bottom substrate versus flocculence samples. The differential equation model showed that SRP and TP levels within LC were higher than levels of SRP and TP entering LC, which could be caused by a nutrient recycling process within LC that may predict failure of remediation efforts. An equilib-rium point was found at the eutrophic level, which means that even if there is a reduction in phosphorus input, there will not be a change in LC’s eutrophic state. Conclusions−Chinese trophic standard indicated LC was in a hypertrophic state. Similar results were found using the in-ternational standard. The differential equation model showed that LC is irreversible. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-13T14:26:20Z |
dc.date.available.none.fl_str_mv |
2019-11-13T14:26:20Z |
dc.date.issued.none.fl_str_mv |
2019-03-22 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Paredes Gutiérrez, M., Torres Velasquez, B., Sanchez Colon, Y., & Schaffner Gibbs, F. (2019). Dos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico. INGE CUC, 15(1), 63-76. https://doi.org/10.17981/ingecuc.15.1.2019.06 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5626 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.17981/ingecuc.15.1.2019.06 |
dc.identifier.doi.spa.fl_str_mv |
10.17981/ingecuc.15.1.2019.06 |
dc.identifier.eissn.spa.fl_str_mv |
2382-4700 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.pissn.spa.fl_str_mv |
0122-6517 |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Paredes Gutiérrez, M., Torres Velasquez, B., Sanchez Colon, Y., & Schaffner Gibbs, F. (2019). Dos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico. INGE CUC, 15(1), 63-76. https://doi.org/10.17981/ingecuc.15.1.2019.06 10.17981/ingecuc.15.1.2019.06 2382-4700 Corporación Universidad de la Costa 0122-6517 REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5626 https://doi.org/10.17981/ingecuc.15.1.2019.06 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
INGE CUC; Vol. 15, Núm. 1 (2019) |
dc.relation.ispartofjournal.spa.fl_str_mv |
INGE CUC INGE CUC |
dc.relation.references.spa.fl_str_mv |
S. R. Carpenter, N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley and V. H. Smith, “Nonpoint pollution of surface waters with phosphorus and nitrogen”, Ecological Applications, vol. 8, no. 3, pp. 559—568, Aug. 1998. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 V. H. Smith, “Eutrophication of freshwater and coastal marine ecosystems: a global problem”, Environmental Science and Pollution Research, vol.10, np.2, pp. 126—139, Mar. 2003. https://doi.org/10.1065/espr2002.12.142 S. R. Carpenter, “Eutrophication of aquatic ecosystems: Bistability and soil phosphorus”, Proceedings of the National Academy of Sciences of Sciences of the United States of America, vol. 102, no. 29, pp. 10002—10005, Jul. 2005. https://doi.org/10.1073/pnas.0503959102 P. M. Vitousek, J. Aber, R. Howarth, G. Likens, P. Matson, D. Schindler, W. Schlesinger and D. Tilman, “Human alteration of the global nitrogen cycle causes and consequences”, Ecological Applications, vol. 7, no. 3, 737—750, Aug. 1997. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 D. L. Correll, “Phosphorus: A rate limiting nutrient in surface waters”, Poultry Science, vol. 78, no. 5, pp. 674—682, May. 1999. https://doi.org/10.1093/ps/78.5.674 C. E. Lovelock, M. C. Ball, K. C. Martin and I. C. Feller, “Nutrient enrichment increases mortality of mangroves”, PloS One, vol. 4, no. 5, p. e5600, May. 2009. https://doi.org/10.1371/journal.pone.0005600 A. A. Ansari, S. S. Gill and F. A. Khan, “Eutrophication: threat to aquatic ecosystems”, in Eutrophication: Causes, consequences and control, pp 143—170, Netherlands: Springer, 2010. https://doi.org/10.1007/978-90-481-9625-8_7 [EPA] Environmental Protection Agency (US), “Protecting Natural Wetlands: A Guide to Stormwater Best Management Practices”, in: National Service Center for Environmental Publications (NSCEP), Washington (DC): Office of Water (US), 1996. Available in https://nepis.epa.gov/Exe/ZyPDF.cgi/200053GQ.PDF?Dockey=200053GQ.PDF D. L. Correll, “The role of phosphorus in the eutrophication of receiving waters: a review”, Journal of Environmental Quality, vol. 27, no. 2, pp. 261—266, Mar. 1998. https://doi.org/10.2134/jeq1998.00472425002700020004x L. Volterra, M. Boualam, A. Ménesguen, J. Duguet, J. Duchemin and X. Bonnefoy. (2002). Eutrophication and Health. World Health Organization & European Commission. Luxembourg. [Online]. Available in http://www.ypeka.gr/LinkClick.aspx?fileticket=mb9Q7Nzw5iI%3D&tabid=250&language=el-GR E. D’Angelo, J. Crutchfield and M. Vandiviere, “Rapid, sensitive, microscale determination of phosphate in water and soil”, Journal of Environmental Quality, vol. 30, no. 6, pp. 2206—2209, Nov. 2001. https://doi.org/10.2134/jeq2001.2206 E. M. Bostic and J. R. White, “Soil phosphorus and vegetation influence on wetland phosphorus release after simulate drought”, Soil Science Society of America Journal, vol. 71, no. 1, pp. 238—244, Jan. 2007. https://doi.org/10.2136/sssaj2006.0137 A. J. Smolders, L. P. Lamers, E. C. Lucassen, G. Van Der Velde and J. G. Roelofs, “Internal eutrophication: How it works and what to do about it – a review”, Chemistry and Ecology, vol. 22, no. 2, pp. 93—111, Jan. 2007. https://doi.org/10.1080/02757540600579730 K. R. Reddy, M. M. Fisher, Y. Wang, J. R. White and J. R. Thomas, “Potential effects of sediment dredging on internal phosphorus loading in a shallow, subtropical lake”, Lake and Reservoir Management, vol. 23, no. 1, pp. 27—38, Jan. 2009. https://doi.org/10.1080/07438140709353907 R. G. Wetzel, Limnology: Lake and River Ecosystems. New York, USA: Elsevier Academic Press, 2001. M. M. Fisher and K. R. Reddy, “Phosphorus flux from wetland soils affected by long-term nutrient loading”, Journal of Environmental Quality, vol. 30, no. 1, pp. 261—271, Jan. 2001. https://doi.org/10.2134/jeq2001.301261x L. Bartoszek and J. A. Tomaszek, “Phosphorus distribution in the bottom sediments of the Solina-Myczkowce Reservoirs”, Environment Protection Engineering, vol. 33, no. 2, pp. 25—33, 2007. Available http://epe.pwr.wroc.pl/2007/Bartoszek_2-2007.pdf L. E. Kinsman-Costello, “Effects of water level fluctuations on phosphorus, iron, sulfur, and nitrogen cycling in shallow freshwater ecosystems”, PhD Dissertation, Michigan State University, East Lansing, MI, USA, 2012. Available in https://lter.kbs.msu.edu/pub/3226 M. Sondergaard, P. J. Jensen and E. Jeppensen, “Retention and internal loading of phosphorus in shallow, eutrophic lakes”, The Scientific World Journal, vol. 1, pp. 427—442, Aug. 2001. http://dx.doi.org/10.1100/tsw.2001.72 J. J. González, B. Pérez and E. Fernández, “Analytical phosphorus fractionation in sewage sludge and sediment samples”, Analytical and Bioanalytical Chemistry, vol. 381, no. 4, pp. 873—878, Feb. 2005. https://doi.org/10.1007/s00216-004-2989-z B. Böstrom, J. M. Andersen, S. Fleisher and M. Jansson, “Exchange of phosphorus across the sediment-water interface,” Hydrobiologia, vol. 170, no. 1, pp. 229—244, 1998. https://doi.org/10.1007/978-94-009-3109-1_14 K. R. Reddy, R. H. Kadlec, E. Flaig and P. M. Gale, “Phosphorus retention in streams and wetlands: a review”, Critical Reviews in Environmental Science and Technology, vol. 29, no. 1, pp. 83—146, Jun. 2010. https://doi.org/10.1080/10643389991259182 S. P. Seitzinger, “Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance”, Limnology and Oceanography, vol. 33, no. 4, pp. 702—724, Jul. 1988. https://doi.org/10.4319/lo.1988.33.4part2.0702 D. L. Saunders and J. Kalff, “Nitrogen retention in wetlands, lakes and rivers”, Hydrobiologia, vol. 433, no. 1, pp. 205—212, Jan. 2001. https://doi.org/10.1023/A:1017506914063 S. L. Whitmire and S. K. Hamilton, “Rapid removal of nitrate and sulfate in freshwater wetland sediments”, Journal of Environmental Quality, vol. 34, no. 6, pp. 2062—2071, Nov. 2005. https://doi.org/10.2134/jeq2004.0483 A. J. Burgin and S. K. Hamilton, “Have we overemphasized the role of denitrification on aquatic ecosystem? A review of nitrate removal pathway”, Frontiers in the Ecology and the Environment, vol. 5, no. 2, pp. 89—96, Mar. 2007. https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2 H. Wang, A. Appan and J. S. Gulliver, “Modeling of phosphorus dynamics in aquatic sediments: II-examination of model performance”, Water Research, vol. 37, no. 16, pp. 3939—3953, Sep. 2003. https://doi.org/10.1016/S0043-1354(03)00305-1 P. M. Vitousek and R. W. Howarth, “Nitrogen limitation on land and in the sea: How can it occur?” Biochemistry, vol. 13, no. 2, pp. 87—115, Jan. 1991. https://doi.org/10.1007/BF00002772 V. H. Smith, “Effects of nitrogen: phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems”, Biogeochemistry, vol. 18, no. 1, pp. 19-35, Feb. 1992. https://doi.org/10.1007/BF00000424 K. Reddy, E. M. D’Angelo and W. G. Harris, “Biochemistry of Wetlands”, in: Handbook of Soil Sciences, CRC Press, New York, pp. G89—G119, 2000. Y. M. Sánchez-Colón, “Effect of water level fluctuations and rainfall on phosphorus release and binding at a tropical freshwater wetland (Laguna Cartagena, PR)”, M.S. Thesis, Dept. Ciencia y Tecnología, Univ. del Turabo, Gurabo, Puerto Rico, 2012. L. Zhou and S. Xu, “Application of Grey Clustering Method in eutrophication assessment of wetland”, Journal of American Science, vol. 2, no. 4, pp. 53—58, 2006. [EPA] Environmental Protection Agency (US), “Nutrient Criteria Technical Guidance Manual: Rivers and Streams”, in: Office of Water and Office of Science and Technology, 2008. Available in http://www.tampabay.wateratlas.usf.edu/upload/documents/NutrientCriteriaTGMRiversStreams.pdf Accessed 08 Dec 2016. W. K. Dodds, J. R. Jones and E. B. Welch, “Suggested classification of stream trophic state: distributions of temperature stream types by chlorophyll, total nitrogen and phosphorus”, Water Research, vol. 32, no. 5, pp. 1455—1462, Mar. 1998. https://doi.org/10.1016/S0043-1354(97)00370-9 S. R. Carpenter, D. Ludwig and W. A. Brock, “Management of eutrophication for lakes subject to potentially irreversible change”, Ecological Applications, vol. 9, no. 3, pp. 751-771, Aug. 1999. https://doi.org/10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2 A. J. Smolders, L. P. Lamers, E. C. Lucassen, G. Van Der Velde and J. G. Roelofs, “Internal eutrophication: How it works and what to do about it – a review”, Chemistry and Ecology, vol. 22, no. 2, pp. 93—111, Jan. 2007. https://doi.org/10.1080/02757540600579730 K. R. Reddy, M. M. Fisher, Y. Wang, J. R. White and J. R. Thomas, “Potential effects of sediment dredging on internal phosphorus loading in a shallow, subtropical lake”, Lake and Reservoir Management, vol. 23, no. 1, pp. 27—38, Jan. 2009. https://doi.org/10.1080/07438140709353907 V. H. Smith, G. D. Tilman and J. C. Nekola, “Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems”, Environmental Pollution, vol. 100, no. 1, 179—196, Mar. 1999. American Public Health Association, American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater. 21st ed. Baltimore, Maryland, USA: Joint Editorial Board, 2005. [EPA] Environmental Protection Agency (US), National Pollutant Discharge Elimination System, Nitrite Method 354.1., 1971. [EPA] Environmental Protection Agency (US), National Pollutant Discharge Elimination System, Nitrate-Nitrite Method 353.2., 1978. J. L. Deng, “Introduction to Grey System Theory”, The Journal of Grey systems, vol. 1, no. 1, pp. 1—24, Nov. 1989. J. C. Huang, “The key factor of the internet information technology on the quality of life for the elderly: application of grey system theory”, in: Special Issue on Intelligent Internet Systems. IEEE Advancing Technology for Humanity, no. 33, Dec. 2010. Available in http://ieeesmc.org/newsletters/back/2010_12/main_article2.html N. Slavek and A. Jović, “Application of Grey System Theory to Software Projects Ranking”, Automatika, vol. 53, no. 3, pp. 284—293, Jan. 2017. https://doi.org/10.7305/automatika.53-3.80 Y. Lin and S. Liu, “A historical introduction to grey systems theory”, in: Systems, Man and Cybernetics, 2004 IEEE International Conference on, vol. 3, pp. 2403—2408, The Hague, Netherlands, 10-13 Oct. 2004. https://doi.org/10.1109/ICSMC.2004.1400689 H. Kuang, D. M. Kilgour and K. W. Hipel, “Grey-bases PROMETHEE II with application to evaluation of source water protection strategies”, Elsevier, Information Sciences, vol. 294, pp. 376—389, Feb. 2015. https://doi.org/10.1016/j.ins.2014.09.035 B. Torres-Velasquez and M. Paredes, “Application of Grey Clustering Method to assess eutrophication in six freshwater Colombian wetlands”, Realidad y Reflexion, vol. 18, no. 47, pp. 147—162, Jun. 2018. B. Torres-Velasquez, “Two different mathematical approaches to study eutrophication in wetlands: classification of trophic state using Grey System Theory to analyze phosphorus and nitrogen data, and the dynamics of phosphorus using differential equations”, Ph.D. dissertation, Dept. Ciencia y Tecnología, Univ. del Turabo, Puerto Rico, Gurabo, 2016. R. E. Honrath, "Mass and Energy Balances", in CE251 Environmental Engineering Fundamentals. Michigan Tech. Univ., USA, 1995. Available in http://www.cee.mtu.edu/~reh/courses/ce251/251_notes_dir/node3.html#SECTION00030000000000000000 F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology. New York, USA: Springer, 2012. https://doi.org/10.1007/978-1-4614-1686-9 W. Liu, L. Zhang, J. Zhang, X. Liu, W. Huang, D. Huang and Z. Zheng, “Effects of modified sediments from a eutrophic lake in removing phosphorus and inhibiting phosphatase activity”, Environmental Science and Pollution Research, vol 26, no.2, pp. 1723—1732, Nov. 2018. https://doi.org/10.1007/s11356-018-3754-8 Y. M. Sánchez-Colón, “Identifying nonpoint sources of phosphorus (P) and nitrogen (N) pollution and dynamics, internal eutrophication and anoxia variability at a tropical freshwater wetland (Laguna Cartagena, Puerto Rico)”, Ph.D. Dissertation, Dept. Ciencia y Tecnología, Univ. del Turabo, Puerto Rico, Gurabo, 2015. D. J. Conley, H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot and G. E. Likens, “Controlling eutrophication: nitrogen and phosphorus”, Science, vol. 323, no. 5917, pp. 1014—1015, Feb. 2009. https://doi.org/10.1126/science.1167755 D. P. Hamilton, N. Salmaso and H. W. Paerl, “Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus load”, Aquatic Ecology, vol 50, no. 3, pp 351—366, Sept. 2016. https://doi.org/10.1007/s10452-016-9594-z |
dc.relation.citationendpage.spa.fl_str_mv |
76 |
dc.relation.citationstartpage.spa.fl_str_mv |
63 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
INGE CUC |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
14 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
INGE CUC |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/1873 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/754a87f2-a337-42f3-9df1-e9ca7a5be52d/download https://repositorio.cuc.edu.co/bitstreams/d8fddef3-49b1-4aa3-97bd-3be5e891685a/download https://repositorio.cuc.edu.co/bitstreams/841a8de8-39a5-4962-bbd5-b5fd134b0622/download https://repositorio.cuc.edu.co/bitstreams/d06c7fc5-ea78-41e7-9fcb-dcb864b7a638/download https://repositorio.cuc.edu.co/bitstreams/77946820-a33f-488c-985c-8ea3501c58c9/download |
bitstream.checksum.fl_str_mv |
42fd4ad1e89814f5e4a476b409eb708c a9978325fa886c3f8fbc66fc806864f9 8a4605be74aa9ea9d79846c1fba20a33 dc6707389e2875f577d00fa4e547363b fa38e9b3e6a055119659c84b22c78722 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166835851231232 |
spelling |
Paredes, MarlioTorres Velasquez, Brenda CarolinaSanchez Colon, Yashira MarieSchaffner, Fred2019-11-13T14:26:20Z2019-11-13T14:26:20Z2019-03-22Paredes Gutiérrez, M., Torres Velasquez, B., Sanchez Colon, Y., & Schaffner Gibbs, F. (2019). Dos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico. INGE CUC, 15(1), 63-76. https://doi.org/10.17981/ingecuc.15.1.2019.06https://hdl.handle.net/11323/5626https://doi.org/10.17981/ingecuc.15.1.2019.0610.17981/ingecuc.15.1.2019.062382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction− Laguna Cartagena (LC), a wetland in Lajas, Puerto Rico, has been negatively impacted by nutrients, main-ly phosphorus run-off from agricultural activities until the end of sugar cane cultivation in the late 1900s. This led to P concentration remain high at hypereutrophic state that was irremediable even after a 5-fold reduction in source water nutrient concentration. Objective−The main goal of this research paper is to apply two different mathematical approaches to assess the eutrophi-cation level of a wetland in Puerto Rico. Methodology−Grey Cluster Method (GCM) was used to classify LC’s eutrophic state by applying the International and Chinese trophic standards and two parameters, Total Phosphorous (TP) and Total Nitrogen (TN). Mean TP and TN from LC consolidated bottom substrate and flocculence samples were used to classify LC. To address whether LC can recover, soluble reactive phosphorus (SRP) and TP from LC inlet, outlet, and center water samples were used to model (dif-ferential equation) the input and loss of phosphorus in LC and determine whether an equilibrium point exists. GCM analysis classified LC as a eutrophic wetland using the International standard and hypereutrophic using the chinese standard. Results− Trophic state classification did not vary with use of consolidated bottom substrate versus flocculence samples. The differential equation model showed that SRP and TP levels within LC were higher than levels of SRP and TP entering LC, which could be caused by a nutrient recycling process within LC that may predict failure of remediation efforts. An equilib-rium point was found at the eutrophic level, which means that even if there is a reduction in phosphorus input, there will not be a change in LC’s eutrophic state. Conclusions−Chinese trophic standard indicated LC was in a hypertrophic state. Similar results were found using the in-ternational standard. The differential equation model showed that LC is irreversible.Introducción− Laguna Cartagena (LC), es un humedal en Lajas, Puerto Rico, que ha sido afectado negativamente por nutrientes, prin-cipalmente escorrentía de fósforo de las actividades agrícolas hasta el final del cultivo de la caña de azúcar a fines del siglo XX. Estas condiciones han propiciado que, la concentración de P permaneciera alta en un estado hipereutrófico, el cual era irremediable incluso después de una reducción de 5 veces en la concentración de nutrientes del agua fuente.Objetivo− El objetivo principal de este artículo de investigación es aplicar dos métodos matemáticos diferentes para evaluar el nivel de eutrofización de un humedal en Puerto Rico.Metodología− El Método de Agrupamiento de Grises (GCM) se usó para clasificar el estado eutrófico de LC aplicando los estándares tróficos internacional y chino y dos parámetros, Fósforo Total (TP) y Nitrógeno Total (TN). La media de TP y TN en el sustrato del fondo consolidado de LC y las muestras de floculencia se utilizaron para clasificar LC. Para analizar si LC puede recuperarse, se utilizó fósforo reactivo soluble (SRP) y TP a partir de muestras de agua a la entrada, salida y centro de LC para modelar (ecuación diferencial) la entrada y pérdida de fósforo en LC y determinar si existe un punto de equilibrio. El análisis GCM clasificó a la LC como un humedal eutrófico utilizando el estándar internacional e hipereutrófico utilizando el estándar chino.Resultados− La clasificación del estado trófico no presentó variacio-nes con el uso del sustrato de fondo consolidado versus las muestras de floculencia. El modelo de ecuaciones diferenciales mostró que los niveles de SRP y TP dentro de LC fueron más altos que los niveles de SRP y TP que entran en LC, lo que podría ser causado por un proceso de reciclaje de nutrientes dentro de LC que puede predecir el fracaso de los esfuerzos de remediación. Se encontró un punto de equilibrio a nivel eutrófico, lo que significa que incluso si hay una reducción en la entrada de fósforo, no habrá un cambio en el estado eutrófico de LC.Conclusiones− El estándar trófico chino indicó que la LC estaba en un estado hipertrófico. Se encontraron resultados similares usando el estándar internacional. El modelo de ecuaciones diferenciales mostró que LC es irreversible.Paredes, Marlio-0000-0002-9375-3743-600Torres Velasquez, Brenda CarolinaSanchez Colon, Yashira Marie-0000-0002-3129-561X-600Schaffner, Fred-0000-0003-4877-5860-60014 páginasapplication/pdfengCorporación Universidad de la CostaINGE CUC; Vol. 15, Núm. 1 (2019)INGE CUCINGE CUCS. R. Carpenter, N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley and V. H. Smith, “Nonpoint pollution of surface waters with phosphorus and nitrogen”, Ecological Applications, vol. 8, no. 3, pp. 559—568, Aug. 1998. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2V. H. Smith, “Eutrophication of freshwater and coastal marine ecosystems: a global problem”, Environmental Science and Pollution Research, vol.10, np.2, pp. 126—139, Mar. 2003. https://doi.org/10.1065/espr2002.12.142S. R. Carpenter, “Eutrophication of aquatic ecosystems: Bistability and soil phosphorus”, Proceedings of the National Academy of Sciences of Sciences of the United States of America, vol. 102, no. 29, pp. 10002—10005, Jul. 2005. https://doi.org/10.1073/pnas.0503959102P. M. Vitousek, J. Aber, R. Howarth, G. Likens, P. Matson, D. Schindler, W. Schlesinger and D. Tilman, “Human alteration of the global nitrogen cycle causes and consequences”, Ecological Applications, vol. 7, no. 3, 737—750, Aug. 1997. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2D. L. Correll, “Phosphorus: A rate limiting nutrient in surface waters”, Poultry Science, vol. 78, no. 5, pp. 674—682, May. 1999. https://doi.org/10.1093/ps/78.5.674C. E. Lovelock, M. C. Ball, K. C. Martin and I. C. Feller, “Nutrient enrichment increases mortality of mangroves”, PloS One, vol. 4, no. 5, p. e5600, May. 2009. https://doi.org/10.1371/journal.pone.0005600A. A. Ansari, S. S. Gill and F. A. Khan, “Eutrophication: threat to aquatic ecosystems”, in Eutrophication: Causes, consequences and control, pp 143—170, Netherlands: Springer, 2010. https://doi.org/10.1007/978-90-481-9625-8_7[EPA] Environmental Protection Agency (US), “Protecting Natural Wetlands: A Guide to Stormwater Best Management Practices”, in: National Service Center for Environmental Publications (NSCEP), Washington (DC): Office of Water (US), 1996. Available in https://nepis.epa.gov/Exe/ZyPDF.cgi/200053GQ.PDF?Dockey=200053GQ.PDFD. L. Correll, “The role of phosphorus in the eutrophication of receiving waters: a review”, Journal of Environmental Quality, vol. 27, no. 2, pp. 261—266, Mar. 1998. https://doi.org/10.2134/jeq1998.00472425002700020004xL. Volterra, M. Boualam, A. Ménesguen, J. Duguet, J. Duchemin and X. Bonnefoy. (2002). Eutrophication and Health. World Health Organization & European Commission. Luxembourg. [Online]. Available in http://www.ypeka.gr/LinkClick.aspx?fileticket=mb9Q7Nzw5iI%3D&tabid=250&language=el-GRE. D’Angelo, J. Crutchfield and M. Vandiviere, “Rapid, sensitive, microscale determination of phosphate in water and soil”, Journal of Environmental Quality, vol. 30, no. 6, pp. 2206—2209, Nov. 2001. https://doi.org/10.2134/jeq2001.2206E. M. Bostic and J. R. White, “Soil phosphorus and vegetation influence on wetland phosphorus release after simulate drought”, Soil Science Society of America Journal, vol. 71, no. 1, pp. 238—244, Jan. 2007. https://doi.org/10.2136/sssaj2006.0137A. J. Smolders, L. P. Lamers, E. C. Lucassen, G. Van Der Velde and J. G. Roelofs, “Internal eutrophication: How it works and what to do about it – a review”, Chemistry and Ecology, vol. 22, no. 2, pp. 93—111, Jan. 2007. https://doi.org/10.1080/02757540600579730K. R. Reddy, M. M. Fisher, Y. Wang, J. R. White and J. R. Thomas, “Potential effects of sediment dredging on internal phosphorus loading in a shallow, subtropical lake”, Lake and Reservoir Management, vol. 23, no. 1, pp. 27—38, Jan. 2009. https://doi.org/10.1080/07438140709353907R. G. Wetzel, Limnology: Lake and River Ecosystems. New York, USA: Elsevier Academic Press, 2001.M. M. Fisher and K. R. Reddy, “Phosphorus flux from wetland soils affected by long-term nutrient loading”, Journal of Environmental Quality, vol. 30, no. 1, pp. 261—271, Jan. 2001. https://doi.org/10.2134/jeq2001.301261xL. Bartoszek and J. A. Tomaszek, “Phosphorus distribution in the bottom sediments of the Solina-Myczkowce Reservoirs”, Environment Protection Engineering, vol. 33, no. 2, pp. 25—33, 2007. Available http://epe.pwr.wroc.pl/2007/Bartoszek_2-2007.pdfL. E. Kinsman-Costello, “Effects of water level fluctuations on phosphorus, iron, sulfur, and nitrogen cycling in shallow freshwater ecosystems”, PhD Dissertation, Michigan State University, East Lansing, MI, USA, 2012. Available in https://lter.kbs.msu.edu/pub/3226M. Sondergaard, P. J. Jensen and E. Jeppensen, “Retention and internal loading of phosphorus in shallow, eutrophic lakes”, The Scientific World Journal, vol. 1, pp. 427—442, Aug. 2001. http://dx.doi.org/10.1100/tsw.2001.72J. J. González, B. Pérez and E. Fernández, “Analytical phosphorus fractionation in sewage sludge and sediment samples”, Analytical and Bioanalytical Chemistry, vol. 381, no. 4, pp. 873—878, Feb. 2005. https://doi.org/10.1007/s00216-004-2989-zB. Böstrom, J. M. Andersen, S. Fleisher and M. Jansson, “Exchange of phosphorus across the sediment-water interface,” Hydrobiologia, vol. 170, no. 1, pp. 229—244, 1998. https://doi.org/10.1007/978-94-009-3109-1_14K. R. Reddy, R. H. Kadlec, E. Flaig and P. M. Gale, “Phosphorus retention in streams and wetlands: a review”, Critical Reviews in Environmental Science and Technology, vol. 29, no. 1, pp. 83—146, Jun. 2010. https://doi.org/10.1080/10643389991259182S. P. Seitzinger, “Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance”, Limnology and Oceanography, vol. 33, no. 4, pp. 702—724, Jul. 1988. https://doi.org/10.4319/lo.1988.33.4part2.0702D. L. Saunders and J. Kalff, “Nitrogen retention in wetlands, lakes and rivers”, Hydrobiologia, vol. 433, no. 1, pp. 205—212, Jan. 2001. https://doi.org/10.1023/A:1017506914063S. L. Whitmire and S. K. Hamilton, “Rapid removal of nitrate and sulfate in freshwater wetland sediments”, Journal of Environmental Quality, vol. 34, no. 6, pp. 2062—2071, Nov. 2005. https://doi.org/10.2134/jeq2004.0483A. J. Burgin and S. K. Hamilton, “Have we overemphasized the role of denitrification on aquatic ecosystem? A review of nitrate removal pathway”, Frontiers in the Ecology and the Environment, vol. 5, no. 2, pp. 89—96, Mar. 2007. https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2H. Wang, A. Appan and J. S. Gulliver, “Modeling of phosphorus dynamics in aquatic sediments: II-examination of model performance”, Water Research, vol. 37, no. 16, pp. 3939—3953, Sep. 2003. https://doi.org/10.1016/S0043-1354(03)00305-1P. M. Vitousek and R. W. Howarth, “Nitrogen limitation on land and in the sea: How can it occur?” Biochemistry, vol. 13, no. 2, pp. 87—115, Jan. 1991. https://doi.org/10.1007/BF00002772V. H. Smith, “Effects of nitrogen: phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems”, Biogeochemistry, vol. 18, no. 1, pp. 19-35, Feb. 1992. https://doi.org/10.1007/BF00000424K. Reddy, E. M. D’Angelo and W. G. Harris, “Biochemistry of Wetlands”, in: Handbook of Soil Sciences, CRC Press, New York, pp. G89—G119, 2000.Y. M. Sánchez-Colón, “Effect of water level fluctuations and rainfall on phosphorus release and binding at a tropical freshwater wetland (Laguna Cartagena, PR)”, M.S. Thesis, Dept. Ciencia y Tecnología, Univ. del Turabo, Gurabo, Puerto Rico, 2012.L. Zhou and S. Xu, “Application of Grey Clustering Method in eutrophication assessment of wetland”, Journal of American Science, vol. 2, no. 4, pp. 53—58, 2006.[EPA] Environmental Protection Agency (US), “Nutrient Criteria Technical Guidance Manual: Rivers and Streams”, in: Office of Water and Office of Science and Technology, 2008. Available in http://www.tampabay.wateratlas.usf.edu/upload/documents/NutrientCriteriaTGMRiversStreams.pdf Accessed 08 Dec 2016.W. K. Dodds, J. R. Jones and E. B. Welch, “Suggested classification of stream trophic state: distributions of temperature stream types by chlorophyll, total nitrogen and phosphorus”, Water Research, vol. 32, no. 5, pp. 1455—1462, Mar. 1998. https://doi.org/10.1016/S0043-1354(97)00370-9S. R. Carpenter, D. Ludwig and W. A. Brock, “Management of eutrophication for lakes subject to potentially irreversible change”, Ecological Applications, vol. 9, no. 3, pp. 751-771, Aug. 1999. https://doi.org/10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2A. J. Smolders, L. P. Lamers, E. C. Lucassen, G. Van Der Velde and J. G. Roelofs, “Internal eutrophication: How it works and what to do about it – a review”, Chemistry and Ecology, vol. 22, no. 2, pp. 93—111, Jan. 2007. https://doi.org/10.1080/02757540600579730K. R. Reddy, M. M. Fisher, Y. Wang, J. R. White and J. R. Thomas, “Potential effects of sediment dredging on internal phosphorus loading in a shallow, subtropical lake”, Lake and Reservoir Management, vol. 23, no. 1, pp. 27—38, Jan. 2009. https://doi.org/10.1080/07438140709353907V. H. Smith, G. D. Tilman and J. C. Nekola, “Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems”, Environmental Pollution, vol. 100, no. 1, 179—196, Mar. 1999.American Public Health Association, American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater. 21st ed. Baltimore, Maryland, USA: Joint Editorial Board, 2005.[EPA] Environmental Protection Agency (US), National Pollutant Discharge Elimination System, Nitrite Method 354.1., 1971.[EPA] Environmental Protection Agency (US), National Pollutant Discharge Elimination System, Nitrate-Nitrite Method 353.2., 1978.J. L. Deng, “Introduction to Grey System Theory”, The Journal of Grey systems, vol. 1, no. 1, pp. 1—24, Nov. 1989.J. C. Huang, “The key factor of the internet information technology on the quality of life for the elderly: application of grey system theory”, in: Special Issue on Intelligent Internet Systems. IEEE Advancing Technology for Humanity, no. 33, Dec. 2010. Available in http://ieeesmc.org/newsletters/back/2010_12/main_article2.htmlN. Slavek and A. Jović, “Application of Grey System Theory to Software Projects Ranking”, Automatika, vol. 53, no. 3, pp. 284—293, Jan. 2017. https://doi.org/10.7305/automatika.53-3.80Y. Lin and S. Liu, “A historical introduction to grey systems theory”, in: Systems, Man and Cybernetics, 2004 IEEE International Conference on, vol. 3, pp. 2403—2408, The Hague, Netherlands, 10-13 Oct. 2004. https://doi.org/10.1109/ICSMC.2004.1400689H. Kuang, D. M. Kilgour and K. W. Hipel, “Grey-bases PROMETHEE II with application to evaluation of source water protection strategies”, Elsevier, Information Sciences, vol. 294, pp. 376—389, Feb. 2015. https://doi.org/10.1016/j.ins.2014.09.035B. Torres-Velasquez and M. Paredes, “Application of Grey Clustering Method to assess eutrophication in six freshwater Colombian wetlands”, Realidad y Reflexion, vol. 18, no. 47, pp. 147—162, Jun. 2018.B. Torres-Velasquez, “Two different mathematical approaches to study eutrophication in wetlands: classification of trophic state using Grey System Theory to analyze phosphorus and nitrogen data, and the dynamics of phosphorus using differential equations”, Ph.D. dissertation, Dept. Ciencia y Tecnología, Univ. del Turabo, Puerto Rico, Gurabo, 2016.R. E. Honrath, "Mass and Energy Balances", in CE251 Environmental Engineering Fundamentals. Michigan Tech. Univ., USA, 1995. Available in http://www.cee.mtu.edu/~reh/courses/ce251/251_notes_dir/node3.html#SECTION00030000000000000000F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology. New York, USA: Springer, 2012. https://doi.org/10.1007/978-1-4614-1686-9W. Liu, L. Zhang, J. Zhang, X. Liu, W. Huang, D. Huang and Z. Zheng, “Effects of modified sediments from a eutrophic lake in removing phosphorus and inhibiting phosphatase activity”, Environmental Science and Pollution Research, vol 26, no.2, pp. 1723—1732, Nov. 2018. https://doi.org/10.1007/s11356-018-3754-8Y. M. Sánchez-Colón, “Identifying nonpoint sources of phosphorus (P) and nitrogen (N) pollution and dynamics, internal eutrophication and anoxia variability at a tropical freshwater wetland (Laguna Cartagena, Puerto Rico)”, Ph.D. Dissertation, Dept. Ciencia y Tecnología, Univ. del Turabo, Puerto Rico, Gurabo, 2015.D. J. Conley, H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot and G. E. Likens, “Controlling eutrophication: nitrogen and phosphorus”, Science, vol. 323, no. 5917, pp. 1014—1015, Feb. 2009. https://doi.org/10.1126/science.1167755D. P. Hamilton, N. Salmaso and H. W. Paerl, “Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus load”, Aquatic Ecology, vol 50, no. 3, pp 351—366, Sept. 2016. https://doi.org/10.1007/s10452-016-9594-z7663115INGE CUCCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2INGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1873Two mathematical approaches to study the phosphorus eutrophication of a wetland in Puerto RicoDos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto RicoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPhosphorus dynamicsTotal phosphorusSoluble reactive phosphorusTotal nitrogenEquilibrium pointEutrophicationHypereutrophicationGrey cluster methodMétodo de agrupamiento de grisesDinámica del fósforoFósforo totalFósforo soluble reactivoNitrógeno totalPunto de equilibrioEutrofizaciónHipereutrofizaciónPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/754a87f2-a337-42f3-9df1-e9ca7a5be52d/download42fd4ad1e89814f5e4a476b409eb708cMD52ORIGINALDos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico.pdfDos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico.pdfapplication/pdf1093280https://repositorio.cuc.edu.co/bitstreams/d8fddef3-49b1-4aa3-97bd-3be5e891685a/downloada9978325fa886c3f8fbc66fc806864f9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/841a8de8-39a5-4962-bbd5-b5fd134b0622/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILDos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico.pdf.jpgDos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico.pdf.jpgimage/jpeg67053https://repositorio.cuc.edu.co/bitstreams/d06c7fc5-ea78-41e7-9fcb-dcb864b7a638/downloaddc6707389e2875f577d00fa4e547363bMD55TEXTDos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico.pdf.txtDos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico.pdf.txttext/plain56960https://repositorio.cuc.edu.co/bitstreams/77946820-a33f-488c-985c-8ea3501c58c9/downloadfa38e9b3e6a055119659c84b22c78722MD5611323/5626oai:repositorio.cuc.edu.co:11323/56262024-09-17 14:16:02.415http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |