Sistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico

Los destinos turísticos emergentes enfrentan desafíos para posicionarse en el mercado global, especialmente en seguridad y calidad de la oferta. Riohacha (Departamento de la Guajira), es un distrito especial, turístico y cultural de Colombia que busca posicionarse como uno de los destinos turísticos...

Full description

Autores:
BARRIOS BARRIOS, MAURICIO ANDRES
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/14284
Acceso en línea:
https://hdl.handle.net/11323/14284
https://repositorio.cuc.edu.co/
Palabra clave:
Sistema de recomendación
Turismo
Toma de decisiones multicriterio
Operadores de agregación
Modelado de preferencias
Lógica graduada
Recommender system
Tourism
Multi-criteria decision making
Aggregation operators
Preference modeling
Graded logic
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_bc052949ab0c9dae649a517d0b35ebed
oai_identifier_str oai:repositorio.cuc.edu.co:11323/14284
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Sistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico
title Sistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico
spellingShingle Sistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico
Sistema de recomendación
Turismo
Toma de decisiones multicriterio
Operadores de agregación
Modelado de preferencias
Lógica graduada
Recommender system
Tourism
Multi-criteria decision making
Aggregation operators
Preference modeling
Graded logic
title_short Sistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico
title_full Sistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico
title_fullStr Sistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico
title_full_unstemmed Sistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico
title_sort Sistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico
dc.creator.fl_str_mv BARRIOS BARRIOS, MAURICIO ANDRES
dc.contributor.advisor.none.fl_str_mv Valls Mateu, Aïda
Acosta Coll, Melisa
Escorcia Gutiérrez, José
dc.contributor.author.none.fl_str_mv BARRIOS BARRIOS, MAURICIO ANDRES
dc.contributor.corporatename.none.fl_str_mv Solano Barliza, Andrés David
dc.contributor.jury.none.fl_str_mv Gamarra Acosta, Margarita Rosa
Ferrré Bergadà, Maria
Barrios Barrios, Mauricio Andrés
dc.subject.proposal.spa.fl_str_mv Sistema de recomendación
Turismo
Toma de decisiones multicriterio
Operadores de agregación
Modelado de preferencias
Lógica graduada
topic Sistema de recomendación
Turismo
Toma de decisiones multicriterio
Operadores de agregación
Modelado de preferencias
Lógica graduada
Recommender system
Tourism
Multi-criteria decision making
Aggregation operators
Preference modeling
Graded logic
dc.subject.proposal.eng.fl_str_mv Recommender system
Tourism
Multi-criteria decision making
Aggregation operators
Preference modeling
Graded logic
description Los destinos turísticos emergentes enfrentan desafíos para posicionarse en el mercado global, especialmente en seguridad y calidad de la oferta. Riohacha (Departamento de la Guajira), es un distrito especial, turístico y cultural de Colombia que busca posicionarse como uno de los destinos turísticos más importantes del país, sin embargo, la falta de datos para desarrollar modelos de recomendación de productos y servicios turísticos en Riohacha puede limitar su atractivo, afectando la competitividad y el flujo de visitantes. Esta tesis tiene como objetivo desarrollar un sistema informático de recomendación multicriterio, basado en lógica graduada de preferencias, que ofrezca a los turistas una guía segura y eficiente, mejorando la experiencia y promoviendo el crecimiento sostenible de destinos como Riohacha con pocos datos disponibles. La metodología empleada se basa en investigaciones básicas y aplicadas. La investigación se divide en cuatro fases: 1) Identificación y análisis de los criterios necesarios para la planificación y diseño de la solución tecnológica; 2) Definición de un sistema de recomendación personalizado utilizando técnicas de Inteligencia Artificial y toma de decisiones basada en múltiples criterios; 3) Desarrollo e implementación de una plataforma tecnológica basada en las preferencias del usuario, con el objetivo de fortalecer los indicadores de competitividad turística en Riohacha y 4) Evaluación de la solución tecnológica, donde se valora la funcionalidad y pertinencia de la solución implementada. El sistema recomendador que se propone en la tesis utiliza dos modelos basados en operadores de conjunción/disyunción graduada (GDC) siguiendo el método Logic Scoring of Preference (LSP) para mejorar la evaluación de hoteles y restaurantes. Estos modelos de agregación jerárquicos reflejan el razonamiento humano en la selección de estos servicios abordando múltiples requisitos simultáneamente, son versátiles y adaptables a diferentes destinos. Además, la tesis propone diversas funciones predefinidas que representan diferentes tipos de preferencias respecto a los valores de atributos contextuales, que permiten simplificar el proceso de toma de decisiones y personalizar la experiencia del usuario. Se han incorporado atributos relacionados con la seguridad turística y, como medida de garantía, se ha verificado que los servicios incluidos en el sistema de recomendación están debidamente registrados y validados por una entidad gubernamental encargada de certificar este tipo de servicios. Además, se han añadido recomendaciones y consejos de seguridad turística para que el turista pueda disfrutar de su recorrido de manera segura en el destino seleccionado. El procedimiento metodológico incluyó la recolección de datos, definición de jerarquías y selección de operadores, adaptados a las necesidades del usuario. Se introdujo el Food Specialty Interest Score (FSIS) para evaluar la idoneidad de los restaurantes según las preferencias culinarias del usuario. La validación inicial, realizada por expertos del destino turístico, mostró un recall de 1.0, destacando la efectividad del modelo. Posteriormente, el modelo fue evaluado por usuarios reales, quienes lo calificaron positivamente en cuanto a recomendaciones (86.42%) y facilidad para ingresar datos (77.78%), confirmando su eficacia y facilidad de uso.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-09T14:42:29Z
dc.date.available.none.fl_str_mv 2025-06-09T14:42:29Z
dc.date.issued.none.fl_str_mv 2025-04-04
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TD
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/14284
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/14284
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv J. Arnegger and M. Herz, “Economic and destination image impacts of mega-events in emerging tourist destinations,” J. Destin. Mark. Manag., vol. 5, no. 2, pp. 76–85, 2016, doi: https://doi.org/10.1016/j.jdmm.2015.11.007.
I. Paunovi, M. Dressler, and T. M. Nikoli, “Developing a Competitive and Sustainable Destination of the Future : Clusters and Predictors of Successful National-Level Destination Governance across Destination Life-Cycle,” Sustainability, vol. 2, 2020.
G. Del Chiappa and R. Baggio, “Journal of Destination Marketing & Management Knowledge transfer in smart tourism destinations : Analyzing the effects of a network structure,” J. Destin. Mark. Manag., vol. 4, no. 3, pp. 145–150, 2015, doi: 10.1016/j.jdmm.2015.02.001.
G. I. Crouch, “Destination Competitiveness : An Analysis of Determinant Attributes,” 2011, doi: 10.1177/0047287510362776.
M. Firgo and O. Fritz, “Does having the right visitor mix do the job ? Applying an econometric shift-share model to regional tourism developments,” Ann. Reg. Sci., vol. 58, no. 3, pp. 469–490, 2017, doi: 10.1007/s00168-016-0803-4.
L. A. Grünewald, “La seguridad en el marco de la competitividad de los destinos turísticos,” Rev. Ciencias Soc., vol. 21, pp. 141–158, 2012, [Online]. Available: http://ridaa.unq.edu.ar/handle/20.500.11807/1545
I. y T. MINCIT - Ministerio de Comercio, “Política de Turismo Cultural,” MINCIT - Ministerio de Comercio, Industria y Turismo. [Online]. Available: https://www.mincultura.gov.co/ministerio/politicas-culturales/de-turismo cultural/Documents/08_politica_turismo_cultur
Riohacha Mayor’s Office, “Riohacha District Development Plan ‘Riohacha changes history 2020-2023.’”
A. de Riohacha, “Plan de Desarrollo Distrital de Riohacha 2024 -2027«Riohacha Socialmente Sana y Sostenible»,” Alcaldía de Riohacha. [Online]. Available: https://www.riohacha laguajira.gov.co/Transparencia/PlaneacionGestionyControl/PLAN DE DESARROLLO RIOHACHA 2024 -2027.pdf
Migración-Colombia, “Flujos migratorios del departamento de La Guajira,” Migración Colombia.
C. de La Guajira, “Informe análisis y desarrollo Sector Turismo en La Guajira,” Riohacha, La Guajira https//www.camaraguajira.org/publicaciones/informes/informe-sector-turismo-dela guajira-diciembre-2019. pdf Caro, D.(2019). Valledupar, la cuarta Ciudad con mayor Desempl. del país en el, 2019.
D. Duran, S. Medina, E. Fajardo, and H. Romero, “Determinantes de la competitividad turística regional en Colombia,” Utopía y Prax. Latinoam., vol. 25, no. 11, pp. 204– 221, 2020.
L. E. Gutiérrez, J. J. Samper, D. Jabba, W. Nieto, C. A. Guerrero, M. M. Betts, and H. A. López-Ospina,, “Combined Framework of Multicriteria Methods to Identify Quality Attributes in Augmented Reality Applications,” Mathematics, vol. 11, no. 13, pp. 1–39, Jun. 2023, doi: 10.3390/math11132834.
M. E. Amorin, J. M. Gandara, P. Tarlow, and J. Korstanje, "Residentes locales y turistas: Análisis turístico," 2012.
M. E. Korstanje, “Discutiendo la seguridad turistica: nuevos tiempos, nuevos enfoques,” Cad. Virtual Tur., vol. 12, no. 2, pp. 167–184, 2012.
Departamento Nacional de Planeación-DNP, “Plan nacional de desarrollo: Colombia potencia mundial de la vida 2022 – 2026.,” 2023, [Online]. Available: https://www.dnp.gov.co/plan-nacional-desarrollo/pnd-2022-2026%0D
G. de la Guajira and others, “Plan de Desarrollo 2020-2023 Guajira: Unidos por el Cambio de La Guajira,” 2020.
J. Sundbo, F. Orfila-Sintes, and F. Sørensen, “The innovative behaviour of tourism firms-Comparative studies of Denmark and Spain,” Res. Policy, vol. 36, no. 1, pp. 88– 106, 2007, doi: 10.1016/j.respol.2006.08.004.
S. Yang, Y. Liu, and L. Xu, “The effect of food tourism experiences on tourists’ subjective well-being,” Heliyon, vol. 10, no. 3, p. e25482, 2024, doi: 10.1016/j.heliyon.2024.e25482.
R. K. Akamavi, F. Ibrahim, and R. Swaray, “Tourism and Troubles: Effects of Security Threats on the Global Travel and Tourism Industry Performance,” J. Travel Res., vol. 62, no. 8, pp. 1755–1800, 2023, doi: 10.1177/00472875221138792.
T. Horozov, N. Narasimhan, and V. Vasudevan, “Using location for personalized POI recommendations in mobile environments,” Proc. - 2006 Int. Symp. Appl. Internet, SAINT 2006, vol. 2006, pp. 124–129, 2006, doi: 10.1109/SAINT.2006.55.
M. Alrehili, B. Alsubhi, R. Almoghamsi, A.-A. Almutairi, and I. Alansari, “Tourism Mobile Application to Guide Madinah Visitors,” in 2018 1st International Conference on Computer Applications & Information Security (ICCAIS), IEEE, Oct. 2018, pp. 1– 4. doi: 10.1109/CAIS.2018.8442023.
D. Herzog, C. Laß, and W. Wörndl, “Tourrec - A tourist trip recommender system for individuals and groups,” RecSys 2018 - 12th ACM Conf. Recomm. Syst., pp. 496–497, 2018, doi: 10.1145/3240323.3241612.
H. C. M. Senefonte, M. R. Delgado, R. Lüders, and T. H. Silva, “PredicTour : Predicting Mobility Patterns of Tourists Based on Social Media User ’ s Profiles,” IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3143503.
J. L. Sarkar and A. Majumder, “A new point-of-interest approach based on multi itinerary recommendation engine,” Expert Syst. Appl., vol. 181, no. April, p. 115026, 2021, doi: 10.1016/j.eswa.2021.115026.
S. Agrawal, D. Roy, and M. Mitra, “Tag embedding based personalized point of interest recommendation system,” Inf. Process. Manag., vol. 58, no. 6, p. 102690, 2021, doi: 10.1016/j.ipm.2021.102690.
M. Kargar and Z. Lin, “A socially motivating and environmentally friendly tour recommendation framework for tourist groups,” Expert Syst. Appl., vol. 180, p. 115083, Oct. 2021, doi: 10.1016/j.eswa.2021.115083.
G. Glukhov and I. Derevitskii, “Points-of-Interest Recommendation Algorithms for a СOVID-19 Restrictions Scenario in the Catering Industry,” IEEE Access, 2021.
D. Massimo and F. Ricci, Popularity , novelty and relevance in point of interest recommendation : an experimental analysis, vol. 23, no. 4. Springer Berlin Heidelberg, 2021. doi: 10.1007/s40558-021-00214-5.
X. Huang, “Personalized Travel Route Recommendation Model of Intelligent Service Robot Using Deep Learning in Big Data Environment,” vol. 2022, 2022.
G. Liu, “Research on Personalized Minority Tourist Route,” vol. 2022, 2022.
Z. Zhou, J. Yu, Z. Guo, and Y. Liu, “Visual exploration of urban functions via spatio temporal taxi OD data,” J. Vis. Lang. Comput., vol. 48, no. July, pp. 169–177, 2018, doi: 10.1016/j.jvlc.2018.08.009.
X. Zhou, B. Sun, S. Li, and S. Liu, “Tour Route Planning Algorithm Based on Precise Interested Tourist Sight Data Mining,” IEEE Access, vol. 8, pp. 153134–153168, Oct. 2020, doi: 10.1109/ACCESS.2020.3010420.
N. N. Qomariyah and D. Kazakov, “A genetic ‑ based pairwise trip planner recommender system,” J. Big Data, 2021, doi: 10.1186/s40537-021-00470-6.
U. K. Ganapathy, S. D. Manjula, and K. Arputharaj, “RETRACTED ARTICLE : A user preference tree based personalized route recommendation system for constraint tourism and travel,” Soft Comput., vol. 26, no. 3, p. 1499, 2022, doi: 10.1007/s00500- 021-06289-w.
E. Tarantino, I. De Falco, and U. Scafuri, “A mobile personalized tourist guide and its user evaluation,” Inf. Technol. Tour., vol. 21, no. 3, pp. 413–455, Oct. 2019, doi: 10.1007/s40558-019-00150-5.
M. Al-Ghobari, A. Muneer, and S. Mohamed Fati, “Location-Aware Personalized Traveler Recommender System (LAPTA) Using Collaborative Filtering KNN,” Comput. Mater. Contin., vol. 69, no. 2, pp. 1553–1570, Oct. 2021, doi: 10.32604/cmc.2021.016348.
M. del Carmen Rodríguez-Hernández, S. Ilarri, R. Trillo, and R. Hermoso, “Context Aware Recommendations Using Mobile P2P,” in the 15th International Conference, ACM Press, Oct. 2017, pp. 82–91. doi: 10.1145/3151848.3151856.
M. del Carmen Rodríguez-Hernández and S. Ilarri, “AI-based mobile context-aware recommender systems from an information management perspective: Progress and directions,” Knowledge-Based Syst., vol. 215, 2021, doi: 10.1016/j.knosys.2021.106740.
B. Alhijawi and Y. Kilani, “A collaborative filtering recommender system using genetic algorithm,” Inf. Process. Manag., vol. 57, no. 6, p. 102310, 2020, doi: 10.1016/j.ipm.2020.102310.
K. Al Fararni, F. Nafis, B. Aghoutane, A. Yahyaouy, J. Riffi, and A. Sabri, “Hybrid recommendersystem for tourism based on big data and AI: A conceptual framework,” Big Data Min. Anal., vol. 4, no. 1, pp. 47–55, 2021, doi: 10.26599/BDMA.2020.9020015.
R. Lavanya, T. Khokle, and A. Maity, Review on hybrid recommender system for mobile devices, vol. 130, no. August 2020. Springer Singapore, 2021. doi: 10.1007/978-981-15-5329-5_44.
F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Egypt. Informatics J., vol. 16, no. 3, pp. 261– 273, 2015, doi: 10.1016/j.eij.2015.06.005.
S. Ojagh, M. R. Malek, S. Saeedi, and S. Liang, “A location-based orientation-aware recommender system using IoT smart devices and Social Networks,” Futur. Gener. Comput. Syst., vol. 108, pp. 97–118, Oct. 2020, doi: 10.1016/j.future.2020.02.041.
B. Abu-Salih, H. Alsawalqah, B. Elshqeirat, T. Issa, P. Wongthongtham, and K. K. Premi, “Toward a knowledge-based personalised recommender system for mobile app development,” J. Univers. Comput. Sci., vol. 27, no. 2, pp. 208–229, 2021, doi: 10.3897/jucs.65096.
F. Aznoli and N. J. Navimipour, “Cloud services recommendation: Reviewing the recent advances and suggesting the future research directions,” J. Netw. Comput. Appl., vol. 77, pp. 73–86, Oct. 2017, doi: 10.1016/j.jnca.2016.10.009.
V. Boppana and P. Sandhya, “Web crawling based context aware recommender system using optimized deep recurrent neural network,” J. Big Data, 2021, doi: 10.1186/s40537-021-00534-7.
S. Bahulikar, V. Upadhye, T. Patil, B. Kulkarni, and D. Patil, “Airline Recommendations Using a Hybrid and Location Based Approach,” IEEE Access, pp. 972–977, 2017.
Z. Huang, X. Lin, H. Liu, B. Zhang, Y. Chen, and Y. Tang, “Deep Representation Learning for Location-Based Recommendation,” IEEE Access, vol. 7, no. 3, pp. 648– 658, 2020.
O. Artemenko, V. Pasichnyk, and N. Kunanec, “E-tourism mobile location-based hybrid recommender system with context evaluation,” in 2019 IEEE 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), IEEE, Oct. 2019, pp. 114–118. doi: 10.1109/STC- CSIT.2019.8929775.
K. Gao, X. Yang, C. Wu, T. Qiao, X. Chen, M. Yang, and L. Chen, “Exploiting Location-Based Context for POI Recommendation When Traveling to a New Region,” IEEE Access, vol. 8, pp. 52404–52412, 2020, doi: 10.1109/ACCESS.2020.2980982.
R. Baral, S. S. Iyengar, X. Zhu, T. Li, and P. Sniatala, “HiRecS : A Hierarchical Contextual Location Recommendation System,” IEEE Access, vol. 6, no. 5, pp. 1020– 1037, 2019.
H. Amirat and P. Fournier-viger, “Recommendation in LBSN,” IEEE Access, 2018.
R. Suguna, P. Sathishkumar, and S. Deepa, “User Location and Collaborative based Recommender System using Naive Bayes Classifier and UIR Matrix,” IEEE Access, pp. 0–4, 2020.
M. Kolahkaj, A. Harounabadi, A. Nikravanshalmani, and R. Chinipardaz, “A hybrid context-aware approach for e-tourism package recommendation based on asymmetric similarity measurement and sequential pattern mining,” Electron. Commer. Res. Appl., vol. 42, no. July 2019, p. 100978, 2020, doi: 10.1016/j.elerap.2020.100978.
L. Ravi, V. Subramaniyaswamy, V. Vijayakumar, S. Chen, A. Karmel, and M. Devarajan, “Hybrid Location-based Recommender System for Mobility and Travel Planning,” Mob. Networks Appl., vol. 24, no. 4, pp. 1226–1239, Oct. 2019, doi: 10.1007/s11036-019-01260-4.
R. Logesh, V. Subramaniyaswamy, V. Vijayakumar, X. Z. Gao, and V. Indragandhi, “A hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart city,” Futur. Gener. Comput. Syst., vol. 83, pp. 653–673, 2018, doi: 10.1016/j.future.2017.08.060.
N. Wayan and P. Yuni, “Designing a tourism recommendation system using a hybrid method ( Collaborative Filtering and Content-Based Filtering ),” pp. 298–305, 2021.
J. Borràs, A. Moreno, and A. Valls, “Intelligent tourism recommender systems: A survey,” Expert Syst. Appl., vol. 41, no. 16, pp. 7370–7389, 2014, doi: https://doi.org/10.1016/j.eswa.2014.06.007.
C. V. Joe and J. S. Raj, “Location-based Orientation Context Dependent Recommender System for Users,” vol. 03, no. 01, pp. 14–23, 2021
L. Del Vasto-Terrientes, A. Valls, P. Zielniewicz, and J. Borràs, “A hierarchical multi criteria sorting approach for recommender systems,” J. Intell. Inf. Syst., vol. 46, no. 2, pp. 313–346, 2016, doi: 10.1007/s10844-015-0362-7.
J. Dujmovic, Soft computing evaluation logic: The LSP decision method and its applications, John Wiley. John Wiley & Sons, 2018.
J. Dujmović, “Interpretability and Explainability of LSP Evaluation Criteria,” in 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2020, pp. 1–8. doi: 10.1109/FUZZ48607.2020.9177578.
Z. Karimi, Y. Batmani, and M. J. Khosrowjerdi, “Política De Turismo Cultural,” Optimal Control Applications and Methods. [Online]. Available: https://www.mincultura.gov.co/ministerio/politicas-culturales/de-turismo cultural/Documents/08_politica_turismo_cultural.pdf
C. A. Castellanos, Y. Hernández Aro, J. Castellanos Castillo, and L. Campos Cardoso, “La competitividad del destino turístico Villa Clara , Cuba Identificación de sus factores determinantes mediante análisis estructural ( MIC-,” Estud. y Perspect. en Tur., pp. 1–23, 2014.
N. Arboleda Montaño, “Lineamientos estratégicos para la gestión del turismo en el Distrito de Buenaventura (Colombia)(Strategic Guidelines for the Management of Tourism in the District of Buenaventura (Colombia)),” Tur. y Soc., vol. 23, 2018.
A. Spencer and P. Tarlow, “Tourism Security to Tourism Surety and Well-being,” in Tourism Safety and Security for the Caribbean, Emerald Publishing Limited, 2021, pp. 15–25. doi: 10.1108/978-1-80071-318-520211004.
A. D. Solano-Barliza, “Revisión conceptual de sistemas de recomendación y geolocalización aplicados a la seguridad turística,” CESTA, vol. 2, no. 2, pp. 37–43, 2021, doi: 10.17981/cesta.02.02.2021.05.
P. E. Tarlow, TOURISM SECURITY Strategies for Effectively Managing Travel Risk and Safety. 2014
S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Pearson, 2016.
M. Doumpos and C. Zopounidis, “Computational intelligence techniques for multicriteria decision aiding: An overview,” Multicriteria Decis. Aid Artif. Intell. Links, Theory Appl., pp. 1–23, 2013.
J. Figueira, S. Greco, and M. Ehrgott, “Multiple criteria decision analysis: state of the art surveys,” Springer, 2005.
] S. Corrente, S. Greco, and R. Słowiński, “Multiple criteria hierarchy process with ELECTRE and PROMETHEE,” Omega, vol. 41, no. 5, pp. 820–846, 2013.
J. S. Dyer, “Multiattribute utility theory (MAUT),” Mult. criteria Decis. Anal. State art Surv. Wiley., vol. 233, pp. 285–314, 2016.
V. Torra and Y. Narukawa, Modeling decisions: information fusion and aggregation operators. Springer Science \& Business Media, 2007.
J. Dujmović, “Asymmetric and compound preference aggregators,” in Modeling Decisions for Artificial Intelligence: Third International Conference, MDAI 2006, Tarragona, Spain, April 3-5, 2006. Proceedings 3, 2006, pp. 1–4.
J. Dujmović, “An analysis of penalty and reward for partial absorption aggregators,” in Proceeding of the 2014 World Conference on Soft Computing, 2014, pp. 126–133.
R. J. Ziarani and R. Ravanmehr, “Serendipity in Recommender Systems: A Systematic Literature Review,” J. Comput. Sci. Technol., vol. 36, no. 2, pp. 375–396, 2021, doi: 10.1007/s11390-020-0135-9.
U. Bhandari, K. Sugiyama, A. Datta, and R. Jindal, “Serendipitous recommendation for mobile apps using item-item similarity graph,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8281 LNCS, pp. 440–451, 2013, doi: 10.1007/978-3-642-45068-6_38.
P. Yochum, L. Chang, T. Gu, and M. Zhu, “Linked Open Data in Location-Based Recommendation System on Tourism Domain : A Survey,” IEEE Access, pp. 16409– 16439, 2020.
G. Suganeshwari and S. S. Ibrahim, “Preface,” Smart Innov. Syst. Technol., vol. 49, pp. v–vii, 2016, doi: 10.1007/978-3-319-30348-2
S. Amara and R. R. Subramanian, “Collaborating personalized recommender system and content-based recommender system using TextCorpus,” 2020 6th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2020, pp. 105–109, 2020, doi: 10.1109/ICACCS48705.2020.9074360.
N. M. Villegas, C. Sánchez, J. Díaz-cely, and G. Tamura, “Knowle dge-Base d Systems Characterizing context-aware recommender systems: A systematic literature review,” Knowledge-Based Syst., vol. 140, pp. 173–200, 2018, doi: 10.1016/j.knosys.2017.11.003.
D. Wang, X. Zhang, D. Yu, G. Xu, and S. Deng, “CAME: Content- And Context Aware Music Embedding for Recommendation,” IEEE Trans. Neural Networks Learn. Syst., vol. 32, no. 3, pp. 1375–1388, 2021, doi: 10.1109/TNNLS.2020.2984665.
K. Chaudhari and A. Thakkar, “A Comprehensive Survey on Travel Recommender Systems,” Arch. Comput. Methods Eng., vol. 27, no. 5, pp. 1545–1571, 2020, doi: 10.1007/s11831-019-09363-7.
A. Ferretti, N. Hedrich, T. Lovey, E. Vayena, and P. Schlagenhauf, “Mobile apps for travel medicine and ethical considerations: A systematic review,” Travel Med. Infect. Dis., vol. 43, p. 102143, Oct. 2021, doi: 10.1016/j.tmaid.2021.102143.
A. Solano-Barliza, I. Arregocés-Julio, M. Aarón-Gonzalvez, R. Zamora-Musa, E. De La-Hoz-Franco, J. Escorcia-Gutierrez, and M. Acosta-Coll, “Recommender systems applied to the tourism industry: a literature review,” Cogent Bus. Manag., vol. 11, no. 1, p. 2367088, Dec. 2024, doi: 10.1080/23311975.2024.2367088.
M. C. Rodriguez-Sanchez and J. Martinez-Romo, “GAWA – Manager for accessibility Wayfinding apps,” Int. J. Inf. Manage., vol. 37, no. 6, pp. 505–519, Oct. 2017, doi: 10.1016/j.ijinfomgt.2017.05.011.
J.-W. Bi, H. Li, and Z.-P. Fan, “Tourism demand forecasting with time series imaging: A deep learning model,” Ann. Tour. Res., vol. 90, p. 103255, 2021, doi: https://doi.org/10.1016/j.annals.2021.103255.
X. Li, H. Li, B. Pan, and R. Law, “Machine Learning in Internet Search Query Selection for Tourism Forecasting,” J. Travel Res., vol. 60, no. 6, pp. 1213–1231, Jul. 2020, doi: 10.1177/0047287520934871.
M. S. P. Maru’ao and Suharjito, “Tourism recommender system using hybrid multi criteria approach,” IOP Conf. Ser. Earth Environ. Sci., vol. 729, no. 1, p. 12118, 2021, doi: 10.1088/1755-1315/729/1/012118.
S. Hosseini, H. Yin, X. Zhou, S. Sadiq, M. R. Kangavari, and N.-M. Cheung, “Leveraging multi-aspect time-related influence in location recommendation,” World Wide Web, vol. 22, no. 3, pp. 1001–1028, 2019, doi: 10.1007/s11280-018-0573-2.
Q. Y. Shambour, A. A. Abu-Shareha, and M. M. Abualhaj, “A hotel recommender system based on multi-criteria collaborative filtering,” Inf. Technol. Control, vol. 51, no. 2, pp. 390–402, 2022.
X. Nan and X. Wang, “Design and implementation of a personalized tourism recommendation system based on the data mining and collaborative filtering algorithm,” Comput. Intell. Neurosci., vol. 2022, no. 1, p. 1424097, 2022.
A. A. Noorian Avval and A. Harounabadi, “A hybrid recommender system using topic modeling and prefixspan algorithm in social media,” Complex Intell. Syst., vol. 9, no. 4, pp. 4457–4482, 2023, doi: 10.1007/s40747-022-00958-5.
S. Forouzandeh, K. Berahmand, E. Nasiri, and M. Rostami, “A Hotel Recommender System for Tourists Using the Artificial Bee Colony Algorithm and Fuzzy TOPSIS Model: A Case Study of TripAdvisor,” Int. J. Inf. Technol. Decis. Mak., vol. 20, no. 01, pp. 399–429, Dec. 2020, doi: 10.1142/S0219622020500522.
C. Halkiopoulos, E. Dimou, A. Kompothrekas, G. Telonis, and B. Boutsinas, “The E Tour Facilitator Platform Supporting an Innovative Health Tourism Marketing Strategy BT - Culture and Tourism in a Smart, Globalized, and Sustainable World,” V. Katsoni and C. van Zyl, Eds., Cham: Springer International Publishing, 2021, pp. 609–623.
M. Nilashi, B. Minaei-Bidgoli, M. Alrizq, A. Alghamdi, A. A. Alsulami, S. Samad, and S. Mohd, “An analytical approach for big social data analysis for customer decision-making in eco-friendly hotels,” Expert Syst. Appl., vol. 186, p. 115722, 2021, doi: https://doi.org/10.1016/j.eswa.2021.115722.
K. K. Ranga and C. K. Nagpal, “A big data analytics framework for determining the travel destination preferences of Indian tourists,” Int. J. Mod. Phys. C, vol. 34, no. 02, p. 2350024, Jul. 2022, doi: 10.1142/S0129183123500249.
O. Baker and Q. Yuan, “Machine learning: Factorization Machines and Normalized Discounted Cumulative Gain for Tourism Recommender System Optimisation,” in 2021 IEEE International Conference on Computing (ICOCO), 2021, pp. 31–36. doi: 10.1109/ICOCO53166.2021.9673502.
E. Bellodi, R. Zese, and F. Bertasi, “Machine Learning in a Policy Support System for Smart Tourism Management BT - Machine Learning, Optimization, and Data Science,” G. Nicosia, V. Ojha, E. La Malfa, G. La Malfa, G. Jansen, P. M. Pardalos, G. Giuffrida, and R. Umeton, Eds., Cham: Springer International Publishing, 2022, pp. 457–472.
T. Wenan, D. Shrestha, B. Gaudel, N. Rajkarnikar, and S. R. Jeong, “Analysis and Evaluation of TripAdvisor Data: A Case of Pokhara, Nepal BT - Intelligent Computing & Optimization,” P. Vasant, I. Zelinka, and G.-W. Weber, Eds., Cham: Springer International Publishing, 2022, pp. 738–750.
P. Zhang, J. Wang, and R. Li, “Tourism-type ontology framework for tourism-type classification, naming, and knowledge organization,” Heliyon, vol. 9, no. 4, 2023.
A. Almomani, P. Saavedra, P. Barreiro, R. Durán, R. Crujeiras, M. Loureiro, and E. Sánchez,., “Application of choice models in tourism recommender systems,” Expert Syst., vol. 40, no. 3, p. e13177, 2023.
M. Hong and J. J. Jung, “Multi-criteria tensor model for tourism recommender systems,” Expert Syst. Appl., vol. 170, p. 114537, 2021, doi: https://doi.org/10.1016/j.eswa.2020.114537.
Richa and P. Bedi, “Parallel context-aware multi-agent tourism recommender system,” Int. J. Comput. Sci. Eng., vol. 20, no. 4, pp. 536–549, 2019.
C. Huda, Y. Heryadi, Lukas, and W. Budiharto, “Aspect-based Sentiment Analysis in Tourism Industry for Tourism Recommender System,” in 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 2022, pp. 407–412. doi: 10.1109/ISRITI56927.2022.10053083.
Y. Liu, H. Wu, K. Rezaee, M. R. Khosravi, O. I. Khalaf, A. A. Khan, D. Ramesh, and L. Qi, “Interaction-Enhanced and Time-Aware Graph Convolutional Network for Successive Point-of-Interest Recommendation in Traveling Enterprises,” IEEE Trans. Ind. Informatics, vol. 19, no. 1, pp. 635–643, 2023, doi: 10.1109/TII.2022.3200067.
R. K. Mishra, J. A. A. Jothi, S. Urolagin, and K. Irani, “Knowledge based topic retrieval for recommendations and tourism promotions,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 1, p. 100145, 2023, doi: https://doi.org/10.1016/j.jjimei.2022.100145.
A. Guizzardi, F. M. E. Pons, G. Angelini, and E. Ranieri, “Big data from dynamic pricing: A smart approach to tourism demand forecasting,” Int. J. Forecast., vol. 37, no. 3, pp. 1049–1060, 2021, doi: 10.1016/j.ijforecast.2020.11.006.
R. Ramli, M. H. Miraz, K.-R. K. Mahamud, M. F. Omar, and K. Kayat, “Collaborative-based web recommender system for homestay program: A bridging tool in a tourism supply chain,” Int. J Sup. Chain. Mgt Vol, vol. 8, no. 6, p. 978, 2019.
A. Al-Nafjan, N. Alrashoudi, and H. Alrasheed, “Recommendation System Algorithms on Location-Based Social Networks: Comparative Study,” Information, vol. 13, no. 4, 2022, doi: 10.3390/info13040188.
Z. K. A. Baizal, D. Tarwidi, B. Wijaya, and others, “Tourism destination recommendation using ontology-based conversational recommender system,” Int. J. Comput. Digit. Syst., vol. 10, 2021.
Y. M. Arif, “Destinations Ratings Based Multi-Criteria Recommender System for Indonesian Halal Tourism Game Destinations Ratings Based Multi-Criteria Recommender System for Indonesian Halal Tourism Game,” no. January, 2022, doi: 10.22266/ijies2022.0228.26.
F.-M. Hsu, Y.-T. Lin, and T.-K. Ho, “Design and implementation of an intelligent recommendation system for tourist attractions: The integration of EBM model, Bayesian network and Google Maps,” Expert Syst. Appl., vol. 39, no. 3, pp. 3257– 3264, Oct. 2012, doi: 10.1016/j.eswa.2011.09.013.
W. Zheng, X. Huang, and Y. Li, “Understanding the tourist mobility using GPS: Where is the next place?,” Tour. Manag., vol. 59, pp. 267–280, 2017, doi: 10.1016/j.tourman.2016.08.009.
L. Gamidullaeva, A. Finogeev, M. Kataev, and L. Bulysheva, “A Design Concept for a Tourism Recommender System for Regional Development,” Algorithms, vol. 16, no. 1, 2023, doi: 10.3390/a16010058.
S. Missaoui, F. Kassem, M. Viviani, A. Agostini, R. Faiz, and G. Pasi, “LOOKER: a mobile, personalized recommender system in the tourism domain based on social media user-generated content,” Pers. Ubiquitous Comput., vol. 23, no. 2, pp. 181–197, 2019, doi: 10.1007/s00779-018-01194-w.
L. Esmaeili, S. Mardani, S. A. H. Golpayegani, and Z. Z. Madar, “A novel tourism recommender system in the context of social commerce,” Expert Syst. Appl., vol. 149, p. 113301, 2020, doi: https://doi.org/10.1016/j.eswa.2020.113301.
Y. Lin, C. Huang, W. Yao, and Y. Shao, “Personalised attraction recommendation for enhancing topic diversity and accuracy,” J. Inf. Sci., vol. 49, no. 2, pp. 302–318, Apr. 2021, doi: 10.1177/0165551521999801.
M. C. Urdaneta-Ponte, A. Méndez-Zorrilla, and I. Oleagordia-Ruiz, “Lifelong Learning Courses Recommendation System to Improve Professional Skills Using Ontology and Machine Learning,” Appl. Sci., vol. 11, no. 9, 2021, doi: 10.3390/app11093839.
M. Casillo, M. Lombardi, D. Santaniello, and C. Valentino, “Recommender Systems And Digital Storytelling To Enhance Tourism Experience In Cultural Heritage Sites,” pp. 323–328, 2021, doi: 10.1109/SMARTCOMP52413.2021.00067.
J. Zhao, W. Wang, Z. Zhang, Q. Sun, H. Huo, and L. Qu, “Knowledge-Based Systems TrustTF : A tensor factorization model using user trust and implicit feedback for context-aware recommender systems,” Knowledge-Based Syst., vol. 209, p. 106434, 2020, doi: 10.1016/j.knosys.2020.106434
J. Li, K. Zhang, X. Yang, P. Wei, J. Wang, K. Mitra, and R. Ranjan, “Category Preferred Canopy–K-means based Collaborative Filtering algorithm,” Futur. Gener. Comput. Syst., vol. 93, pp. 1046–1054, 2019, doi: https://doi.org/10.1016/j.future.2018.04.025.
O. Stitini, S. Kaloun, and O. Bencharef, “An Improved Recommender System Solution to Mitigate the Over-Specialization Problem Using Genetic Algorithms,” Electronics, vol. 11, no. 2, 2022, doi: 10.3390/electronics11020242.
S. Renjith, A. Sreekumar, and M. Jathavedan, “An extensive study on the evolution of context-aware personalized travel recommender systems,” Inf. Process. Manag., vol. 57, no. 1, p. 102078, Oct. 2020, doi: 10.1016/j.ipm.2019.102078.
I. Y. Choi, Y. U. Ryu, and J. K. Kim, “A recommender system based on personal constraints for smart tourism city,” Asia Pacific J. Tour. Res., vol. 26, no. 4, pp. 440– 453, Apr. 2021, doi: 10.1080/10941665.2019.1592765.
S. Ojagh, M. R. Malek, S. Saeedi, and S. Liang, “A location-based orientation-aware recommender system using IoT smart devices and Social Networks,” Futur. Gener. Comput. Syst., vol. 108, pp. 97–118, 2020, doi: 10.1016/j.future.2020.02.041.
O. Artemenko, V. Pasichnyk, N. Kunanec, and D. Tabachyshyn, “Using context analysys for providing real time recommendations in e-tourism mobile location-based recommender systems,” in 2019 IEEE 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), IEEE, Oct. 2019, pp. 166–169. doi: 10.1109/STC-CSIT.2019.8929822.
H. Gao, “Big Data Development of Tourism Resources Based on 5G Network and Internet of Things System,” Microprocess. Microsyst., vol. 80, p. 103567, Oct. 2021, doi: 10.1016/j.micpro.2020.103567.
W. Shafqat and Y.-C. Byun, “A Context-Aware Location Recommendation System for Tourists Using Hierarchical LSTM Model,” Sustainability, vol. 12, no. 10, p. 4107, Oct. 2020, doi: 10.3390/su12104107.
A. Abu-Issa, H. Nawawreh, L. Shreteh, Y. Salman, Y. Hassouneh, I. Tumar, and M. Hussein, "A smart city mobile application for multitype, proactive, and context-aware recommender system," in 2017 International Conference on Engineering and Technology (ICET), 2017, pp. 1–5, IEEE..
M. Kolahkaj, A. Harounabadi, A. Nikravanshalmani, and R. Chinipardaz, “A hybrid context-aware approach for e-tourism package recommendation based on asymmetric similarity measurement and sequential pattern mining,” Electron. Commer. Res. Appl., vol. 42, p. 100978, Oct. 2020, doi: 10.1016/j.elerap.2020.100978.
R. R. S. Naser and H. N. Nawaf, "Context aware web service recommender supported by user-based classification," in 2019 International Engineering Conference (IEC), 2019, pp. 131–135, IEEE.
M. del Carmen Rodríguez-Hernández and S. Ilarri, “AI-based mobile context-aware recommender systems from an information management perspective: Progress and directions,” Knowledge-Based Syst., vol. 215, p. 106740, 2021, doi: 10.1016/j.knosys.2021.106740.
A. Ismail, S. A. S. A. Kadir, A. Aziz, M. Mokshin, and A. M. Lokman, “iTourism Travel Buddy Mobile Application,” in 2016 10th International Conference on Next Generation Mobile Applications, Security and Technologies (NGMAST), IEEE, Oct. 2016, pp. 82–87. doi: 10.1109/NGMAST.2016.22.
M. Acharya, S. Yadav, and K. K. Mohbey, “How can we create a recommender system for tourism? A location centric spatial binning-based methodology using social networks,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 1, p. 100161, 2023, doi: https://doi.org/10.1016/j.jjimei.2023.100161.
R. Ding and Z. Chen, “RecNet : a deep neural network for personalized POI recommendation in location-based social networks,” Int. J. Geogr. Inf. Sci., vol. 00, no. 00, pp. 1–18, 2018, doi: 10.1080/13658816.2018.1447671.
Z. Duan, L. Tang, X. Gong, and Y. Zhu, “Personalized service recommendations for travel using trajectory pattern discovery,” Int. J. Distrib. Sens. Networks, vol. 14, no. 3, 2018, doi: 10.1177/1550147718767845.
S. Xing, F. Liu, X. Zhao, and T. Li, “Points-of-interest recommendation based on convolution matrix factorization,” Appl. Intell., no. June 2016, pp. 2458–2469, 2018.
L. Wu, S. Li, C. J. Hsieh, and J. Sharpnack, "SSE-PT: Sequential recommendation via personalized transformer," in Proc. 14th ACM Conf. on Recommender Systems, 2020, pp. 328–337.
S. Forouzandeh, M. Rostami, and K. Berahmand, “A Hybrid Method for Recommendation Systems based on Tourism with an Evolutionary Algorithm and Topsis Model A Hybrid Method for Recommendation Systems based on,” 2022, doi: 10.1080/16168658.2021.2019430.
S. Wang, Z. A. Bhuiyan, H. A. O. Peng, and B. Du, “Hybrid Deep Neural Networks for Friend Recommendations in Edge Computing Environment,” pp. 10693–10706, 2020.
J. A. Orama, A. Huertas, J. Borràs, A. Moreno, and S. Anton Clavé, “Identification of Mobility Patterns of Clusters of City Visitors: An Application of Artificial Intelligence Techniques to Social Media Data,” Appl. Sci., vol. 12, no. 12, 2022, doi: 10.3390/app12125834.
L. Santamaria-Granados, J. F. Mendoza-Moreno, and G. Ramirez-Gonzalez, “Tourist Recommender Systems Based on Emotion Recognition—A Scientometric Review,” Futur. Internet, vol. 13, no. 1, 2021, doi: 10.3390/fi13010002.
P. R. Srivastava, P. Eachempati, V. Charles, and N. P. Rana, “A hybrid machine learning approach to hotel sales rank prediction,” J. Oper. Res. Soc., vol. 74, no. 6, pp. 1407–1423, Jun. 2023, doi: 10.1080/01605682.2022.2096498.
P. Ferraro and G. Lo Re, “Designing Ontology-Driven Recommender Systems foTourism BT - Advances onto the Internet of Things: How Ontologies Make the Internet of Things Meaningful,” S. Gaglio and G. Lo Re, Eds., Cham: Springer International Publishing, 2014, pp. 339–352. doi: 10.1007/978-3-319-03992-3_24.
J. L. Sarkar, A. Majumder, C. R. Panigrahi, S. Roy, and B. Pati, “Tourism recommendation system: a survey and future research directions,” Multimed. Tools Appl., vol. 82, no. 6, pp. 8983–9027, 2023, doi: 10.1007/s11042-022-12167-w.
A. Solano-Barliza, M. Acosta-Coll, J. Escorcia-Gutierrez, E. De-La-Hoz-Franco, and I. Arregocés-Julio, “Hybrid Recommender System Model for Tourism Industry Competitiveness Increment,” in Computer Information Systems and Industrial Management, K. Saeed, J. Dvorský, N. Nishiuchi, and M. Fukumoto, Eds., Cham: Springer Nature Switzerland, 2023, pp. 209–222.
F. E. Zaizi, S. Qassimi, and S. Rakrak, “Multi-objective optimization with recommender systems: A systematic review,” Inf. Syst., vol. 117, p. 102233, 2023, doi: https://doi.org/10.1016/j.is.2023.102233.
S. Yu, J. Wang, J. Wang, and L. Li, “A multi-criteria decision-making model for hotel selection with linguistic distribution assessments,” Appl. Soft Comput., vol. 67, pp. 741–755, 2018, doi: https://doi.org/10.1016/j.asoc.2017.08.009.
K. Chen, P. Wang, and H. Zhang, “A novel hotel recommendation method based on personalized preferences and implicit relationships,” Int. J. Hosp. Manag., vol. 92, p. 102710, 2021, doi: https://doi.org/10.1016/j.ijhm.2020.102710.
C. V. M. Krishna, G. A. Rao, and S. Anuradha, “Analysing the impact of contextual segments on the overall rating in multi-criteria recommender systems,” J. Big Data, vol. 10, no. 1, p. 16, 2023, doi: 10.1186/s40537-023-00690-y.
Y. Zhuang and J. Kim, “A BERT-Based Multi-Criteria Recommender System for Hotel Promotion Management,” Sustainability, vol. 13, no. 14, 2021, doi: 10.3390/su13148039.
R. K. Mishra, J. A. A. Jothi, S. Urolagin, and K. Irani, “Knowledge based topic retrieval for recommendations and tourism promotions,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 1, 2023, doi: 10.1016/j.jjimei.2022.100145.
R. Alabduljabbar, “Matrix Factorization Collaborative-Based Recommender System for Riyadh Restaurants: Leveraging Machine Learning to Enhance Consumer Choice,” Appl. Sci., vol. 13, no. 17, 2023, doi: 10.3390/app13179574.
E. Asani, H. Vahdat-Nejad, and J. Sadri, “Restaurant recommender system based on sentiment analysis,” Mach. Learn. with Appl., vol. 6, p. 100114, 2021, doi: https://doi.org/10.1016/j.mlwa.2021.100114.
R. A. Laksono, K. R. Sungkono, R. Sarno, and C. S. Wahyuni, “Sentiment Analysis of Restaurant Customer Reviews on TripAdvisor using Naïve Bayes,” in 2019 12th International Conference on Information & Communication Technology and System (ICTS), 2019, pp. 49–54. doi: 10.1109/ICTS.2019.8850982.
A. J. Keya, S. A. Arpona, M. M. Kabir, and M. F. Mridha, “Recurrent ALBERT for recommendation: A hybrid architecture for accurate and lightweight restaurant recommendations,” Cogn. Comput. Syst., vol. 5, no. 4, pp. 265–279, 2023, doi: 10.1049/ccs2.12090
C. N. Sánchez, J. Domínguez-Soberanes, A. Arreola, and M. Graff, “Recommendation System for a Delivery Food Application Based on Number of Orders,” Appl. Sci., vol. 13, no. 4, 2023, doi: 10.3390/app13042299.
T. Ahmed, L. Akhter, F. R. Talukder, Hasan-Al-Monsur, H. Rahman, and A. Sattar, “Restaurant Recommendation System in Dhaka City using Machine Learning Approach,” Proc. 2021 10th Int. Conf. Syst. Model. Adv. Res. Trends, SMART 2021, pp. 59–63, 2021, doi: 10.1109/SMART52563.2021.9676197.
M. K. Prakruthi, M. Chaitra, A. S. Shashidhar, G. M. Suchith Kumar, S. Bakare, and M. V. Vinay, “Restaurant Feasibility Study and Behavioural based Restaurant Recommendation,” Proc. 2nd Int. Conf. Intell. Innov. Technol. Comput. Electr. Electron. ICIITCEE 2024, pp. 1–4, 2024, doi: 10.1109/IITCEE59897.2024.10467783.
M. Jabreel, N. Maaroof, A. Valls, and A. Moreno, “Introducing Sentiment Analysis of Textual Reviews in a Multi-Criteria Decision Aid System,” Appl. Sci., vol. 11, no. 1, 2021, doi: 10.3390/app11010216.
S. Angamuthu and P. Trojovsky, “Integrating multi-criteria decision-making with hybrid deep learning for sentiment analysis in recommender systems,” PeerJ Comput. Sci., vol. 9, p. e1497, 2023.
C. Zhang, H. Zhang, and J. Wang, “Personalized restaurant recommendation method combining group correlations and customer preferences,” Inf. Sci. (Ny)., vol. 454–455, pp. 128–143, 2018, doi: 10.1016/j.ins.2018.04.061.
[166] S. Yang, Q. Li, D. Jang, and J. Kim, “Deep learning mechanism and big data in hospitality and tourism: Developing personalized restaurant recommendation model to customer decision-making,” Int. J. Hosp. Manag., vol. 121, no. June 2023, p. 103803, 2024, doi: 10.1016/j.ijhm.2024.103803.
H. Emamgholizadeh, B. Bazzanella, A. Molinari, and F. Ricci, “Single User Group Recommendations,” in Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, in UMAP ’22 Adjunct. New York, NY, USA: Association for Computing Machinery, 2022, pp. 308–313. doi: 10.1145/3511047.3537663.
M. Hong and J. J. Jung, “Multi-criteria tensor model for tourism recommender systems,” Expert Syst. Appl., vol. 170, 2021, doi: 10.1016/j.eswa.2020.114537.
H. Zhang, P. Ji, J. Wang, and X. Chen, “A novel decision support model for satisfactory restaurants utilizing social information: A case study of TripAdvisor.com,” Tour. Manag., vol. 59, pp. 281–297, 2017, doi: https://doi.org/10.1016/j.tourman.2016.08.010.
M. Hartanto and D. N. Utama, “Intelligent decision support model for recommending restaurant,” Cogent Eng., vol. 7, no. 1, p. 1763888, 2020, doi: 10.1080/23311916.2020.1763888
Z. Shu, R. A. Carrasco, M. Sánchez-Montañés, and J. P. García-Miguel, “A Multi Criteria Decision Support Model for Restaurant Selection Based on Users’ Demand Level: The Case of Dianping.com,” Inf. Process. Manag., vol. 61, no. 3, p. 103650, 2024, doi: https://doi.org/10.1016/j.ipm.2024.103650.
V. K. Muneer and K. P. M. Basheer, “Collaborative Travel Recommender System Based on Malayalam Travel Reviews BT - Artificial Intelligence and Speech Technology,” A. Dev, S. S. Agrawal, and A. Sharma, Eds., Cham: Springer International Publishing, 2022, pp. 651–659.
X. Zheng, Y. Luo, L. Sun, J. Zhang, and F. Chen, “A tourism destination recommender system using users’ sentiment and temporal dynamics,” J. Intell. Inf. Syst., vol. 51, no. 3, pp. 557–578, 2018, doi: 10.1007/s10844-018-0496-5.
V. Silaa, F. Masui, and M. Ptaszynski, “A Method of Supplementing Reviews to Less- Known Tourist Spots Using Geotagged Tweets,” Appl. Sci., vol. 12, no. 5, 2022, doi: 10.3390/app12052321.
A. Patel, N. Shah, V. B. Parul, and K. S. Suthar, “Hotel Recommendation using Feature and Machine Learning Approaches: A Review,” in Proceedings - 5th International Conference on Smart Systems and Inventive Technology, ICSSIT, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 1144–1149.
Rinaldi, R. Ferdiana, and N. A. Setiawan, “A Review Text-based Recommendation System in Text Mining,” in 2022 IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM), 2022, pp. 1–6. doi: 10.1109/ICOSNIKOM56551.2022.10034884.
M. Bennawy and P. el-Kafrawy, “Recommendations on Streaming Data: E-Tourism Event Stream Processing Recommender System BT - Intelligent and Fuzzy Systems,” C. Kahraman, A. C. Tolga, S. Cevik Onar, S. Cebi, B. Oztaysi, and I. U. Sari, Eds., Cham: Springer International Publishing, 2022, pp. 514–523.
N. Kushwaha and M. Pant, “Fuzzy electromagnetic optimisation clustering algorithm for collaborative filtering,” J. Exp. Theor. Artif. Intell., vol. 33, no. 4, pp. 601–616, Jul. 2021, doi: 10.1080/0952813X.2019.1647557.
R. A. Hamid, A. S. Albahri, J. K. Alwan, Z. T. Al-Qaysi, O. S. Albahri, A. M. E. D. Alaa Zaidan, A. Alnoor, A. H. Alamoodi, and B. B. Zaidan, “How smart is e-tourism? A systematic review of smart tourism recommendation system applying data management,” Comput. Sci. Rev., vol. 39, p. 100337, 2021, doi: https://doi.org/10.1016/j.cosrev.2020.100337.
W. Yang and P. T. I. Lam, “An evaluation of ICT benefits enhancing walkability in a smart city,” Landsc. Urban Plan., vol. 215, p. 104227, Oct. 2021, doi: 10.1016/j.landurbplan.2021.104227.
Á. Murciego, D. M. Jiménez-Bravo, A. V. Román, J. F. D. P. Santana, and M. N. Moreno-García, “Context-aware recommender systems in the music domain: A systematic literature review,” Electron., vol. 10, no. 13, 2021, doi: 10.3390/electronics10131555.
R. Sampieri, C. Fernández, and L. Baptista, “Definiciones de los enfoques cuantitativo y cualitativo, sus similitudes y diferencias,” RH Sampieri, Metodol. la Investivación, vol. 22, 2014.
R. H. Sampieri, Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. McGraw Hill México, 2018.
J. J. Dujmović, “Asymmetric and Compound Preference Aggregators,” in Modeling Decisions for Artificial Intelligence, V. Torra, Y. Narukawa, A. Valls, and J. Domingo-Ferrer, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–4.
J. Dujmović and V. Torra, “Logic Aggregators and Their Implementations,” in Modeling Decisions for Artificial Intelligence, V. Torra and Y. Narukawa, Eds., Cham: Springer Nature Switzerland, 2023, pp. 3–42.
A. Solano-Barliza, A. Valls, M. Acosta-Coll, A. Moreno, J. Escorcia-Gutierrez, E. De La-Hoz-Franco, and I. Arregoces-Julio,, “Enhancing Fair Tourism Opportunities in Emerging Destinations by Means of Multi-criteria Recommender Systems: The Case of Restaurants in Riohacha, Colombia,” Int. J. Comput. Intell. Syst., vol. 17, no. 1, 2024, doi: 10.1007/s44196-024-00700-8.
J. Dujmović, “Graded logic for decision support systems,” Int. J. Intell. Syst., vol. 34, no. 11, pp. 2900–2919, 2019.
Z. He, B. Hui, S. Zhang, C. Xiao, T. Zhong, and F. Zhou, “Exploring indirect entity relations for knowledge graph enhanced recommender system,” Expert Syst. Appl., vol. 213, p. 118984, 2023, doi: https://doi.org/10.1016/j.eswa.2022.118984.
M. Martínez-García, A. Valls, A. Moreno, and A. Aldea, “A semantic multi-criteria approach to evaluate different types of energy generation technologies,” Environ. Model. Softw., vol. 110, pp. 129–138, 2018, doi: 10.1016/j.envsoft.2018.04.003.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 187 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Corporación Universidad de la Costa
dc.publisher.department.none.fl_str_mv Ciencias de la Computación y Electrónica
dc.publisher.place.none.fl_str_mv Barranquilla, Colombia
dc.publisher.program.none.fl_str_mv Doctorado en Tecnologías de la Información y la Comunicación
publisher.none.fl_str_mv Corporación Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/dd4187d4-dd26-4702-b20e-11d6d3d2a4c6/download
https://repositorio.cuc.edu.co/bitstreams/30854e69-5dd2-4c1d-b135-47a65adb56be/download
https://repositorio.cuc.edu.co/bitstreams/778fcd63-53c9-49f3-a814-9da3b97588f9/download
https://repositorio.cuc.edu.co/bitstreams/7c5ca41b-7600-402c-89af-c7410ed2410f/download
bitstream.checksum.fl_str_mv 50911b24a1a29d123c60cad4d1e45df9
73a5432e0b76442b22b026844140d683
93966e41045fab0d605a47227ee82441
b3f9013b857f837014ffb8ee5629fc74
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1841804523868258304
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Valls Mateu, AïdaAcosta Coll, MelisaEscorcia Gutiérrez, JoséBARRIOS BARRIOS, MAURICIO ANDRESvirtual::1833-1Solano Barliza, Andrés DavidGamarra Acosta, Margarita RosaFerrré Bergadà, MariaBarrios Barrios, Mauricio Andrés2025-06-09T14:42:29Z2025-06-09T14:42:29Z2025-04-04https://hdl.handle.net/11323/14284Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Los destinos turísticos emergentes enfrentan desafíos para posicionarse en el mercado global, especialmente en seguridad y calidad de la oferta. Riohacha (Departamento de la Guajira), es un distrito especial, turístico y cultural de Colombia que busca posicionarse como uno de los destinos turísticos más importantes del país, sin embargo, la falta de datos para desarrollar modelos de recomendación de productos y servicios turísticos en Riohacha puede limitar su atractivo, afectando la competitividad y el flujo de visitantes. Esta tesis tiene como objetivo desarrollar un sistema informático de recomendación multicriterio, basado en lógica graduada de preferencias, que ofrezca a los turistas una guía segura y eficiente, mejorando la experiencia y promoviendo el crecimiento sostenible de destinos como Riohacha con pocos datos disponibles. La metodología empleada se basa en investigaciones básicas y aplicadas. La investigación se divide en cuatro fases: 1) Identificación y análisis de los criterios necesarios para la planificación y diseño de la solución tecnológica; 2) Definición de un sistema de recomendación personalizado utilizando técnicas de Inteligencia Artificial y toma de decisiones basada en múltiples criterios; 3) Desarrollo e implementación de una plataforma tecnológica basada en las preferencias del usuario, con el objetivo de fortalecer los indicadores de competitividad turística en Riohacha y 4) Evaluación de la solución tecnológica, donde se valora la funcionalidad y pertinencia de la solución implementada. El sistema recomendador que se propone en la tesis utiliza dos modelos basados en operadores de conjunción/disyunción graduada (GDC) siguiendo el método Logic Scoring of Preference (LSP) para mejorar la evaluación de hoteles y restaurantes. Estos modelos de agregación jerárquicos reflejan el razonamiento humano en la selección de estos servicios abordando múltiples requisitos simultáneamente, son versátiles y adaptables a diferentes destinos. Además, la tesis propone diversas funciones predefinidas que representan diferentes tipos de preferencias respecto a los valores de atributos contextuales, que permiten simplificar el proceso de toma de decisiones y personalizar la experiencia del usuario. Se han incorporado atributos relacionados con la seguridad turística y, como medida de garantía, se ha verificado que los servicios incluidos en el sistema de recomendación están debidamente registrados y validados por una entidad gubernamental encargada de certificar este tipo de servicios. Además, se han añadido recomendaciones y consejos de seguridad turística para que el turista pueda disfrutar de su recorrido de manera segura en el destino seleccionado. El procedimiento metodológico incluyó la recolección de datos, definición de jerarquías y selección de operadores, adaptados a las necesidades del usuario. Se introdujo el Food Specialty Interest Score (FSIS) para evaluar la idoneidad de los restaurantes según las preferencias culinarias del usuario. La validación inicial, realizada por expertos del destino turístico, mostró un recall de 1.0, destacando la efectividad del modelo. Posteriormente, el modelo fue evaluado por usuarios reales, quienes lo calificaron positivamente en cuanto a recomendaciones (86.42%) y facilidad para ingresar datos (77.78%), confirmando su eficacia y facilidad de uso.Emerging tourist destinations face challenges to position themselves in the global market, especially in terms of safety and quality of supply. Riohacha (Department of La Guajira), is a special tourist and cultural district of Colombia that seeks to position itself as one of the most important tourist destinations in the country, however, the lack of data to develop recommendation models for tourism products and services in Riohacha may limit its attractiveness, affecting competitiveness and the flow of visitors. This thesis aims to develop a multi-criteria recommendation computer system, based on graded logic of preferences, which offers tourists a safe and efficient guide, improving the experience and promoting sustainable growth of destinations like Riohacha with little data available. The methodology used is based on basic and applied research. The research is divided into four phases: 1) Identification and analysis of the criteria necessary for the planning and design of the technological solution; 2) Definition of a personalized recommendation system using Artificial Intelligence techniques and decision making based on multiple criteria; 3) Development and implementation of a technological platform based on user preferences, with the objective of strengthening tourism competitiveness indicators in Riohacha; and 4) Evaluation of the technological solution, where the functionality and relevance of the implemented solution is assessed. The recommender system proposed in the thesis uses two models based on graded conjunction/disjunction operators (GDC) following the Logic Scoring of Preference (LSP) method to improve the evaluation of hotels and restaurants. These hierarchical aggregation models reflect human reasoning in the selection of these services by addressing multiple requirements simultaneously, and are versatile and adaptable to different destinations. In addition, the thesis proposes several predefined functions that represent different types of preferences with respect to the values of contextual attributes, which allow simplifying the decision-making process and personalizing the user experience. Attributes related to tourism safety have been incorporated and, as a guarantee measure, it has been verified that the services included in the recommendation system are duly registered and validated by a government entity in charge of certifying this type of services. In addition, tourist safety recommendations and tips have been added so that tourists can enjoy their trip safely in the selected destination. The methodological procedure included data collection, definition of hierarchies and selection of operators, adapted to the user's needs. The Food Specialty Interest Score (FSIS) was introduced to evaluate the suitability of restaurants according to the user's culinary preferences. The initial validation, conducted by destination experts, showed a recall of 1.0, highlighting the effectiveness of the model. Subsequently, the model was evaluated by real users, who rated it positively in terms of recommendations (86.42%) and ease of data entry (77.78%), confirming its effectiveness and ease of use.Lista de tablas 17 -- Lista de figuras 19 -- Introducción 21 -- Motivación y/o problema 21 -- Objetivos 31 – Fundamentos 31 -- Aspectos inherentes a la competitividad turística 32 -- Tecnologías para el desarrollo de la solución 36 -- Fundamentos relativos a los sistemas de recomendación 43 -- Contribuciones y publicaciones 45 -- Organización del documento 53 -- Revisión de la literatura 55 -- Criterios de admisibilidad 55 -- Fuentes de información y estrategia de búsqueda 55 -- Selección de estudios y criterios de exclusión 56 -- Resultados 57 -- Análisis cienciométrico descriptivo 58 -- Categorización análisis técnico 61 -- Sistema de recomendación y gestión turística 62 -- Sistema de recomendación y tipología y técnicas 63 -- Sistemas de recomendación y aprendizaje 66 -- Revisión sobre sistemas de recomendación para hoteles y restaurantes 68 -- Recomendación de hoteles basada en técnicas mcda 68 -- Recomendación de restaurantes basada en técnicas de ml 69 -- Integración de ml y mcda para la recomendación de restaurantes 72 -- Recomendadores de restaurantes basados en mcda 74 -- Destinos turísticos emergentes con falta de datos 78 -- Sistema de recomendación híbrido en turismo 81 -- Conclusiones 82 -- Metodología 85 -- Fases de la investigación 85 -- Identificación y análisis de criterios 85 -- Definición de método para la construcción del modelo 86 -- Desarrollo e implementación del modelo basado en preferencias del usuario 87 -- Evaluación de la solución tecnológica 88 -- Técnicas de la investigación 89 -- Nueva metodología para el diseño de un modelo de sistema de recomendación para un destino turístico emergente 90 -- Selección del destino turístico de aplicación 90 -- Construcción del conjunto de datos 90 -- Modelización de preferencias en atributos 91 -- Definición de la arquitectura del modelo 91 -- Validación del modelo con expertos 92 -- Implementación y evaluación del modelo con usuarios reales 92 -- Conclusiones del capítulo 93 -- Resultados 95 -- El modelo de los hoteles 95 -- Atributos del modelo de sistema de recomendación para hoteles 95 -- Modelización de preferencias 96 -- Modelo general del sistema de recomendación de hoteles 98 -- Operadores de agregación 101 -- Modelo de recomendación para hoteles aplicado en riohacha 103 -- Experimentos con el sistema de recomendación hr.lsp 103 -- El modelo de sistema de recomendación para restaurantes 108 -- Identificación de criterios 109 -- Adquisición de datos 111 -- Modelización de preferencias en criterios uni-valuados 112 -- Modelización de preferencias para el criterio multivaluado food: puntuación de interés de la especialidad alimentaria- fsis 116 -- Arquitectura general del sistema de recomendación de restaurantes basado en lsp 118 -- Sistema de recomendación de restaurantes rr.lsp aplicado a riohacha 121 7) experimentación con diferentes perfiles de usuario del rr.lsp 124 -- Estudio comparativo 126 -- Validación con expertos 128 -- Análisis y discusión de algunos perfiles de usuarios 131 -- Discusión del estudio de perfiles 134 -- El sistema de recomendador web jimataa:implementación y evaluación de modelos 135 -- Proceso de funcionamiento de los sistemas de recomendación 144 -- Implantación y evaluación de sistemas de recomendación 146 -- Conclusiones del capítulo 153 -- Conclusiones y aportes 157 -- Conclusiones 157 -- Aportes 159 -- Trabajos futuros 161 -- Referencias 165Doctor(a) en Tecnologías de la Información y la ComunicaciónDoctorado187 páginasapplication/pdfspaCorporación Universidad de la CostaCiencias de la Computación y ElectrónicaBarranquilla, ColombiaDoctorado en Tecnologías de la Información y la ComunicaciónSistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turísticoTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttp://purl.org/redcol/resource_type/TDinfo:eu-repo/semantics/acceptedVersionJ. Arnegger and M. Herz, “Economic and destination image impacts of mega-events in emerging tourist destinations,” J. Destin. Mark. Manag., vol. 5, no. 2, pp. 76–85, 2016, doi: https://doi.org/10.1016/j.jdmm.2015.11.007.I. Paunovi, M. Dressler, and T. M. Nikoli, “Developing a Competitive and Sustainable Destination of the Future : Clusters and Predictors of Successful National-Level Destination Governance across Destination Life-Cycle,” Sustainability, vol. 2, 2020.G. Del Chiappa and R. Baggio, “Journal of Destination Marketing & Management Knowledge transfer in smart tourism destinations : Analyzing the effects of a network structure,” J. Destin. Mark. Manag., vol. 4, no. 3, pp. 145–150, 2015, doi: 10.1016/j.jdmm.2015.02.001.G. I. Crouch, “Destination Competitiveness : An Analysis of Determinant Attributes,” 2011, doi: 10.1177/0047287510362776.M. Firgo and O. Fritz, “Does having the right visitor mix do the job ? Applying an econometric shift-share model to regional tourism developments,” Ann. Reg. Sci., vol. 58, no. 3, pp. 469–490, 2017, doi: 10.1007/s00168-016-0803-4.L. A. Grünewald, “La seguridad en el marco de la competitividad de los destinos turísticos,” Rev. Ciencias Soc., vol. 21, pp. 141–158, 2012, [Online]. Available: http://ridaa.unq.edu.ar/handle/20.500.11807/1545I. y T. MINCIT - Ministerio de Comercio, “Política de Turismo Cultural,” MINCIT - Ministerio de Comercio, Industria y Turismo. [Online]. Available: https://www.mincultura.gov.co/ministerio/politicas-culturales/de-turismo cultural/Documents/08_politica_turismo_culturRiohacha Mayor’s Office, “Riohacha District Development Plan ‘Riohacha changes history 2020-2023.’”A. de Riohacha, “Plan de Desarrollo Distrital de Riohacha 2024 -2027«Riohacha Socialmente Sana y Sostenible»,” Alcaldía de Riohacha. [Online]. Available: https://www.riohacha laguajira.gov.co/Transparencia/PlaneacionGestionyControl/PLAN DE DESARROLLO RIOHACHA 2024 -2027.pdfMigración-Colombia, “Flujos migratorios del departamento de La Guajira,” Migración Colombia.C. de La Guajira, “Informe análisis y desarrollo Sector Turismo en La Guajira,” Riohacha, La Guajira https//www.camaraguajira.org/publicaciones/informes/informe-sector-turismo-dela guajira-diciembre-2019. pdf Caro, D.(2019). Valledupar, la cuarta Ciudad con mayor Desempl. del país en el, 2019.D. Duran, S. Medina, E. Fajardo, and H. Romero, “Determinantes de la competitividad turística regional en Colombia,” Utopía y Prax. Latinoam., vol. 25, no. 11, pp. 204– 221, 2020.L. E. Gutiérrez, J. J. Samper, D. Jabba, W. Nieto, C. A. Guerrero, M. M. Betts, and H. A. López-Ospina,, “Combined Framework of Multicriteria Methods to Identify Quality Attributes in Augmented Reality Applications,” Mathematics, vol. 11, no. 13, pp. 1–39, Jun. 2023, doi: 10.3390/math11132834.M. E. Amorin, J. M. Gandara, P. Tarlow, and J. Korstanje, "Residentes locales y turistas: Análisis turístico," 2012.M. E. Korstanje, “Discutiendo la seguridad turistica: nuevos tiempos, nuevos enfoques,” Cad. Virtual Tur., vol. 12, no. 2, pp. 167–184, 2012.Departamento Nacional de Planeación-DNP, “Plan nacional de desarrollo: Colombia potencia mundial de la vida 2022 – 2026.,” 2023, [Online]. Available: https://www.dnp.gov.co/plan-nacional-desarrollo/pnd-2022-2026%0DG. de la Guajira and others, “Plan de Desarrollo 2020-2023 Guajira: Unidos por el Cambio de La Guajira,” 2020.J. Sundbo, F. Orfila-Sintes, and F. Sørensen, “The innovative behaviour of tourism firms-Comparative studies of Denmark and Spain,” Res. Policy, vol. 36, no. 1, pp. 88– 106, 2007, doi: 10.1016/j.respol.2006.08.004.S. Yang, Y. Liu, and L. Xu, “The effect of food tourism experiences on tourists’ subjective well-being,” Heliyon, vol. 10, no. 3, p. e25482, 2024, doi: 10.1016/j.heliyon.2024.e25482.R. K. Akamavi, F. Ibrahim, and R. Swaray, “Tourism and Troubles: Effects of Security Threats on the Global Travel and Tourism Industry Performance,” J. Travel Res., vol. 62, no. 8, pp. 1755–1800, 2023, doi: 10.1177/00472875221138792.T. Horozov, N. Narasimhan, and V. Vasudevan, “Using location for personalized POI recommendations in mobile environments,” Proc. - 2006 Int. Symp. Appl. Internet, SAINT 2006, vol. 2006, pp. 124–129, 2006, doi: 10.1109/SAINT.2006.55.M. Alrehili, B. Alsubhi, R. Almoghamsi, A.-A. Almutairi, and I. Alansari, “Tourism Mobile Application to Guide Madinah Visitors,” in 2018 1st International Conference on Computer Applications & Information Security (ICCAIS), IEEE, Oct. 2018, pp. 1– 4. doi: 10.1109/CAIS.2018.8442023.D. Herzog, C. Laß, and W. Wörndl, “Tourrec - A tourist trip recommender system for individuals and groups,” RecSys 2018 - 12th ACM Conf. Recomm. Syst., pp. 496–497, 2018, doi: 10.1145/3240323.3241612.H. C. M. Senefonte, M. R. Delgado, R. Lüders, and T. H. Silva, “PredicTour : Predicting Mobility Patterns of Tourists Based on Social Media User ’ s Profiles,” IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3143503.J. L. Sarkar and A. Majumder, “A new point-of-interest approach based on multi itinerary recommendation engine,” Expert Syst. Appl., vol. 181, no. April, p. 115026, 2021, doi: 10.1016/j.eswa.2021.115026.S. Agrawal, D. Roy, and M. Mitra, “Tag embedding based personalized point of interest recommendation system,” Inf. Process. Manag., vol. 58, no. 6, p. 102690, 2021, doi: 10.1016/j.ipm.2021.102690.M. Kargar and Z. Lin, “A socially motivating and environmentally friendly tour recommendation framework for tourist groups,” Expert Syst. Appl., vol. 180, p. 115083, Oct. 2021, doi: 10.1016/j.eswa.2021.115083.G. Glukhov and I. Derevitskii, “Points-of-Interest Recommendation Algorithms for a СOVID-19 Restrictions Scenario in the Catering Industry,” IEEE Access, 2021.D. Massimo and F. Ricci, Popularity , novelty and relevance in point of interest recommendation : an experimental analysis, vol. 23, no. 4. Springer Berlin Heidelberg, 2021. doi: 10.1007/s40558-021-00214-5.X. Huang, “Personalized Travel Route Recommendation Model of Intelligent Service Robot Using Deep Learning in Big Data Environment,” vol. 2022, 2022.G. Liu, “Research on Personalized Minority Tourist Route,” vol. 2022, 2022.Z. Zhou, J. Yu, Z. Guo, and Y. Liu, “Visual exploration of urban functions via spatio temporal taxi OD data,” J. Vis. Lang. Comput., vol. 48, no. July, pp. 169–177, 2018, doi: 10.1016/j.jvlc.2018.08.009.X. Zhou, B. Sun, S. Li, and S. Liu, “Tour Route Planning Algorithm Based on Precise Interested Tourist Sight Data Mining,” IEEE Access, vol. 8, pp. 153134–153168, Oct. 2020, doi: 10.1109/ACCESS.2020.3010420.N. N. Qomariyah and D. Kazakov, “A genetic ‑ based pairwise trip planner recommender system,” J. Big Data, 2021, doi: 10.1186/s40537-021-00470-6.U. K. Ganapathy, S. D. Manjula, and K. Arputharaj, “RETRACTED ARTICLE : A user preference tree based personalized route recommendation system for constraint tourism and travel,” Soft Comput., vol. 26, no. 3, p. 1499, 2022, doi: 10.1007/s00500- 021-06289-w.E. Tarantino, I. De Falco, and U. Scafuri, “A mobile personalized tourist guide and its user evaluation,” Inf. Technol. Tour., vol. 21, no. 3, pp. 413–455, Oct. 2019, doi: 10.1007/s40558-019-00150-5.M. Al-Ghobari, A. Muneer, and S. Mohamed Fati, “Location-Aware Personalized Traveler Recommender System (LAPTA) Using Collaborative Filtering KNN,” Comput. Mater. Contin., vol. 69, no. 2, pp. 1553–1570, Oct. 2021, doi: 10.32604/cmc.2021.016348.M. del Carmen Rodríguez-Hernández, S. Ilarri, R. Trillo, and R. Hermoso, “Context Aware Recommendations Using Mobile P2P,” in the 15th International Conference, ACM Press, Oct. 2017, pp. 82–91. doi: 10.1145/3151848.3151856.M. del Carmen Rodríguez-Hernández and S. Ilarri, “AI-based mobile context-aware recommender systems from an information management perspective: Progress and directions,” Knowledge-Based Syst., vol. 215, 2021, doi: 10.1016/j.knosys.2021.106740.B. Alhijawi and Y. Kilani, “A collaborative filtering recommender system using genetic algorithm,” Inf. Process. Manag., vol. 57, no. 6, p. 102310, 2020, doi: 10.1016/j.ipm.2020.102310.K. Al Fararni, F. Nafis, B. Aghoutane, A. Yahyaouy, J. Riffi, and A. Sabri, “Hybrid recommendersystem for tourism based on big data and AI: A conceptual framework,” Big Data Min. Anal., vol. 4, no. 1, pp. 47–55, 2021, doi: 10.26599/BDMA.2020.9020015.R. Lavanya, T. Khokle, and A. Maity, Review on hybrid recommender system for mobile devices, vol. 130, no. August 2020. Springer Singapore, 2021. doi: 10.1007/978-981-15-5329-5_44.F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Egypt. Informatics J., vol. 16, no. 3, pp. 261– 273, 2015, doi: 10.1016/j.eij.2015.06.005.S. Ojagh, M. R. Malek, S. Saeedi, and S. Liang, “A location-based orientation-aware recommender system using IoT smart devices and Social Networks,” Futur. Gener. Comput. Syst., vol. 108, pp. 97–118, Oct. 2020, doi: 10.1016/j.future.2020.02.041.B. Abu-Salih, H. Alsawalqah, B. Elshqeirat, T. Issa, P. Wongthongtham, and K. K. Premi, “Toward a knowledge-based personalised recommender system for mobile app development,” J. Univers. Comput. Sci., vol. 27, no. 2, pp. 208–229, 2021, doi: 10.3897/jucs.65096.F. Aznoli and N. J. Navimipour, “Cloud services recommendation: Reviewing the recent advances and suggesting the future research directions,” J. Netw. Comput. Appl., vol. 77, pp. 73–86, Oct. 2017, doi: 10.1016/j.jnca.2016.10.009.V. Boppana and P. Sandhya, “Web crawling based context aware recommender system using optimized deep recurrent neural network,” J. Big Data, 2021, doi: 10.1186/s40537-021-00534-7.S. Bahulikar, V. Upadhye, T. Patil, B. Kulkarni, and D. Patil, “Airline Recommendations Using a Hybrid and Location Based Approach,” IEEE Access, pp. 972–977, 2017.Z. Huang, X. Lin, H. Liu, B. Zhang, Y. Chen, and Y. Tang, “Deep Representation Learning for Location-Based Recommendation,” IEEE Access, vol. 7, no. 3, pp. 648– 658, 2020.O. Artemenko, V. Pasichnyk, and N. Kunanec, “E-tourism mobile location-based hybrid recommender system with context evaluation,” in 2019 IEEE 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), IEEE, Oct. 2019, pp. 114–118. doi: 10.1109/STC- CSIT.2019.8929775.K. Gao, X. Yang, C. Wu, T. Qiao, X. Chen, M. Yang, and L. Chen, “Exploiting Location-Based Context for POI Recommendation When Traveling to a New Region,” IEEE Access, vol. 8, pp. 52404–52412, 2020, doi: 10.1109/ACCESS.2020.2980982.R. Baral, S. S. Iyengar, X. Zhu, T. Li, and P. Sniatala, “HiRecS : A Hierarchical Contextual Location Recommendation System,” IEEE Access, vol. 6, no. 5, pp. 1020– 1037, 2019.H. Amirat and P. Fournier-viger, “Recommendation in LBSN,” IEEE Access, 2018.R. Suguna, P. Sathishkumar, and S. Deepa, “User Location and Collaborative based Recommender System using Naive Bayes Classifier and UIR Matrix,” IEEE Access, pp. 0–4, 2020.M. Kolahkaj, A. Harounabadi, A. Nikravanshalmani, and R. Chinipardaz, “A hybrid context-aware approach for e-tourism package recommendation based on asymmetric similarity measurement and sequential pattern mining,” Electron. Commer. Res. Appl., vol. 42, no. July 2019, p. 100978, 2020, doi: 10.1016/j.elerap.2020.100978.L. Ravi, V. Subramaniyaswamy, V. Vijayakumar, S. Chen, A. Karmel, and M. Devarajan, “Hybrid Location-based Recommender System for Mobility and Travel Planning,” Mob. Networks Appl., vol. 24, no. 4, pp. 1226–1239, Oct. 2019, doi: 10.1007/s11036-019-01260-4.R. Logesh, V. Subramaniyaswamy, V. Vijayakumar, X. Z. Gao, and V. Indragandhi, “A hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart city,” Futur. Gener. Comput. Syst., vol. 83, pp. 653–673, 2018, doi: 10.1016/j.future.2017.08.060.N. Wayan and P. Yuni, “Designing a tourism recommendation system using a hybrid method ( Collaborative Filtering and Content-Based Filtering ),” pp. 298–305, 2021.J. Borràs, A. Moreno, and A. Valls, “Intelligent tourism recommender systems: A survey,” Expert Syst. Appl., vol. 41, no. 16, pp. 7370–7389, 2014, doi: https://doi.org/10.1016/j.eswa.2014.06.007.C. V. Joe and J. S. Raj, “Location-based Orientation Context Dependent Recommender System for Users,” vol. 03, no. 01, pp. 14–23, 2021L. Del Vasto-Terrientes, A. Valls, P. Zielniewicz, and J. Borràs, “A hierarchical multi criteria sorting approach for recommender systems,” J. Intell. Inf. Syst., vol. 46, no. 2, pp. 313–346, 2016, doi: 10.1007/s10844-015-0362-7.J. Dujmovic, Soft computing evaluation logic: The LSP decision method and its applications, John Wiley. John Wiley & Sons, 2018.J. Dujmović, “Interpretability and Explainability of LSP Evaluation Criteria,” in 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2020, pp. 1–8. doi: 10.1109/FUZZ48607.2020.9177578.Z. Karimi, Y. Batmani, and M. J. Khosrowjerdi, “Política De Turismo Cultural,” Optimal Control Applications and Methods. [Online]. Available: https://www.mincultura.gov.co/ministerio/politicas-culturales/de-turismo cultural/Documents/08_politica_turismo_cultural.pdfC. A. Castellanos, Y. Hernández Aro, J. Castellanos Castillo, and L. Campos Cardoso, “La competitividad del destino turístico Villa Clara , Cuba Identificación de sus factores determinantes mediante análisis estructural ( MIC-,” Estud. y Perspect. en Tur., pp. 1–23, 2014.N. Arboleda Montaño, “Lineamientos estratégicos para la gestión del turismo en el Distrito de Buenaventura (Colombia)(Strategic Guidelines for the Management of Tourism in the District of Buenaventura (Colombia)),” Tur. y Soc., vol. 23, 2018.A. Spencer and P. Tarlow, “Tourism Security to Tourism Surety and Well-being,” in Tourism Safety and Security for the Caribbean, Emerald Publishing Limited, 2021, pp. 15–25. doi: 10.1108/978-1-80071-318-520211004.A. D. Solano-Barliza, “Revisión conceptual de sistemas de recomendación y geolocalización aplicados a la seguridad turística,” CESTA, vol. 2, no. 2, pp. 37–43, 2021, doi: 10.17981/cesta.02.02.2021.05.P. E. Tarlow, TOURISM SECURITY Strategies for Effectively Managing Travel Risk and Safety. 2014S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Pearson, 2016.M. Doumpos and C. Zopounidis, “Computational intelligence techniques for multicriteria decision aiding: An overview,” Multicriteria Decis. Aid Artif. Intell. Links, Theory Appl., pp. 1–23, 2013.J. Figueira, S. Greco, and M. Ehrgott, “Multiple criteria decision analysis: state of the art surveys,” Springer, 2005.] S. Corrente, S. Greco, and R. Słowiński, “Multiple criteria hierarchy process with ELECTRE and PROMETHEE,” Omega, vol. 41, no. 5, pp. 820–846, 2013.J. S. Dyer, “Multiattribute utility theory (MAUT),” Mult. criteria Decis. Anal. State art Surv. Wiley., vol. 233, pp. 285–314, 2016.V. Torra and Y. Narukawa, Modeling decisions: information fusion and aggregation operators. Springer Science \& Business Media, 2007.J. Dujmović, “Asymmetric and compound preference aggregators,” in Modeling Decisions for Artificial Intelligence: Third International Conference, MDAI 2006, Tarragona, Spain, April 3-5, 2006. Proceedings 3, 2006, pp. 1–4.J. Dujmović, “An analysis of penalty and reward for partial absorption aggregators,” in Proceeding of the 2014 World Conference on Soft Computing, 2014, pp. 126–133.R. J. Ziarani and R. Ravanmehr, “Serendipity in Recommender Systems: A Systematic Literature Review,” J. Comput. Sci. Technol., vol. 36, no. 2, pp. 375–396, 2021, doi: 10.1007/s11390-020-0135-9.U. Bhandari, K. Sugiyama, A. Datta, and R. Jindal, “Serendipitous recommendation for mobile apps using item-item similarity graph,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8281 LNCS, pp. 440–451, 2013, doi: 10.1007/978-3-642-45068-6_38.P. Yochum, L. Chang, T. Gu, and M. Zhu, “Linked Open Data in Location-Based Recommendation System on Tourism Domain : A Survey,” IEEE Access, pp. 16409– 16439, 2020.G. Suganeshwari and S. S. Ibrahim, “Preface,” Smart Innov. Syst. Technol., vol. 49, pp. v–vii, 2016, doi: 10.1007/978-3-319-30348-2S. Amara and R. R. Subramanian, “Collaborating personalized recommender system and content-based recommender system using TextCorpus,” 2020 6th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2020, pp. 105–109, 2020, doi: 10.1109/ICACCS48705.2020.9074360.N. M. Villegas, C. Sánchez, J. Díaz-cely, and G. Tamura, “Knowle dge-Base d Systems Characterizing context-aware recommender systems: A systematic literature review,” Knowledge-Based Syst., vol. 140, pp. 173–200, 2018, doi: 10.1016/j.knosys.2017.11.003.D. Wang, X. Zhang, D. Yu, G. Xu, and S. Deng, “CAME: Content- And Context Aware Music Embedding for Recommendation,” IEEE Trans. Neural Networks Learn. Syst., vol. 32, no. 3, pp. 1375–1388, 2021, doi: 10.1109/TNNLS.2020.2984665.K. Chaudhari and A. Thakkar, “A Comprehensive Survey on Travel Recommender Systems,” Arch. Comput. Methods Eng., vol. 27, no. 5, pp. 1545–1571, 2020, doi: 10.1007/s11831-019-09363-7.A. Ferretti, N. Hedrich, T. Lovey, E. Vayena, and P. Schlagenhauf, “Mobile apps for travel medicine and ethical considerations: A systematic review,” Travel Med. Infect. Dis., vol. 43, p. 102143, Oct. 2021, doi: 10.1016/j.tmaid.2021.102143.A. Solano-Barliza, I. Arregocés-Julio, M. Aarón-Gonzalvez, R. Zamora-Musa, E. De La-Hoz-Franco, J. Escorcia-Gutierrez, and M. Acosta-Coll, “Recommender systems applied to the tourism industry: a literature review,” Cogent Bus. Manag., vol. 11, no. 1, p. 2367088, Dec. 2024, doi: 10.1080/23311975.2024.2367088.M. C. Rodriguez-Sanchez and J. Martinez-Romo, “GAWA – Manager for accessibility Wayfinding apps,” Int. J. Inf. Manage., vol. 37, no. 6, pp. 505–519, Oct. 2017, doi: 10.1016/j.ijinfomgt.2017.05.011.J.-W. Bi, H. Li, and Z.-P. Fan, “Tourism demand forecasting with time series imaging: A deep learning model,” Ann. Tour. Res., vol. 90, p. 103255, 2021, doi: https://doi.org/10.1016/j.annals.2021.103255.X. Li, H. Li, B. Pan, and R. Law, “Machine Learning in Internet Search Query Selection for Tourism Forecasting,” J. Travel Res., vol. 60, no. 6, pp. 1213–1231, Jul. 2020, doi: 10.1177/0047287520934871.M. S. P. Maru’ao and Suharjito, “Tourism recommender system using hybrid multi criteria approach,” IOP Conf. Ser. Earth Environ. Sci., vol. 729, no. 1, p. 12118, 2021, doi: 10.1088/1755-1315/729/1/012118.S. Hosseini, H. Yin, X. Zhou, S. Sadiq, M. R. Kangavari, and N.-M. Cheung, “Leveraging multi-aspect time-related influence in location recommendation,” World Wide Web, vol. 22, no. 3, pp. 1001–1028, 2019, doi: 10.1007/s11280-018-0573-2.Q. Y. Shambour, A. A. Abu-Shareha, and M. M. Abualhaj, “A hotel recommender system based on multi-criteria collaborative filtering,” Inf. Technol. Control, vol. 51, no. 2, pp. 390–402, 2022.X. Nan and X. Wang, “Design and implementation of a personalized tourism recommendation system based on the data mining and collaborative filtering algorithm,” Comput. Intell. Neurosci., vol. 2022, no. 1, p. 1424097, 2022.A. A. Noorian Avval and A. Harounabadi, “A hybrid recommender system using topic modeling and prefixspan algorithm in social media,” Complex Intell. Syst., vol. 9, no. 4, pp. 4457–4482, 2023, doi: 10.1007/s40747-022-00958-5.S. Forouzandeh, K. Berahmand, E. Nasiri, and M. Rostami, “A Hotel Recommender System for Tourists Using the Artificial Bee Colony Algorithm and Fuzzy TOPSIS Model: A Case Study of TripAdvisor,” Int. J. Inf. Technol. Decis. Mak., vol. 20, no. 01, pp. 399–429, Dec. 2020, doi: 10.1142/S0219622020500522.C. Halkiopoulos, E. Dimou, A. Kompothrekas, G. Telonis, and B. Boutsinas, “The E Tour Facilitator Platform Supporting an Innovative Health Tourism Marketing Strategy BT - Culture and Tourism in a Smart, Globalized, and Sustainable World,” V. Katsoni and C. van Zyl, Eds., Cham: Springer International Publishing, 2021, pp. 609–623.M. Nilashi, B. Minaei-Bidgoli, M. Alrizq, A. Alghamdi, A. A. Alsulami, S. Samad, and S. Mohd, “An analytical approach for big social data analysis for customer decision-making in eco-friendly hotels,” Expert Syst. Appl., vol. 186, p. 115722, 2021, doi: https://doi.org/10.1016/j.eswa.2021.115722.K. K. Ranga and C. K. Nagpal, “A big data analytics framework for determining the travel destination preferences of Indian tourists,” Int. J. Mod. Phys. C, vol. 34, no. 02, p. 2350024, Jul. 2022, doi: 10.1142/S0129183123500249.O. Baker and Q. Yuan, “Machine learning: Factorization Machines and Normalized Discounted Cumulative Gain for Tourism Recommender System Optimisation,” in 2021 IEEE International Conference on Computing (ICOCO), 2021, pp. 31–36. doi: 10.1109/ICOCO53166.2021.9673502.E. Bellodi, R. Zese, and F. Bertasi, “Machine Learning in a Policy Support System for Smart Tourism Management BT - Machine Learning, Optimization, and Data Science,” G. Nicosia, V. Ojha, E. La Malfa, G. La Malfa, G. Jansen, P. M. Pardalos, G. Giuffrida, and R. Umeton, Eds., Cham: Springer International Publishing, 2022, pp. 457–472.T. Wenan, D. Shrestha, B. Gaudel, N. Rajkarnikar, and S. R. Jeong, “Analysis and Evaluation of TripAdvisor Data: A Case of Pokhara, Nepal BT - Intelligent Computing & Optimization,” P. Vasant, I. Zelinka, and G.-W. Weber, Eds., Cham: Springer International Publishing, 2022, pp. 738–750.P. Zhang, J. Wang, and R. Li, “Tourism-type ontology framework for tourism-type classification, naming, and knowledge organization,” Heliyon, vol. 9, no. 4, 2023.A. Almomani, P. Saavedra, P. Barreiro, R. Durán, R. Crujeiras, M. Loureiro, and E. Sánchez,., “Application of choice models in tourism recommender systems,” Expert Syst., vol. 40, no. 3, p. e13177, 2023.M. Hong and J. J. Jung, “Multi-criteria tensor model for tourism recommender systems,” Expert Syst. Appl., vol. 170, p. 114537, 2021, doi: https://doi.org/10.1016/j.eswa.2020.114537.Richa and P. Bedi, “Parallel context-aware multi-agent tourism recommender system,” Int. J. Comput. Sci. Eng., vol. 20, no. 4, pp. 536–549, 2019.C. Huda, Y. Heryadi, Lukas, and W. Budiharto, “Aspect-based Sentiment Analysis in Tourism Industry for Tourism Recommender System,” in 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 2022, pp. 407–412. doi: 10.1109/ISRITI56927.2022.10053083.Y. Liu, H. Wu, K. Rezaee, M. R. Khosravi, O. I. Khalaf, A. A. Khan, D. Ramesh, and L. Qi, “Interaction-Enhanced and Time-Aware Graph Convolutional Network for Successive Point-of-Interest Recommendation in Traveling Enterprises,” IEEE Trans. Ind. Informatics, vol. 19, no. 1, pp. 635–643, 2023, doi: 10.1109/TII.2022.3200067.R. K. Mishra, J. A. A. Jothi, S. Urolagin, and K. Irani, “Knowledge based topic retrieval for recommendations and tourism promotions,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 1, p. 100145, 2023, doi: https://doi.org/10.1016/j.jjimei.2022.100145.A. Guizzardi, F. M. E. Pons, G. Angelini, and E. Ranieri, “Big data from dynamic pricing: A smart approach to tourism demand forecasting,” Int. J. Forecast., vol. 37, no. 3, pp. 1049–1060, 2021, doi: 10.1016/j.ijforecast.2020.11.006.R. Ramli, M. H. Miraz, K.-R. K. Mahamud, M. F. Omar, and K. Kayat, “Collaborative-based web recommender system for homestay program: A bridging tool in a tourism supply chain,” Int. J Sup. Chain. Mgt Vol, vol. 8, no. 6, p. 978, 2019.A. Al-Nafjan, N. Alrashoudi, and H. Alrasheed, “Recommendation System Algorithms on Location-Based Social Networks: Comparative Study,” Information, vol. 13, no. 4, 2022, doi: 10.3390/info13040188.Z. K. A. Baizal, D. Tarwidi, B. Wijaya, and others, “Tourism destination recommendation using ontology-based conversational recommender system,” Int. J. Comput. Digit. Syst., vol. 10, 2021.Y. M. Arif, “Destinations Ratings Based Multi-Criteria Recommender System for Indonesian Halal Tourism Game Destinations Ratings Based Multi-Criteria Recommender System for Indonesian Halal Tourism Game,” no. January, 2022, doi: 10.22266/ijies2022.0228.26.F.-M. Hsu, Y.-T. Lin, and T.-K. Ho, “Design and implementation of an intelligent recommendation system for tourist attractions: The integration of EBM model, Bayesian network and Google Maps,” Expert Syst. Appl., vol. 39, no. 3, pp. 3257– 3264, Oct. 2012, doi: 10.1016/j.eswa.2011.09.013.W. Zheng, X. Huang, and Y. Li, “Understanding the tourist mobility using GPS: Where is the next place?,” Tour. Manag., vol. 59, pp. 267–280, 2017, doi: 10.1016/j.tourman.2016.08.009.L. Gamidullaeva, A. Finogeev, M. Kataev, and L. Bulysheva, “A Design Concept for a Tourism Recommender System for Regional Development,” Algorithms, vol. 16, no. 1, 2023, doi: 10.3390/a16010058.S. Missaoui, F. Kassem, M. Viviani, A. Agostini, R. Faiz, and G. Pasi, “LOOKER: a mobile, personalized recommender system in the tourism domain based on social media user-generated content,” Pers. Ubiquitous Comput., vol. 23, no. 2, pp. 181–197, 2019, doi: 10.1007/s00779-018-01194-w.L. Esmaeili, S. Mardani, S. A. H. Golpayegani, and Z. Z. Madar, “A novel tourism recommender system in the context of social commerce,” Expert Syst. Appl., vol. 149, p. 113301, 2020, doi: https://doi.org/10.1016/j.eswa.2020.113301.Y. Lin, C. Huang, W. Yao, and Y. Shao, “Personalised attraction recommendation for enhancing topic diversity and accuracy,” J. Inf. Sci., vol. 49, no. 2, pp. 302–318, Apr. 2021, doi: 10.1177/0165551521999801.M. C. Urdaneta-Ponte, A. Méndez-Zorrilla, and I. Oleagordia-Ruiz, “Lifelong Learning Courses Recommendation System to Improve Professional Skills Using Ontology and Machine Learning,” Appl. Sci., vol. 11, no. 9, 2021, doi: 10.3390/app11093839.M. Casillo, M. Lombardi, D. Santaniello, and C. Valentino, “Recommender Systems And Digital Storytelling To Enhance Tourism Experience In Cultural Heritage Sites,” pp. 323–328, 2021, doi: 10.1109/SMARTCOMP52413.2021.00067.J. Zhao, W. Wang, Z. Zhang, Q. Sun, H. Huo, and L. Qu, “Knowledge-Based Systems TrustTF : A tensor factorization model using user trust and implicit feedback for context-aware recommender systems,” Knowledge-Based Syst., vol. 209, p. 106434, 2020, doi: 10.1016/j.knosys.2020.106434J. Li, K. Zhang, X. Yang, P. Wei, J. Wang, K. Mitra, and R. Ranjan, “Category Preferred Canopy–K-means based Collaborative Filtering algorithm,” Futur. Gener. Comput. Syst., vol. 93, pp. 1046–1054, 2019, doi: https://doi.org/10.1016/j.future.2018.04.025.O. Stitini, S. Kaloun, and O. Bencharef, “An Improved Recommender System Solution to Mitigate the Over-Specialization Problem Using Genetic Algorithms,” Electronics, vol. 11, no. 2, 2022, doi: 10.3390/electronics11020242.S. Renjith, A. Sreekumar, and M. Jathavedan, “An extensive study on the evolution of context-aware personalized travel recommender systems,” Inf. Process. Manag., vol. 57, no. 1, p. 102078, Oct. 2020, doi: 10.1016/j.ipm.2019.102078.I. Y. Choi, Y. U. Ryu, and J. K. Kim, “A recommender system based on personal constraints for smart tourism city,” Asia Pacific J. Tour. Res., vol. 26, no. 4, pp. 440– 453, Apr. 2021, doi: 10.1080/10941665.2019.1592765.S. Ojagh, M. R. Malek, S. Saeedi, and S. Liang, “A location-based orientation-aware recommender system using IoT smart devices and Social Networks,” Futur. Gener. Comput. Syst., vol. 108, pp. 97–118, 2020, doi: 10.1016/j.future.2020.02.041.O. Artemenko, V. Pasichnyk, N. Kunanec, and D. Tabachyshyn, “Using context analysys for providing real time recommendations in e-tourism mobile location-based recommender systems,” in 2019 IEEE 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), IEEE, Oct. 2019, pp. 166–169. doi: 10.1109/STC-CSIT.2019.8929822.H. Gao, “Big Data Development of Tourism Resources Based on 5G Network and Internet of Things System,” Microprocess. Microsyst., vol. 80, p. 103567, Oct. 2021, doi: 10.1016/j.micpro.2020.103567.W. Shafqat and Y.-C. Byun, “A Context-Aware Location Recommendation System for Tourists Using Hierarchical LSTM Model,” Sustainability, vol. 12, no. 10, p. 4107, Oct. 2020, doi: 10.3390/su12104107.A. Abu-Issa, H. Nawawreh, L. Shreteh, Y. Salman, Y. Hassouneh, I. Tumar, and M. Hussein, "A smart city mobile application for multitype, proactive, and context-aware recommender system," in 2017 International Conference on Engineering and Technology (ICET), 2017, pp. 1–5, IEEE..M. Kolahkaj, A. Harounabadi, A. Nikravanshalmani, and R. Chinipardaz, “A hybrid context-aware approach for e-tourism package recommendation based on asymmetric similarity measurement and sequential pattern mining,” Electron. Commer. Res. Appl., vol. 42, p. 100978, Oct. 2020, doi: 10.1016/j.elerap.2020.100978.R. R. S. Naser and H. N. Nawaf, "Context aware web service recommender supported by user-based classification," in 2019 International Engineering Conference (IEC), 2019, pp. 131–135, IEEE.M. del Carmen Rodríguez-Hernández and S. Ilarri, “AI-based mobile context-aware recommender systems from an information management perspective: Progress and directions,” Knowledge-Based Syst., vol. 215, p. 106740, 2021, doi: 10.1016/j.knosys.2021.106740.A. Ismail, S. A. S. A. Kadir, A. Aziz, M. Mokshin, and A. M. Lokman, “iTourism Travel Buddy Mobile Application,” in 2016 10th International Conference on Next Generation Mobile Applications, Security and Technologies (NGMAST), IEEE, Oct. 2016, pp. 82–87. doi: 10.1109/NGMAST.2016.22.M. Acharya, S. Yadav, and K. K. Mohbey, “How can we create a recommender system for tourism? A location centric spatial binning-based methodology using social networks,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 1, p. 100161, 2023, doi: https://doi.org/10.1016/j.jjimei.2023.100161.R. Ding and Z. Chen, “RecNet : a deep neural network for personalized POI recommendation in location-based social networks,” Int. J. Geogr. Inf. Sci., vol. 00, no. 00, pp. 1–18, 2018, doi: 10.1080/13658816.2018.1447671.Z. Duan, L. Tang, X. Gong, and Y. Zhu, “Personalized service recommendations for travel using trajectory pattern discovery,” Int. J. Distrib. Sens. Networks, vol. 14, no. 3, 2018, doi: 10.1177/1550147718767845.S. Xing, F. Liu, X. Zhao, and T. Li, “Points-of-interest recommendation based on convolution matrix factorization,” Appl. Intell., no. June 2016, pp. 2458–2469, 2018.L. Wu, S. Li, C. J. Hsieh, and J. Sharpnack, "SSE-PT: Sequential recommendation via personalized transformer," in Proc. 14th ACM Conf. on Recommender Systems, 2020, pp. 328–337.S. Forouzandeh, M. Rostami, and K. Berahmand, “A Hybrid Method for Recommendation Systems based on Tourism with an Evolutionary Algorithm and Topsis Model A Hybrid Method for Recommendation Systems based on,” 2022, doi: 10.1080/16168658.2021.2019430.S. Wang, Z. A. Bhuiyan, H. A. O. Peng, and B. Du, “Hybrid Deep Neural Networks for Friend Recommendations in Edge Computing Environment,” pp. 10693–10706, 2020.J. A. Orama, A. Huertas, J. Borràs, A. Moreno, and S. Anton Clavé, “Identification of Mobility Patterns of Clusters of City Visitors: An Application of Artificial Intelligence Techniques to Social Media Data,” Appl. Sci., vol. 12, no. 12, 2022, doi: 10.3390/app12125834.L. Santamaria-Granados, J. F. Mendoza-Moreno, and G. Ramirez-Gonzalez, “Tourist Recommender Systems Based on Emotion Recognition—A Scientometric Review,” Futur. Internet, vol. 13, no. 1, 2021, doi: 10.3390/fi13010002.P. R. Srivastava, P. Eachempati, V. Charles, and N. P. Rana, “A hybrid machine learning approach to hotel sales rank prediction,” J. Oper. Res. Soc., vol. 74, no. 6, pp. 1407–1423, Jun. 2023, doi: 10.1080/01605682.2022.2096498.P. Ferraro and G. Lo Re, “Designing Ontology-Driven Recommender Systems foTourism BT - Advances onto the Internet of Things: How Ontologies Make the Internet of Things Meaningful,” S. Gaglio and G. Lo Re, Eds., Cham: Springer International Publishing, 2014, pp. 339–352. doi: 10.1007/978-3-319-03992-3_24.J. L. Sarkar, A. Majumder, C. R. Panigrahi, S. Roy, and B. Pati, “Tourism recommendation system: a survey and future research directions,” Multimed. Tools Appl., vol. 82, no. 6, pp. 8983–9027, 2023, doi: 10.1007/s11042-022-12167-w.A. Solano-Barliza, M. Acosta-Coll, J. Escorcia-Gutierrez, E. De-La-Hoz-Franco, and I. Arregocés-Julio, “Hybrid Recommender System Model for Tourism Industry Competitiveness Increment,” in Computer Information Systems and Industrial Management, K. Saeed, J. Dvorský, N. Nishiuchi, and M. Fukumoto, Eds., Cham: Springer Nature Switzerland, 2023, pp. 209–222.F. E. Zaizi, S. Qassimi, and S. Rakrak, “Multi-objective optimization with recommender systems: A systematic review,” Inf. Syst., vol. 117, p. 102233, 2023, doi: https://doi.org/10.1016/j.is.2023.102233.S. Yu, J. Wang, J. Wang, and L. Li, “A multi-criteria decision-making model for hotel selection with linguistic distribution assessments,” Appl. Soft Comput., vol. 67, pp. 741–755, 2018, doi: https://doi.org/10.1016/j.asoc.2017.08.009.K. Chen, P. Wang, and H. Zhang, “A novel hotel recommendation method based on personalized preferences and implicit relationships,” Int. J. Hosp. Manag., vol. 92, p. 102710, 2021, doi: https://doi.org/10.1016/j.ijhm.2020.102710.C. V. M. Krishna, G. A. Rao, and S. Anuradha, “Analysing the impact of contextual segments on the overall rating in multi-criteria recommender systems,” J. Big Data, vol. 10, no. 1, p. 16, 2023, doi: 10.1186/s40537-023-00690-y.Y. Zhuang and J. Kim, “A BERT-Based Multi-Criteria Recommender System for Hotel Promotion Management,” Sustainability, vol. 13, no. 14, 2021, doi: 10.3390/su13148039.R. K. Mishra, J. A. A. Jothi, S. Urolagin, and K. Irani, “Knowledge based topic retrieval for recommendations and tourism promotions,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 1, 2023, doi: 10.1016/j.jjimei.2022.100145.R. Alabduljabbar, “Matrix Factorization Collaborative-Based Recommender System for Riyadh Restaurants: Leveraging Machine Learning to Enhance Consumer Choice,” Appl. Sci., vol. 13, no. 17, 2023, doi: 10.3390/app13179574.E. Asani, H. Vahdat-Nejad, and J. Sadri, “Restaurant recommender system based on sentiment analysis,” Mach. Learn. with Appl., vol. 6, p. 100114, 2021, doi: https://doi.org/10.1016/j.mlwa.2021.100114.R. A. Laksono, K. R. Sungkono, R. Sarno, and C. S. Wahyuni, “Sentiment Analysis of Restaurant Customer Reviews on TripAdvisor using Naïve Bayes,” in 2019 12th International Conference on Information & Communication Technology and System (ICTS), 2019, pp. 49–54. doi: 10.1109/ICTS.2019.8850982.A. J. Keya, S. A. Arpona, M. M. Kabir, and M. F. Mridha, “Recurrent ALBERT for recommendation: A hybrid architecture for accurate and lightweight restaurant recommendations,” Cogn. Comput. Syst., vol. 5, no. 4, pp. 265–279, 2023, doi: 10.1049/ccs2.12090C. N. Sánchez, J. Domínguez-Soberanes, A. Arreola, and M. Graff, “Recommendation System for a Delivery Food Application Based on Number of Orders,” Appl. Sci., vol. 13, no. 4, 2023, doi: 10.3390/app13042299.T. Ahmed, L. Akhter, F. R. Talukder, Hasan-Al-Monsur, H. Rahman, and A. Sattar, “Restaurant Recommendation System in Dhaka City using Machine Learning Approach,” Proc. 2021 10th Int. Conf. Syst. Model. Adv. Res. Trends, SMART 2021, pp. 59–63, 2021, doi: 10.1109/SMART52563.2021.9676197.M. K. Prakruthi, M. Chaitra, A. S. Shashidhar, G. M. Suchith Kumar, S. Bakare, and M. V. Vinay, “Restaurant Feasibility Study and Behavioural based Restaurant Recommendation,” Proc. 2nd Int. Conf. Intell. Innov. Technol. Comput. Electr. Electron. ICIITCEE 2024, pp. 1–4, 2024, doi: 10.1109/IITCEE59897.2024.10467783.M. Jabreel, N. Maaroof, A. Valls, and A. Moreno, “Introducing Sentiment Analysis of Textual Reviews in a Multi-Criteria Decision Aid System,” Appl. Sci., vol. 11, no. 1, 2021, doi: 10.3390/app11010216.S. Angamuthu and P. Trojovsky, “Integrating multi-criteria decision-making with hybrid deep learning for sentiment analysis in recommender systems,” PeerJ Comput. Sci., vol. 9, p. e1497, 2023.C. Zhang, H. Zhang, and J. Wang, “Personalized restaurant recommendation method combining group correlations and customer preferences,” Inf. Sci. (Ny)., vol. 454–455, pp. 128–143, 2018, doi: 10.1016/j.ins.2018.04.061.[166] S. Yang, Q. Li, D. Jang, and J. Kim, “Deep learning mechanism and big data in hospitality and tourism: Developing personalized restaurant recommendation model to customer decision-making,” Int. J. Hosp. Manag., vol. 121, no. June 2023, p. 103803, 2024, doi: 10.1016/j.ijhm.2024.103803.H. Emamgholizadeh, B. Bazzanella, A. Molinari, and F. Ricci, “Single User Group Recommendations,” in Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, in UMAP ’22 Adjunct. New York, NY, USA: Association for Computing Machinery, 2022, pp. 308–313. doi: 10.1145/3511047.3537663.M. Hong and J. J. Jung, “Multi-criteria tensor model for tourism recommender systems,” Expert Syst. Appl., vol. 170, 2021, doi: 10.1016/j.eswa.2020.114537.H. Zhang, P. Ji, J. Wang, and X. Chen, “A novel decision support model for satisfactory restaurants utilizing social information: A case study of TripAdvisor.com,” Tour. Manag., vol. 59, pp. 281–297, 2017, doi: https://doi.org/10.1016/j.tourman.2016.08.010.M. Hartanto and D. N. Utama, “Intelligent decision support model for recommending restaurant,” Cogent Eng., vol. 7, no. 1, p. 1763888, 2020, doi: 10.1080/23311916.2020.1763888Z. Shu, R. A. Carrasco, M. Sánchez-Montañés, and J. P. García-Miguel, “A Multi Criteria Decision Support Model for Restaurant Selection Based on Users’ Demand Level: The Case of Dianping.com,” Inf. Process. Manag., vol. 61, no. 3, p. 103650, 2024, doi: https://doi.org/10.1016/j.ipm.2024.103650.V. K. Muneer and K. P. M. Basheer, “Collaborative Travel Recommender System Based on Malayalam Travel Reviews BT - Artificial Intelligence and Speech Technology,” A. Dev, S. S. Agrawal, and A. Sharma, Eds., Cham: Springer International Publishing, 2022, pp. 651–659.X. Zheng, Y. Luo, L. Sun, J. Zhang, and F. Chen, “A tourism destination recommender system using users’ sentiment and temporal dynamics,” J. Intell. Inf. Syst., vol. 51, no. 3, pp. 557–578, 2018, doi: 10.1007/s10844-018-0496-5.V. Silaa, F. Masui, and M. Ptaszynski, “A Method of Supplementing Reviews to Less- Known Tourist Spots Using Geotagged Tweets,” Appl. Sci., vol. 12, no. 5, 2022, doi: 10.3390/app12052321.A. Patel, N. Shah, V. B. Parul, and K. S. Suthar, “Hotel Recommendation using Feature and Machine Learning Approaches: A Review,” in Proceedings - 5th International Conference on Smart Systems and Inventive Technology, ICSSIT, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 1144–1149.Rinaldi, R. Ferdiana, and N. A. Setiawan, “A Review Text-based Recommendation System in Text Mining,” in 2022 IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM), 2022, pp. 1–6. doi: 10.1109/ICOSNIKOM56551.2022.10034884.M. Bennawy and P. el-Kafrawy, “Recommendations on Streaming Data: E-Tourism Event Stream Processing Recommender System BT - Intelligent and Fuzzy Systems,” C. Kahraman, A. C. Tolga, S. Cevik Onar, S. Cebi, B. Oztaysi, and I. U. Sari, Eds., Cham: Springer International Publishing, 2022, pp. 514–523.N. Kushwaha and M. Pant, “Fuzzy electromagnetic optimisation clustering algorithm for collaborative filtering,” J. Exp. Theor. Artif. Intell., vol. 33, no. 4, pp. 601–616, Jul. 2021, doi: 10.1080/0952813X.2019.1647557.R. A. Hamid, A. S. Albahri, J. K. Alwan, Z. T. Al-Qaysi, O. S. Albahri, A. M. E. D. Alaa Zaidan, A. Alnoor, A. H. Alamoodi, and B. B. Zaidan, “How smart is e-tourism? A systematic review of smart tourism recommendation system applying data management,” Comput. Sci. Rev., vol. 39, p. 100337, 2021, doi: https://doi.org/10.1016/j.cosrev.2020.100337.W. Yang and P. T. I. Lam, “An evaluation of ICT benefits enhancing walkability in a smart city,” Landsc. Urban Plan., vol. 215, p. 104227, Oct. 2021, doi: 10.1016/j.landurbplan.2021.104227.Á. Murciego, D. M. Jiménez-Bravo, A. V. Román, J. F. D. P. Santana, and M. N. Moreno-García, “Context-aware recommender systems in the music domain: A systematic literature review,” Electron., vol. 10, no. 13, 2021, doi: 10.3390/electronics10131555.R. Sampieri, C. Fernández, and L. Baptista, “Definiciones de los enfoques cuantitativo y cualitativo, sus similitudes y diferencias,” RH Sampieri, Metodol. la Investivación, vol. 22, 2014.R. H. Sampieri, Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. McGraw Hill México, 2018.J. J. Dujmović, “Asymmetric and Compound Preference Aggregators,” in Modeling Decisions for Artificial Intelligence, V. Torra, Y. Narukawa, A. Valls, and J. Domingo-Ferrer, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–4.J. Dujmović and V. Torra, “Logic Aggregators and Their Implementations,” in Modeling Decisions for Artificial Intelligence, V. Torra and Y. Narukawa, Eds., Cham: Springer Nature Switzerland, 2023, pp. 3–42.A. Solano-Barliza, A. Valls, M. Acosta-Coll, A. Moreno, J. Escorcia-Gutierrez, E. De La-Hoz-Franco, and I. Arregoces-Julio,, “Enhancing Fair Tourism Opportunities in Emerging Destinations by Means of Multi-criteria Recommender Systems: The Case of Restaurants in Riohacha, Colombia,” Int. J. Comput. Intell. Syst., vol. 17, no. 1, 2024, doi: 10.1007/s44196-024-00700-8.J. Dujmović, “Graded logic for decision support systems,” Int. J. Intell. Syst., vol. 34, no. 11, pp. 2900–2919, 2019.Z. He, B. Hui, S. Zhang, C. Xiao, T. Zhong, and F. Zhou, “Exploring indirect entity relations for knowledge graph enhanced recommender system,” Expert Syst. Appl., vol. 213, p. 118984, 2023, doi: https://doi.org/10.1016/j.eswa.2022.118984.M. Martínez-García, A. Valls, A. Moreno, and A. Aldea, “A semantic multi-criteria approach to evaluate different types of energy generation technologies,” Environ. Model. Softw., vol. 110, pp. 129–138, 2018, doi: 10.1016/j.envsoft.2018.04.003.Sistema de recomendaciónTurismoToma de decisiones multicriterioOperadores de agregaciónModelado de preferenciasLógica graduadaRecommender systemTourismMulti-criteria decision makingAggregation operatorsPreference modelingGraded logicPublicatione87ecb34-281c-4c57-8c50-41d1f22c3ff3virtual::1833-1e87ecb34-281c-4c57-8c50-41d1f22c3ff3virtual::1833-1https://scholar.google.com/citations?user=ioE32X8AAAAJ&hl=esvirtual::1833-10000-0002-1933-8496virtual::1833-1ORIGINALSistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico.pdfSistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico.pdfapplication/pdf4297195https://repositorio.cuc.edu.co/bitstreams/dd4187d4-dd26-4702-b20e-11d6d3d2a4c6/download50911b24a1a29d123c60cad4d1e45df9MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/30854e69-5dd2-4c1d-b135-47a65adb56be/download73a5432e0b76442b22b026844140d683MD53TEXTSistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico.pdf.txtSistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico.pdf.txtExtracted texttext/plain101929https://repositorio.cuc.edu.co/bitstreams/778fcd63-53c9-49f3-a814-9da3b97588f9/download93966e41045fab0d605a47227ee82441MD54THUMBNAILSistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico.pdf.jpgSistema multicriterio de recomendación basado en operadores de lógica graduada de preferencias para la orientación segura en un destino turístico.pdf.jpgGenerated Thumbnailimage/jpeg10280https://repositorio.cuc.edu.co/bitstreams/7c5ca41b-7600-402c-89af-c7410ed2410f/downloadb3f9013b857f837014ffb8ee5629fc74MD5511323/14284oai:repositorio.cuc.edu.co:11323/142842025-07-24 17:00:30.87https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K