An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
vThe effective distribution of perishable food items is a critical aspect of managing the food industry's supply chain, given their physical–chemical, biological characteristics and composition, which make them highly susceptible to rapid deterioration. This research presents a transport model...
- Autores:
-
Acevedo-Chedid, Jaime
Soto, Melissa Caro
Ospina-Mateus, Holman
Salas-Navarro, Katherinne
Sana, Shib Sankar
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13418
- Acceso en línea:
- https://hdl.handle.net/11323/13418
https://repositorio.cuc.edu.co/
- Palabra clave:
- Cross-docking
Location problem
Perishable
Supply Chain
Time Windows
Vehicle Routing Problem
- Rights
- embargoedAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_bb570113fde99e25d8df2fca9d530479 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13418 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods |
title |
An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods |
spellingShingle |
An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods Cross-docking Location problem Perishable Supply Chain Time Windows Vehicle Routing Problem |
title_short |
An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods |
title_full |
An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods |
title_fullStr |
An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods |
title_full_unstemmed |
An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods |
title_sort |
An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods |
dc.creator.fl_str_mv |
Acevedo-Chedid, Jaime Soto, Melissa Caro Ospina-Mateus, Holman Salas-Navarro, Katherinne Sana, Shib Sankar |
dc.contributor.author.none.fl_str_mv |
Acevedo-Chedid, Jaime Soto, Melissa Caro Ospina-Mateus, Holman Salas-Navarro, Katherinne Sana, Shib Sankar |
dc.subject.proposal.eng.fl_str_mv |
Cross-docking Location problem Perishable Supply Chain Time Windows Vehicle Routing Problem |
topic |
Cross-docking Location problem Perishable Supply Chain Time Windows Vehicle Routing Problem |
description |
vThe effective distribution of perishable food items is a critical aspect of managing the food industry's supply chain, given their physical–chemical, biological characteristics and composition, which make them highly susceptible to rapid deterioration. This research presents a transport model incorporating a cross-dock system to efficiently deliver goods from production plants to markets. The model incorporates a vehicle routing model that considers time windows for pick-ups and deliveries, optimal cross-dock center locations, a heterogeneous vehicle fleet of limited capacity, and scheduling product collections, arrivals, and departures. The model is a mixed-integer non-linear optimization model that effectively minimizes logistics costs and environmental impacts by considering various parameters such as speed, waiting times, loading and unloading times, and costs associated with the entire operation. The findings demonstrate that the cross-dock structure is highly conducive to distributing perishable goods, achieved by minimizing collection and distribution operations, adhering to designated time windows, and efficiently allocating resources. The GAMS 23.6.5 software is used to program the model, employing various solution strategies, including experimental tests with scenarios, as well as the "posterior," "Pareto optimization," and "weighted sum" methods. The case study in Sincelejo (Sucre, Colombia) reported the best solution, representing 60% of logistics and 40% of environmental costs. The results show complete compliance with routes, no inventory generation, and the necessity of two inbounds and two outbound vehicles for collection from suppliers and delivery to retailers. This study presents an efficient model for managing the transportation of perishable goods, contributing to sustainable distribution activities, and environmental conservation in the food industry's supply chain. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-12 |
dc.date.accessioned.none.fl_str_mv |
2024-10-03T15:51:44Z |
dc.date.available.none.fl_str_mv |
2024-12 2024-10-03T15:51:44Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
draft |
dc.identifier.citation.none.fl_str_mv |
Acevedo-Chedid, J., Soto, M.C., Ospina-Mateus, H. et al. An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods. Oper Manag Res 16, 1742–1765 (2023). https://doi.org/10.1007/s12063-023-00379-8 |
dc.identifier.issn.none.fl_str_mv |
1936-9735 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13418 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s12063-023-00379-8 |
dc.identifier.eissn.none.fl_str_mv |
1936-9743 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Acevedo-Chedid, J., Soto, M.C., Ospina-Mateus, H. et al. An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods. Oper Manag Res 16, 1742–1765 (2023). https://doi.org/10.1007/s12063-023-00379-8 1936-9735 10.1007/s12063-023-00379-8 1936-9743 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13418 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Operations Management Research |
dc.relation.references.none.fl_str_mv |
Agi MA, Soni HN (2020) Joint pricing and inventory decisions for perishable products with age-, stock-, and price-dependent demand rate. J Oper Res Soc 71(1):85–99 Agrawal AK, Yadav S, Gupta AA, Pandey S (2022) A genetic algorithm model for optimizing vehicle routing problems with perishable products under time-window and quality requirements. Decis Anal J 5:100139 Agustina D, Lee C, Piplani R (2014) Vehicle scheduling and routing at a cross docking center for food supply chains. Int J Prod Econ 152:29–41 Ahkamiraad A, Wang Y (2018) Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows. Comput Ind Eng 119:76–84 Ahmadizar F, Zeynivand M, Arkat J (2015) Two-level vehicle routing with cross-docking in a three-echelon supply chain: A genetic algorithm approach. Appl Math Model 39(22):7065–7081 Ai TJ, Kachitvichyanukul V (2009) Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem. Comput Ind Eng 56(1):380–387 Alamatsaz K, Ahmadi A, Mirzapour Al-e-hashem SMJ (2022) A multiobjective model for the green capacitated location-routing problem considering drivers’ satisfaction and time window with uncertain demand. Environ Sci Pollut Res 29(4):5052–5071 Amorim P, Günther H-O, Almada-Lobo B (2012) Multiobjective integrated production and distribution planning of perishable products. Int J Prod Econ 138(1):89–101 Anbuudayasankar S, Ganesh K, Mohapatra S (2016) Models for practical routing problems in logistics. Springer Apte UM, Viswanathan S (2000) Effective cross docking for improving distribution efficiencies. Int J Logist 3(3):291–302 Ashtineh H, Pishvaee MS (2019) Alternative fuel vehicle-routing problem: A life cycle analysis of transportation fuels. J Clean Prod 219:166–182 Azi N, Gendreau M, Potvin J-Y (2010) An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles. Eur J Oper Res 202(3):756–763 Baldacci R, Mingozzi A (2009) A unified exact method for solving different classes of vehicle routing problems. Math Program 120(2):347–380 Ballou RH, Rahardja H, Sakai N (2002) Selected country circuity factors for road travel distance estimation. Transp Res Part A Policy Pract 36(9):843–848 Baniamerian A, Bashiri M, Tavakkoli-Moghaddam R (2019) Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with cross-docking. Appl Soft Comput 75:441–460 Belhaiza S, Hansen P, Laporte G (2014) A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Comput Oper Res 52:269–281 Benjamin AM, Beasley JE (2010) Metaheuristics for the waste collection vehicle routing problem with time windows, driver rest period and multiple disposal facilities. Comput Oper Res 37(12):2270–2280 Benrqya Y (2019) Costs and benefits of using cross-docking in the retail supply chain: A case study of an FMCG company. Int J Retail Distribut Manag Birim Ş (2016) Vehicle routing problem with cross docking: A simulated annealing approach. Procedia Soc Behav Sci 235:149–158 Brandão J (2009) A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem. Eur J Oper Res 195(3):716–728 Bravo Urria MI (2015) Modelo de programación matemática para el VRPPDTW multiobjetivo con flota heterogénea y propuesta de algoritmo evolutivo para su resolución Bräysy O, Porkka PP, Dullaert W, Repoussis PP, Tarantilis CD (2009) A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time windows. Expert Syst Appl 36(4):8460–8475 Castellucci PB, Costa AM, Toledo F (2021) Network scheduling problem with cross-docking and loading constraints. Comput Oper Res 132 Chaudhary V, Kulshrestha R, Routroy S (2018). State-of-the-art literature review on inventory models for perishable products. J Adv Manag Res Chen C. Qiu R, Hu X (2018) The location-routing problem with full truckloads in low-carbon supply chain network designing Math Probl Eng Chen H-K, Hsueh C-F, Chang M-S (2009) Production scheduling and vehicle routing with time windows for perishable food products. Comput Oper Res 36(7):2311–2319 Chen P, Huang H-K, Dong X-Y (2010) Iterated variable neighborhood descent algorithm for the capacitated vehicle routing problem. Expert Syst Appl 37(2):1620–1627 Cóccola M, Méndez C, Zamarripa M, Espuña A (2012) Integrated production and distribution management with cross docking in supply chains. Comput Aided Chem Eng Elsevier 31:1050–1054 Cóccola M, Méndez CA, Dondo RG (2015) A branch-and-price approach to evaluate the role of cross-docking operations in consolidated supply chains. Comput Chem Eng 80:15–29 DECC D (2011) Guidelines to Defra/DECC's GHG conversion factors for company reporting. London: Department for Environment, Food and Rural Affairs and Department for Energy and Climate Change Erdoğan S, Miller-Hooks E (2012) A green vehicle routing problem. Transp Res E Logist Transp Rev 48(1):100–114 Fachini RF, Armentano VA (2020) Logic-based Benders decomposition for the heterogeneous fixed fleet vehicle routing problem with time windows. Comput Ind Eng 148 Ghasemkhani A, Tavakkoli-Moghaddam R, Rahimi Y, Shahnejat-Bushehri S, Tavakkoli-Moghaddam H (2022) Integrated production-inventory-routing problem for multi-perishable products under uncertainty by meta-heuristic algorithms. Int J Prod Res 60(9):2766–2786 Ghoseiri K, Ghannadpour SF (2010) Multiobjective vehicle routing problem with time windows using goal programming and genetic algorithm. Appl Soft Comput 10(4):1096–1107 Golestani M, Moosavirad SH, Asadi Y, Biglari S (2021) A multiobjective green hub location problem with multi item-multi temperature joint distribution for perishable products in cold supply chain. Sustain Prod Consum 27:1183–1194 Gómez J, Baca A (2014) Analisis de operaciones cross docking directas e indirectas en Colombia. Universidad Militar nueva Granada, Bogotá Goodarzi AH, Zegordi SH (2016) A location-routing problem for cross-docking networks: A biogeography-based optimization algorithm. Comput Ind Eng 102:132–146 Govindan K, Jafarian A, Khodaverdi R, Devika K (2014) Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. Int J Prod Econ 152:9–28 Grangier P, Gendreau M, Lehuédé F, Rousseau L-M (2017) A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking. Comput Oper Res 84:116–126 Halloran A, Clement J, Kornum N, Bucatariu C, Magid J (2014) Addressing food waste reduction in Denmark. Food Policy 49:294–301 Hanchuan P, Ruifang W, Hao D, Feng Z (2013) The Research of logistics cost and influencing factors based on cross docking. Procedia Soc Behav Sci 96:1812–1817 Hasani-Goodarzi A, Tavakkoli-Moghaddam R (2012) Capacitated vehicle routing problem for multi-product cross-docking with split deliveries and pickups. Procedia Soc Behav Sci 62:1360–1365 Hasani Goodarzi A, Nahavandi N, Zegordi SH (2018) A multiobjective imperialist competitive algorithm for vehicle routing problem in cross-docking networks with time windows. J Ind Syst Eng 11(1):1–23 İlhan İ (2021) An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem. Swarm Evol Comput 64 Imran A, Salhi S, Wassan NA (2009) A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem. Eur J Oper Res 197(2):509–518 Kaboudani Y, Ghodsypour SH, Kia H, Shahmardan A (2020) Vehicle routing and scheduling in cross docks with forward and reverse logistics. Oper Res Int Journal 20(3):1589–1622 Kalenatic D, Bello CAL, Rodríguez LJG, Velasco FJR (2008) Localización de una plataforma de cross docking en el contexto de logística focalizada utilizando distancias euclidianas. Cienc Ing Neogranad 18(1):17–34 Kara I, Kara BY, Yetis MK (2007) Energy minimizing vehicle routing problem. Combinatorial Optimization and Applications: First International Conference, COCOA 2007, Xi’an, China, August 14–16, 2007. Proceedings 1, Springer Kinnear E (1997) Is there any magic in cross-docking? Int J Supply Chain Manag 2(2):49–52 Konstantakopoulos GD, Gayialis SP, Kechagias EP (2022) Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification. Oper Res Int J 22(3):2033–2062 Kuo J-C, Chen M-C (2010) Developing an advanced multi-temperature joint distribution system for the food cold chain. Food Control 21(4):559–566 Kwon Y-J, Choi Y-J, Lee D-H (2013) Heterogeneous fixed fleet vehicle routing considering carbon emission. Transp Res Part D: Transp Environ 23:81–89 Lee YH, Jung JW, Lee KM (2006) Vehicle routing scheduling for cross-docking in the supply chain. Comput Ind Eng 51(2):247–256 Leggieri V, Haouari M (2017) A practical solution approach for the green vehicle routing problem. Transp Res E Logist Transp Rev 104:97–112 Lei H, Laporte G, Guo B (2011) The capacitated vehicle routing problem with stochastic demands and time windows. Comput Oper Res 38(12):1775–1783 Li X, Tian P, Leung SC (2010) Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm. Int J Prod Econ 125(1):137–145 Liang X, Wang N, Zhang M, Jiang B (2023) Bi-objective multi-period vehicle routing for perishable goods delivery considering customer satisfaction. Expert Syst Appl 220 Liao C-J, Lin Y, Shih SC (2010) Vehicle routing with cross-docking in the supply chain. Expert Syst Appl 37(10):6868–6873 Lin S-W, Lee Z-J, Ying K-C, Lee C-Y (2009) Applying hybrid meta-heuristics for capacitated vehicle routing problem. Expert Syst Appl 36(2):1505–1512 Maknoon Y, Laporte G (2017) Vehicle routing with cross-dock selection. Comput Oper Res 77:254–266 Marinakis Y, Marinaki M, Migdalas A (2019) A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows. Inf Sci 481:311–329 Masmoudi MA, Hosny M, Demir E, Genikomsakis KN, Cheikhrouhou N (2018) The dial-a-ride problem with electric vehicles and battery swapping stations. Transp Res E Logist Transp Rev 118:392–420 Medina LBR, La Rota ECG, Castro JAO (2011) Una revisión al estado del arte del problema de ruteo de vehículos: Evolución histórica y métodos de solución. Ingeniería 16(2):35–55 Minner S, Transchel S (2017) Order variability in perishable product supply chains. Eur J Oper Res 260(1):93–107 Mohtashami A (2015) A novel dynamic genetic algorithm-based method for vehicle scheduling in cross docking systems with frequent unloading operation. Comput Ind Eng 90:221–240 Montoya-Torres JR, Franco JL, Isaza SN, Jiménez HF, Herazo-Padilla N (2015) A literature review on the vehicle routing problem with multiple depots. Comput Ind Eng 79:115–129 Mousavi SM, Tavakkoli-Moghaddam R (2013) A hybrid simulated annealing algorithm for location and routing scheduling problems with cross-docking in the supply chain. J Manuf Syst 32(2):335–347 Mousavi SM, Vahdani B, Tavakkoli-Moghaddam R, Hashemi H (2014) Location of cross-docking centers and vehicle routing scheduling under uncertainty: a fuzzy possibilistic–stochastic programming model. Appl Math Model 38(7–8):2249–2264 Nguyen PK, Crainic TG, Toulouse M (2013) A tabu search for time-dependent multi-zone multi-trip vehicle routing problem with time windows. Eur J Oper Res 231(1):43–56 Onstein AT, Ektesaby M, Rezaei J, Tavasszy LA, van Damme DA (2020) Importance of factors driving firms’ decisions on spatial distribution structures. Int J Log Res Appl 23(1):24–43 Pan B, Zhang Z, Lim A (2021) Multi-trip time-dependent vehicle routing problem with time windows. Eur J Oper Res 291(1):218–231 Prescott‐Gagnon E, Desaulniers G, Rousseau LM (2009) A branch‐and‐price‐based large neighborhood search algorithm for the vehicle routing problem with time windows. Netw Int J 54(4):190–204 Psychas I-D, Marinaki M, Marinakis Y, Migdalas A (2017) Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems. Energy Syst 8(4):785–814 Qureshi AG, Taniguchi E, Yamada T (2010) Exact solution for the vehicle routing problem with semi soft time windows and its application. Procedia Soc Behav Sci 2(3):5931–5943 Ramudhin A, Chaabane A, Kharoune M, Paquet M (2008) Carbon market sensitive green supply chain network design. 2008 IEEE international conference on industrial engineering and engineering management, IEEE Redlingshöfer B, Coudurier B, Georget M (2017) Quantifying food loss during primary production and processing in France. J Clean Prod 164:703–714 Rezaei S, Kheirkhah A (2018) A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations. Comput Math Organ Theory 24:51–98 Ross A, Jayaraman V (2008) An evaluation of new heuristics for the location of cross-dock distribution centers in supply chain network design. Comput Ind Eng 55(1):64–79 Santos FA, Mateus GR, da Cunha AS (2011) A branch-and-price algorithm for a vehicle routing problem with cross-docking. Electronic Notes in Discrete Mathematics 37:249–254 Shahabi-Shahmiri R, Asian S, Tavakkoli-Moghaddam R, Mousavi SM, Rajabzadeh M (2021) A routing and scheduling problem for cross-docking networks with perishable products, heterogeneous vehicles and split delivery. Comput Ind Eng 157 Song M-X, Li J-Q, Han Y-Q, Han Y-Y, Liu L-L, Sun Q (2020) Metaheuristics for solving the vehicle routing problem with the time windows and energy consumption in cold chain logistics. Appl Soft Comput 95 Soysal M, Bloemhof-Ruwaard JM, Bektaş T (2015) The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations. Int J Prod Econ 164:366–378 Srivastava G, Singh A, Mallipeddi R (2021) NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows. Expert Syst Appl 176 Suzuki Y (2011) A new truck-routing approach for reducing fuel consumption and pollutants emission. Transp Res Part D: Transp Environ 16(1):73–77 Theophilus O, Dulebenets MA, Pasha J, Lau Y-Y, Fathollahi-Fard AM, Mazaheri A (2021) Truck scheduling optimization at a cold-chain cross-docking terminal with product perishability considerations. Comput Ind Eng 156 Van Belle J, Valckenaers P, Cattrysse D (2012) Cross-docking: State of the art. Omega 40(6):827–846 Vasiljevic D, Stepanovic M, Manojlovic O (2013) Cross-docking implementation in distribution of food products. Eкoнoмикa Пoљoпpивpeдe 60(1):91–101 Vidal T, Crainic TG, Gendreau M, Prins C (2014) Implicit depot assignments and rotations in vehicle routing heuristics. Eur J Oper Res 237(1):15–28 Vincent FY, Jewpanya P, Redi AP, Tsao Y-C (2021) Adaptive neighborhood simulated annealing for the heterogeneous fleet vehicle routing problem with multiple cross-docks. Comput Oper Res 129 Wang J, Jagannathan AKR, Zuo X, Murray CC (2017) Two-layer simulated annealing and tabu search heuristics for a vehicle routing problem with cross docks and split deliveries. Comput Ind Eng 112:84–98 Wang Y, Assogba K, Liu Y, Ma X, Xu M, Wang Y (2018) Two-echelon location-routing optimization with time windows based on customer clustering. Expert Syst Appl 104:244–260 Wang Y, Li Q, Guan X, Xu M, Liu Y, Wang H (2021) Two-echelon collaborative multi-depot multi-period vehicle routing problem. Expert Syst Appl 167 Wang Y, Ran L, Guan X, Fan J, Sun Y, Wang H (2022) Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups. Expert Syst Appl 197 Xiao Y, Zhao Q, Kaku I, Xu Y (2012) Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput Oper Res 39(7):1419–1431 Yang S, Ning L, Tong LC, Shang P (2022) Integrated electric logistics vehicle recharging station location–routing problem with mixed backhauls and recharging strategies. Transportation Research Part C: Emerging Technologies 140 Yang Y, Chi H, Tang O, Zhou W, Fan T (2019) Cross perishable effect on optimal inventory preservation control. Eur J Oper Res 276(3):998–1012 Zhao P, Luo W, Han X (2019) Time-dependent and bi-objective vehicle routing problem with time windows. Advances in Production Engineering & Management 14(2):201–212 Zhen L, Ma C, Wang K, Xiao L, Zhang W (2020) Multi-depot multi-trip vehicle routing problem with time windows and release dates. Transp Res E Logist Transp Rev 135:101866 |
dc.relation.citationendpage.none.fl_str_mv |
1765 |
dc.relation.citationstartpage.none.fl_str_mv |
1742 |
dc.relation.citationissue.none.fl_str_mv |
4 |
dc.relation.citationvolume.none.fl_str_mv |
16 |
dc.rights.eng.fl_str_mv |
© 2024 Springer Nature |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2024 Springer Nature https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
9 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer New York |
dc.publisher.place.none.fl_str_mv |
United States |
publisher.none.fl_str_mv |
Springer New York |
dc.source.none.fl_str_mv |
https://link.springer.com/article/10.1007/s12063-023-00379-8 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/81937fbb-4c2b-409c-87cd-6bd62a7835b7/download https://repositorio.cuc.edu.co/bitstreams/176ee976-dfd2-4f50-a7e4-3de5e691f11d/download https://repositorio.cuc.edu.co/bitstreams/2e6e4cad-e2e3-4f83-8b25-24569c81af0b/download https://repositorio.cuc.edu.co/bitstreams/4965b89a-7e97-4bb7-af0a-5196796daee7/download |
bitstream.checksum.fl_str_mv |
7eabb4cbd605a7f4f7a6f9a592fbd3b5 73a5432e0b76442b22b026844140d683 3f84fdd7294cac1ea6d5113958cf1436 f3d435ab6823adfa168dd14ce274a0cc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166660408737792 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2024 Springer Naturehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAcevedo-Chedid, JaimeSoto, Melissa CaroOspina-Mateus, HolmanSalas-Navarro, KatherinneSana, Shib Sankar2024-10-03T15:51:44Z2024-122024-10-03T15:51:44Z2023-12Acevedo-Chedid, J., Soto, M.C., Ospina-Mateus, H. et al. An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods. Oper Manag Res 16, 1742–1765 (2023). https://doi.org/10.1007/s12063-023-00379-81936-9735https://hdl.handle.net/11323/1341810.1007/s12063-023-00379-81936-9743Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/vThe effective distribution of perishable food items is a critical aspect of managing the food industry's supply chain, given their physical–chemical, biological characteristics and composition, which make them highly susceptible to rapid deterioration. This research presents a transport model incorporating a cross-dock system to efficiently deliver goods from production plants to markets. The model incorporates a vehicle routing model that considers time windows for pick-ups and deliveries, optimal cross-dock center locations, a heterogeneous vehicle fleet of limited capacity, and scheduling product collections, arrivals, and departures. The model is a mixed-integer non-linear optimization model that effectively minimizes logistics costs and environmental impacts by considering various parameters such as speed, waiting times, loading and unloading times, and costs associated with the entire operation. The findings demonstrate that the cross-dock structure is highly conducive to distributing perishable goods, achieved by minimizing collection and distribution operations, adhering to designated time windows, and efficiently allocating resources. The GAMS 23.6.5 software is used to program the model, employing various solution strategies, including experimental tests with scenarios, as well as the "posterior," "Pareto optimization," and "weighted sum" methods. The case study in Sincelejo (Sucre, Colombia) reported the best solution, representing 60% of logistics and 40% of environmental costs. The results show complete compliance with routes, no inventory generation, and the necessity of two inbounds and two outbound vehicles for collection from suppliers and delivery to retailers. This study presents an efficient model for managing the transportation of perishable goods, contributing to sustainable distribution activities, and environmental conservation in the food industry's supply chain.9 páginasapplication/pdfengSpringer New YorkUnited Stateshttps://link.springer.com/article/10.1007/s12063-023-00379-8An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foodsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceOperations Management ResearchAgi MA, Soni HN (2020) Joint pricing and inventory decisions for perishable products with age-, stock-, and price-dependent demand rate. J Oper Res Soc 71(1):85–99Agrawal AK, Yadav S, Gupta AA, Pandey S (2022) A genetic algorithm model for optimizing vehicle routing problems with perishable products under time-window and quality requirements. Decis Anal J 5:100139Agustina D, Lee C, Piplani R (2014) Vehicle scheduling and routing at a cross docking center for food supply chains. Int J Prod Econ 152:29–41Ahkamiraad A, Wang Y (2018) Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows. Comput Ind Eng 119:76–84Ahmadizar F, Zeynivand M, Arkat J (2015) Two-level vehicle routing with cross-docking in a three-echelon supply chain: A genetic algorithm approach. Appl Math Model 39(22):7065–7081Ai TJ, Kachitvichyanukul V (2009) Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem. Comput Ind Eng 56(1):380–387Alamatsaz K, Ahmadi A, Mirzapour Al-e-hashem SMJ (2022) A multiobjective model for the green capacitated location-routing problem considering drivers’ satisfaction and time window with uncertain demand. Environ Sci Pollut Res 29(4):5052–5071Amorim P, Günther H-O, Almada-Lobo B (2012) Multiobjective integrated production and distribution planning of perishable products. Int J Prod Econ 138(1):89–101Anbuudayasankar S, Ganesh K, Mohapatra S (2016) Models for practical routing problems in logistics. SpringerApte UM, Viswanathan S (2000) Effective cross docking for improving distribution efficiencies. Int J Logist 3(3):291–302Ashtineh H, Pishvaee MS (2019) Alternative fuel vehicle-routing problem: A life cycle analysis of transportation fuels. J Clean Prod 219:166–182Azi N, Gendreau M, Potvin J-Y (2010) An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles. Eur J Oper Res 202(3):756–763Baldacci R, Mingozzi A (2009) A unified exact method for solving different classes of vehicle routing problems. Math Program 120(2):347–380Ballou RH, Rahardja H, Sakai N (2002) Selected country circuity factors for road travel distance estimation. Transp Res Part A Policy Pract 36(9):843–848Baniamerian A, Bashiri M, Tavakkoli-Moghaddam R (2019) Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with cross-docking. Appl Soft Comput 75:441–460Belhaiza S, Hansen P, Laporte G (2014) A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Comput Oper Res 52:269–281Benjamin AM, Beasley JE (2010) Metaheuristics for the waste collection vehicle routing problem with time windows, driver rest period and multiple disposal facilities. Comput Oper Res 37(12):2270–2280Benrqya Y (2019) Costs and benefits of using cross-docking in the retail supply chain: A case study of an FMCG company. Int J Retail Distribut ManagBirim Ş (2016) Vehicle routing problem with cross docking: A simulated annealing approach. Procedia Soc Behav Sci 235:149–158Brandão J (2009) A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem. Eur J Oper Res 195(3):716–728Bravo Urria MI (2015) Modelo de programación matemática para el VRPPDTW multiobjetivo con flota heterogénea y propuesta de algoritmo evolutivo para su resoluciónBräysy O, Porkka PP, Dullaert W, Repoussis PP, Tarantilis CD (2009) A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time windows. Expert Syst Appl 36(4):8460–8475Castellucci PB, Costa AM, Toledo F (2021) Network scheduling problem with cross-docking and loading constraints. Comput Oper Res 132Chaudhary V, Kulshrestha R, Routroy S (2018). State-of-the-art literature review on inventory models for perishable products. J Adv Manag ResChen C. Qiu R, Hu X (2018) The location-routing problem with full truckloads in low-carbon supply chain network designing Math Probl EngChen H-K, Hsueh C-F, Chang M-S (2009) Production scheduling and vehicle routing with time windows for perishable food products. Comput Oper Res 36(7):2311–2319Chen P, Huang H-K, Dong X-Y (2010) Iterated variable neighborhood descent algorithm for the capacitated vehicle routing problem. Expert Syst Appl 37(2):1620–1627Cóccola M, Méndez C, Zamarripa M, Espuña A (2012) Integrated production and distribution management with cross docking in supply chains. Comput Aided Chem Eng Elsevier 31:1050–1054Cóccola M, Méndez CA, Dondo RG (2015) A branch-and-price approach to evaluate the role of cross-docking operations in consolidated supply chains. Comput Chem Eng 80:15–29DECC D (2011) Guidelines to Defra/DECC's GHG conversion factors for company reporting. London: Department for Environment, Food and Rural Affairs and Department for Energy and Climate ChangeErdoğan S, Miller-Hooks E (2012) A green vehicle routing problem. Transp Res E Logist Transp Rev 48(1):100–114Fachini RF, Armentano VA (2020) Logic-based Benders decomposition for the heterogeneous fixed fleet vehicle routing problem with time windows. Comput Ind Eng 148Ghasemkhani A, Tavakkoli-Moghaddam R, Rahimi Y, Shahnejat-Bushehri S, Tavakkoli-Moghaddam H (2022) Integrated production-inventory-routing problem for multi-perishable products under uncertainty by meta-heuristic algorithms. Int J Prod Res 60(9):2766–2786Ghoseiri K, Ghannadpour SF (2010) Multiobjective vehicle routing problem with time windows using goal programming and genetic algorithm. Appl Soft Comput 10(4):1096–1107Golestani M, Moosavirad SH, Asadi Y, Biglari S (2021) A multiobjective green hub location problem with multi item-multi temperature joint distribution for perishable products in cold supply chain. Sustain Prod Consum 27:1183–1194Gómez J, Baca A (2014) Analisis de operaciones cross docking directas e indirectas en Colombia. Universidad Militar nueva Granada, BogotáGoodarzi AH, Zegordi SH (2016) A location-routing problem for cross-docking networks: A biogeography-based optimization algorithm. Comput Ind Eng 102:132–146Govindan K, Jafarian A, Khodaverdi R, Devika K (2014) Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. Int J Prod Econ 152:9–28Grangier P, Gendreau M, Lehuédé F, Rousseau L-M (2017) A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking. Comput Oper Res 84:116–126Halloran A, Clement J, Kornum N, Bucatariu C, Magid J (2014) Addressing food waste reduction in Denmark. Food Policy 49:294–301Hanchuan P, Ruifang W, Hao D, Feng Z (2013) The Research of logistics cost and influencing factors based on cross docking. Procedia Soc Behav Sci 96:1812–1817Hasani-Goodarzi A, Tavakkoli-Moghaddam R (2012) Capacitated vehicle routing problem for multi-product cross-docking with split deliveries and pickups. Procedia Soc Behav Sci 62:1360–1365Hasani Goodarzi A, Nahavandi N, Zegordi SH (2018) A multiobjective imperialist competitive algorithm for vehicle routing problem in cross-docking networks with time windows. J Ind Syst Eng 11(1):1–23İlhan İ (2021) An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem. Swarm Evol Comput 64Imran A, Salhi S, Wassan NA (2009) A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem. Eur J Oper Res 197(2):509–518Kaboudani Y, Ghodsypour SH, Kia H, Shahmardan A (2020) Vehicle routing and scheduling in cross docks with forward and reverse logistics. Oper Res Int Journal 20(3):1589–1622Kalenatic D, Bello CAL, Rodríguez LJG, Velasco FJR (2008) Localización de una plataforma de cross docking en el contexto de logística focalizada utilizando distancias euclidianas. Cienc Ing Neogranad 18(1):17–34Kara I, Kara BY, Yetis MK (2007) Energy minimizing vehicle routing problem. Combinatorial Optimization and Applications: First International Conference, COCOA 2007, Xi’an, China, August 14–16, 2007. Proceedings 1, SpringerKinnear E (1997) Is there any magic in cross-docking? Int J Supply Chain Manag 2(2):49–52Konstantakopoulos GD, Gayialis SP, Kechagias EP (2022) Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification. Oper Res Int J 22(3):2033–2062Kuo J-C, Chen M-C (2010) Developing an advanced multi-temperature joint distribution system for the food cold chain. Food Control 21(4):559–566Kwon Y-J, Choi Y-J, Lee D-H (2013) Heterogeneous fixed fleet vehicle routing considering carbon emission. Transp Res Part D: Transp Environ 23:81–89Lee YH, Jung JW, Lee KM (2006) Vehicle routing scheduling for cross-docking in the supply chain. Comput Ind Eng 51(2):247–256Leggieri V, Haouari M (2017) A practical solution approach for the green vehicle routing problem. Transp Res E Logist Transp Rev 104:97–112Lei H, Laporte G, Guo B (2011) The capacitated vehicle routing problem with stochastic demands and time windows. Comput Oper Res 38(12):1775–1783Li X, Tian P, Leung SC (2010) Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm. Int J Prod Econ 125(1):137–145Liang X, Wang N, Zhang M, Jiang B (2023) Bi-objective multi-period vehicle routing for perishable goods delivery considering customer satisfaction. Expert Syst Appl 220Liao C-J, Lin Y, Shih SC (2010) Vehicle routing with cross-docking in the supply chain. Expert Syst Appl 37(10):6868–6873Lin S-W, Lee Z-J, Ying K-C, Lee C-Y (2009) Applying hybrid meta-heuristics for capacitated vehicle routing problem. Expert Syst Appl 36(2):1505–1512Maknoon Y, Laporte G (2017) Vehicle routing with cross-dock selection. Comput Oper Res 77:254–266Marinakis Y, Marinaki M, Migdalas A (2019) A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows. Inf Sci 481:311–329Masmoudi MA, Hosny M, Demir E, Genikomsakis KN, Cheikhrouhou N (2018) The dial-a-ride problem with electric vehicles and battery swapping stations. Transp Res E Logist Transp Rev 118:392–420Medina LBR, La Rota ECG, Castro JAO (2011) Una revisión al estado del arte del problema de ruteo de vehículos: Evolución histórica y métodos de solución. Ingeniería 16(2):35–55Minner S, Transchel S (2017) Order variability in perishable product supply chains. Eur J Oper Res 260(1):93–107Mohtashami A (2015) A novel dynamic genetic algorithm-based method for vehicle scheduling in cross docking systems with frequent unloading operation. Comput Ind Eng 90:221–240Montoya-Torres JR, Franco JL, Isaza SN, Jiménez HF, Herazo-Padilla N (2015) A literature review on the vehicle routing problem with multiple depots. Comput Ind Eng 79:115–129Mousavi SM, Tavakkoli-Moghaddam R (2013) A hybrid simulated annealing algorithm for location and routing scheduling problems with cross-docking in the supply chain. J Manuf Syst 32(2):335–347Mousavi SM, Vahdani B, Tavakkoli-Moghaddam R, Hashemi H (2014) Location of cross-docking centers and vehicle routing scheduling under uncertainty: a fuzzy possibilistic–stochastic programming model. Appl Math Model 38(7–8):2249–2264Nguyen PK, Crainic TG, Toulouse M (2013) A tabu search for time-dependent multi-zone multi-trip vehicle routing problem with time windows. Eur J Oper Res 231(1):43–56Onstein AT, Ektesaby M, Rezaei J, Tavasszy LA, van Damme DA (2020) Importance of factors driving firms’ decisions on spatial distribution structures. Int J Log Res Appl 23(1):24–43Pan B, Zhang Z, Lim A (2021) Multi-trip time-dependent vehicle routing problem with time windows. Eur J Oper Res 291(1):218–231Prescott‐Gagnon E, Desaulniers G, Rousseau LM (2009) A branch‐and‐price‐based large neighborhood search algorithm for the vehicle routing problem with time windows. Netw Int J 54(4):190–204Psychas I-D, Marinaki M, Marinakis Y, Migdalas A (2017) Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems. Energy Syst 8(4):785–814Qureshi AG, Taniguchi E, Yamada T (2010) Exact solution for the vehicle routing problem with semi soft time windows and its application. Procedia Soc Behav Sci 2(3):5931–5943Ramudhin A, Chaabane A, Kharoune M, Paquet M (2008) Carbon market sensitive green supply chain network design. 2008 IEEE international conference on industrial engineering and engineering management, IEEERedlingshöfer B, Coudurier B, Georget M (2017) Quantifying food loss during primary production and processing in France. J Clean Prod 164:703–714Rezaei S, Kheirkhah A (2018) A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations. Comput Math Organ Theory 24:51–98Ross A, Jayaraman V (2008) An evaluation of new heuristics for the location of cross-dock distribution centers in supply chain network design. Comput Ind Eng 55(1):64–79Santos FA, Mateus GR, da Cunha AS (2011) A branch-and-price algorithm for a vehicle routing problem with cross-docking. Electronic Notes in Discrete Mathematics 37:249–254Shahabi-Shahmiri R, Asian S, Tavakkoli-Moghaddam R, Mousavi SM, Rajabzadeh M (2021) A routing and scheduling problem for cross-docking networks with perishable products, heterogeneous vehicles and split delivery. Comput Ind Eng 157Song M-X, Li J-Q, Han Y-Q, Han Y-Y, Liu L-L, Sun Q (2020) Metaheuristics for solving the vehicle routing problem with the time windows and energy consumption in cold chain logistics. Appl Soft Comput 95Soysal M, Bloemhof-Ruwaard JM, Bektaş T (2015) The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations. Int J Prod Econ 164:366–378Srivastava G, Singh A, Mallipeddi R (2021) NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows. Expert Syst Appl 176Suzuki Y (2011) A new truck-routing approach for reducing fuel consumption and pollutants emission. Transp Res Part D: Transp Environ 16(1):73–77Theophilus O, Dulebenets MA, Pasha J, Lau Y-Y, Fathollahi-Fard AM, Mazaheri A (2021) Truck scheduling optimization at a cold-chain cross-docking terminal with product perishability considerations. Comput Ind Eng 156Van Belle J, Valckenaers P, Cattrysse D (2012) Cross-docking: State of the art. Omega 40(6):827–846Vasiljevic D, Stepanovic M, Manojlovic O (2013) Cross-docking implementation in distribution of food products. Eкoнoмикa Пoљoпpивpeдe 60(1):91–101Vidal T, Crainic TG, Gendreau M, Prins C (2014) Implicit depot assignments and rotations in vehicle routing heuristics. Eur J Oper Res 237(1):15–28Vincent FY, Jewpanya P, Redi AP, Tsao Y-C (2021) Adaptive neighborhood simulated annealing for the heterogeneous fleet vehicle routing problem with multiple cross-docks. Comput Oper Res 129Wang J, Jagannathan AKR, Zuo X, Murray CC (2017) Two-layer simulated annealing and tabu search heuristics for a vehicle routing problem with cross docks and split deliveries. Comput Ind Eng 112:84–98Wang Y, Assogba K, Liu Y, Ma X, Xu M, Wang Y (2018) Two-echelon location-routing optimization with time windows based on customer clustering. Expert Syst Appl 104:244–260Wang Y, Li Q, Guan X, Xu M, Liu Y, Wang H (2021) Two-echelon collaborative multi-depot multi-period vehicle routing problem. Expert Syst Appl 167Wang Y, Ran L, Guan X, Fan J, Sun Y, Wang H (2022) Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups. Expert Syst Appl 197Xiao Y, Zhao Q, Kaku I, Xu Y (2012) Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput Oper Res 39(7):1419–1431Yang S, Ning L, Tong LC, Shang P (2022) Integrated electric logistics vehicle recharging station location–routing problem with mixed backhauls and recharging strategies. Transportation Research Part C: Emerging Technologies 140Yang Y, Chi H, Tang O, Zhou W, Fan T (2019) Cross perishable effect on optimal inventory preservation control. Eur J Oper Res 276(3):998–1012Zhao P, Luo W, Han X (2019) Time-dependent and bi-objective vehicle routing problem with time windows. Advances in Production Engineering & Management 14(2):201–212Zhen L, Ma C, Wang K, Xiao L, Zhang W (2020) Multi-depot multi-trip vehicle routing problem with time windows and release dates. Transp Res E Logist Transp Rev 135:10186617651742416Cross-dockingLocation problemPerishableSupply ChainTime WindowsVehicle Routing ProblemPublicationORIGINALAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdfAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdfapplication/pdf300160https://repositorio.cuc.edu.co/bitstreams/81937fbb-4c2b-409c-87cd-6bd62a7835b7/download7eabb4cbd605a7f4f7a6f9a592fbd3b5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/176ee976-dfd2-4f50-a7e4-3de5e691f11d/download73a5432e0b76442b22b026844140d683MD52TEXTAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.txtAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.txtExtracted texttext/plain22421https://repositorio.cuc.edu.co/bitstreams/2e6e4cad-e2e3-4f83-8b25-24569c81af0b/download3f84fdd7294cac1ea6d5113958cf1436MD53THUMBNAILAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.jpgAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.jpgGenerated Thumbnailimage/jpeg16291https://repositorio.cuc.edu.co/bitstreams/4965b89a-7e97-4bb7-af0a-5196796daee7/downloadf3d435ab6823adfa168dd14ce274a0ccMD5411323/13418oai:repositorio.cuc.edu.co:11323/134182024-10-04 03:00:54.07https://creativecommons.org/licenses/by/4.0/© 2024 Springer Natureopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |