An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods

vThe effective distribution of perishable food items is a critical aspect of managing the food industry's supply chain, given their physical–chemical, biological characteristics and composition, which make them highly susceptible to rapid deterioration. This research presents a transport model...

Full description

Autores:
Acevedo-Chedid, Jaime
Soto, Melissa Caro
Ospina-Mateus, Holman
Salas-Navarro, Katherinne
Sana, Shib Sankar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13418
Acceso en línea:
https://hdl.handle.net/11323/13418
https://repositorio.cuc.edu.co/
Palabra clave:
Cross-docking
Location problem
Perishable
Supply Chain
Time Windows
Vehicle Routing Problem
Rights
embargoedAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_bb570113fde99e25d8df2fca9d530479
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13418
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
title An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
spellingShingle An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
Cross-docking
Location problem
Perishable
Supply Chain
Time Windows
Vehicle Routing Problem
title_short An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
title_full An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
title_fullStr An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
title_full_unstemmed An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
title_sort An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
dc.creator.fl_str_mv Acevedo-Chedid, Jaime
Soto, Melissa Caro
Ospina-Mateus, Holman
Salas-Navarro, Katherinne
Sana, Shib Sankar
dc.contributor.author.none.fl_str_mv Acevedo-Chedid, Jaime
Soto, Melissa Caro
Ospina-Mateus, Holman
Salas-Navarro, Katherinne
Sana, Shib Sankar
dc.subject.proposal.eng.fl_str_mv Cross-docking
Location problem
Perishable
Supply Chain
Time Windows
Vehicle Routing Problem
topic Cross-docking
Location problem
Perishable
Supply Chain
Time Windows
Vehicle Routing Problem
description vThe effective distribution of perishable food items is a critical aspect of managing the food industry's supply chain, given their physical–chemical, biological characteristics and composition, which make them highly susceptible to rapid deterioration. This research presents a transport model incorporating a cross-dock system to efficiently deliver goods from production plants to markets. The model incorporates a vehicle routing model that considers time windows for pick-ups and deliveries, optimal cross-dock center locations, a heterogeneous vehicle fleet of limited capacity, and scheduling product collections, arrivals, and departures. The model is a mixed-integer non-linear optimization model that effectively minimizes logistics costs and environmental impacts by considering various parameters such as speed, waiting times, loading and unloading times, and costs associated with the entire operation. The findings demonstrate that the cross-dock structure is highly conducive to distributing perishable goods, achieved by minimizing collection and distribution operations, adhering to designated time windows, and efficiently allocating resources. The GAMS 23.6.5 software is used to program the model, employing various solution strategies, including experimental tests with scenarios, as well as the "posterior," "Pareto optimization," and "weighted sum" methods. The case study in Sincelejo (Sucre, Colombia) reported the best solution, representing 60% of logistics and 40% of environmental costs. The results show complete compliance with routes, no inventory generation, and the necessity of two inbounds and two outbound vehicles for collection from suppliers and delivery to retailers. This study presents an efficient model for managing the transportation of perishable goods, contributing to sustainable distribution activities, and environmental conservation in the food industry's supply chain.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12
dc.date.accessioned.none.fl_str_mv 2024-10-03T15:51:44Z
dc.date.available.none.fl_str_mv 2024-12
2024-10-03T15:51:44Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.citation.none.fl_str_mv Acevedo-Chedid, J., Soto, M.C., Ospina-Mateus, H. et al. An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods. Oper Manag Res 16, 1742–1765 (2023). https://doi.org/10.1007/s12063-023-00379-8
dc.identifier.issn.none.fl_str_mv 1936-9735
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13418
dc.identifier.doi.none.fl_str_mv 10.1007/s12063-023-00379-8
dc.identifier.eissn.none.fl_str_mv 1936-9743
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Acevedo-Chedid, J., Soto, M.C., Ospina-Mateus, H. et al. An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods. Oper Manag Res 16, 1742–1765 (2023). https://doi.org/10.1007/s12063-023-00379-8
1936-9735
10.1007/s12063-023-00379-8
1936-9743
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13418
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Operations Management Research
dc.relation.references.none.fl_str_mv Agi MA, Soni HN (2020) Joint pricing and inventory decisions for perishable products with age-, stock-, and price-dependent demand rate. J Oper Res Soc 71(1):85–99
Agrawal AK, Yadav S, Gupta AA, Pandey S (2022) A genetic algorithm model for optimizing vehicle routing problems with perishable products under time-window and quality requirements. Decis Anal J 5:100139
Agustina D, Lee C, Piplani R (2014) Vehicle scheduling and routing at a cross docking center for food supply chains. Int J Prod Econ 152:29–41
Ahkamiraad A, Wang Y (2018) Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows. Comput Ind Eng 119:76–84
Ahmadizar F, Zeynivand M, Arkat J (2015) Two-level vehicle routing with cross-docking in a three-echelon supply chain: A genetic algorithm approach. Appl Math Model 39(22):7065–7081
Ai TJ, Kachitvichyanukul V (2009) Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem. Comput Ind Eng 56(1):380–387
Alamatsaz K, Ahmadi A, Mirzapour Al-e-hashem SMJ (2022) A multiobjective model for the green capacitated location-routing problem considering drivers’ satisfaction and time window with uncertain demand. Environ Sci Pollut Res 29(4):5052–5071
Amorim P, Günther H-O, Almada-Lobo B (2012) Multiobjective integrated production and distribution planning of perishable products. Int J Prod Econ 138(1):89–101
Anbuudayasankar S, Ganesh K, Mohapatra S (2016) Models for practical routing problems in logistics. Springer
Apte UM, Viswanathan S (2000) Effective cross docking for improving distribution efficiencies. Int J Logist 3(3):291–302
Ashtineh H, Pishvaee MS (2019) Alternative fuel vehicle-routing problem: A life cycle analysis of transportation fuels. J Clean Prod 219:166–182
Azi N, Gendreau M, Potvin J-Y (2010) An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles. Eur J Oper Res 202(3):756–763
Baldacci R, Mingozzi A (2009) A unified exact method for solving different classes of vehicle routing problems. Math Program 120(2):347–380
Ballou RH, Rahardja H, Sakai N (2002) Selected country circuity factors for road travel distance estimation. Transp Res Part A Policy Pract 36(9):843–848
Baniamerian A, Bashiri M, Tavakkoli-Moghaddam R (2019) Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with cross-docking. Appl Soft Comput 75:441–460
Belhaiza S, Hansen P, Laporte G (2014) A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Comput Oper Res 52:269–281
Benjamin AM, Beasley JE (2010) Metaheuristics for the waste collection vehicle routing problem with time windows, driver rest period and multiple disposal facilities. Comput Oper Res 37(12):2270–2280
Benrqya Y (2019) Costs and benefits of using cross-docking in the retail supply chain: A case study of an FMCG company. Int J Retail Distribut Manag
Birim Ş (2016) Vehicle routing problem with cross docking: A simulated annealing approach. Procedia Soc Behav Sci 235:149–158
Brandão J (2009) A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem. Eur J Oper Res 195(3):716–728
Bravo Urria MI (2015) Modelo de programación matemática para el VRPPDTW multiobjetivo con flota heterogénea y propuesta de algoritmo evolutivo para su resolución
Bräysy O, Porkka PP, Dullaert W, Repoussis PP, Tarantilis CD (2009) A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time windows. Expert Syst Appl 36(4):8460–8475
Castellucci PB, Costa AM, Toledo F (2021) Network scheduling problem with cross-docking and loading constraints. Comput Oper Res 132
Chaudhary V, Kulshrestha R, Routroy S (2018). State-of-the-art literature review on inventory models for perishable products. J Adv Manag Res
Chen C. Qiu R, Hu X (2018) The location-routing problem with full truckloads in low-carbon supply chain network designing Math Probl Eng
Chen H-K, Hsueh C-F, Chang M-S (2009) Production scheduling and vehicle routing with time windows for perishable food products. Comput Oper Res 36(7):2311–2319
Chen P, Huang H-K, Dong X-Y (2010) Iterated variable neighborhood descent algorithm for the capacitated vehicle routing problem. Expert Syst Appl 37(2):1620–1627
Cóccola M, Méndez C, Zamarripa M, Espuña A (2012) Integrated production and distribution management with cross docking in supply chains. Comput Aided Chem Eng Elsevier 31:1050–1054
Cóccola M, Méndez CA, Dondo RG (2015) A branch-and-price approach to evaluate the role of cross-docking operations in consolidated supply chains. Comput Chem Eng 80:15–29
DECC D (2011) Guidelines to Defra/DECC's GHG conversion factors for company reporting. London: Department for Environment, Food and Rural Affairs and Department for Energy and Climate Change
Erdoğan S, Miller-Hooks E (2012) A green vehicle routing problem. Transp Res E Logist Transp Rev 48(1):100–114
Fachini RF, Armentano VA (2020) Logic-based Benders decomposition for the heterogeneous fixed fleet vehicle routing problem with time windows. Comput Ind Eng 148
Ghasemkhani A, Tavakkoli-Moghaddam R, Rahimi Y, Shahnejat-Bushehri S, Tavakkoli-Moghaddam H (2022) Integrated production-inventory-routing problem for multi-perishable products under uncertainty by meta-heuristic algorithms. Int J Prod Res 60(9):2766–2786
Ghoseiri K, Ghannadpour SF (2010) Multiobjective vehicle routing problem with time windows using goal programming and genetic algorithm. Appl Soft Comput 10(4):1096–1107
Golestani M, Moosavirad SH, Asadi Y, Biglari S (2021) A multiobjective green hub location problem with multi item-multi temperature joint distribution for perishable products in cold supply chain. Sustain Prod Consum 27:1183–1194
Gómez J, Baca A (2014) Analisis de operaciones cross docking directas e indirectas en Colombia. Universidad Militar nueva Granada, Bogotá
Goodarzi AH, Zegordi SH (2016) A location-routing problem for cross-docking networks: A biogeography-based optimization algorithm. Comput Ind Eng 102:132–146
Govindan K, Jafarian A, Khodaverdi R, Devika K (2014) Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. Int J Prod Econ 152:9–28
Grangier P, Gendreau M, Lehuédé F, Rousseau L-M (2017) A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking. Comput Oper Res 84:116–126
Halloran A, Clement J, Kornum N, Bucatariu C, Magid J (2014) Addressing food waste reduction in Denmark. Food Policy 49:294–301
Hanchuan P, Ruifang W, Hao D, Feng Z (2013) The Research of logistics cost and influencing factors based on cross docking. Procedia Soc Behav Sci 96:1812–1817
Hasani-Goodarzi A, Tavakkoli-Moghaddam R (2012) Capacitated vehicle routing problem for multi-product cross-docking with split deliveries and pickups. Procedia Soc Behav Sci 62:1360–1365
Hasani Goodarzi A, Nahavandi N, Zegordi SH (2018) A multiobjective imperialist competitive algorithm for vehicle routing problem in cross-docking networks with time windows. J Ind Syst Eng 11(1):1–23
İlhan İ (2021) An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem. Swarm Evol Comput 64
Imran A, Salhi S, Wassan NA (2009) A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem. Eur J Oper Res 197(2):509–518
Kaboudani Y, Ghodsypour SH, Kia H, Shahmardan A (2020) Vehicle routing and scheduling in cross docks with forward and reverse logistics. Oper Res Int Journal 20(3):1589–1622
Kalenatic D, Bello CAL, Rodríguez LJG, Velasco FJR (2008) Localización de una plataforma de cross docking en el contexto de logística focalizada utilizando distancias euclidianas. Cienc Ing Neogranad 18(1):17–34
Kara I, Kara BY, Yetis MK (2007) Energy minimizing vehicle routing problem. Combinatorial Optimization and Applications: First International Conference, COCOA 2007, Xi’an, China, August 14–16, 2007. Proceedings 1, Springer
Kinnear E (1997) Is there any magic in cross-docking? Int J Supply Chain Manag 2(2):49–52
Konstantakopoulos GD, Gayialis SP, Kechagias EP (2022) Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification. Oper Res Int J 22(3):2033–2062
Kuo J-C, Chen M-C (2010) Developing an advanced multi-temperature joint distribution system for the food cold chain. Food Control 21(4):559–566
Kwon Y-J, Choi Y-J, Lee D-H (2013) Heterogeneous fixed fleet vehicle routing considering carbon emission. Transp Res Part D: Transp Environ 23:81–89
Lee YH, Jung JW, Lee KM (2006) Vehicle routing scheduling for cross-docking in the supply chain. Comput Ind Eng 51(2):247–256
Leggieri V, Haouari M (2017) A practical solution approach for the green vehicle routing problem. Transp Res E Logist Transp Rev 104:97–112
Lei H, Laporte G, Guo B (2011) The capacitated vehicle routing problem with stochastic demands and time windows. Comput Oper Res 38(12):1775–1783
Li X, Tian P, Leung SC (2010) Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm. Int J Prod Econ 125(1):137–145
Liang X, Wang N, Zhang M, Jiang B (2023) Bi-objective multi-period vehicle routing for perishable goods delivery considering customer satisfaction. Expert Syst Appl 220
Liao C-J, Lin Y, Shih SC (2010) Vehicle routing with cross-docking in the supply chain. Expert Syst Appl 37(10):6868–6873
Lin S-W, Lee Z-J, Ying K-C, Lee C-Y (2009) Applying hybrid meta-heuristics for capacitated vehicle routing problem. Expert Syst Appl 36(2):1505–1512
Maknoon Y, Laporte G (2017) Vehicle routing with cross-dock selection. Comput Oper Res 77:254–266
Marinakis Y, Marinaki M, Migdalas A (2019) A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows. Inf Sci 481:311–329
Masmoudi MA, Hosny M, Demir E, Genikomsakis KN, Cheikhrouhou N (2018) The dial-a-ride problem with electric vehicles and battery swapping stations. Transp Res E Logist Transp Rev 118:392–420
Medina LBR, La Rota ECG, Castro JAO (2011) Una revisión al estado del arte del problema de ruteo de vehículos: Evolución histórica y métodos de solución. Ingeniería 16(2):35–55
Minner S, Transchel S (2017) Order variability in perishable product supply chains. Eur J Oper Res 260(1):93–107
Mohtashami A (2015) A novel dynamic genetic algorithm-based method for vehicle scheduling in cross docking systems with frequent unloading operation. Comput Ind Eng 90:221–240
Montoya-Torres JR, Franco JL, Isaza SN, Jiménez HF, Herazo-Padilla N (2015) A literature review on the vehicle routing problem with multiple depots. Comput Ind Eng 79:115–129
Mousavi SM, Tavakkoli-Moghaddam R (2013) A hybrid simulated annealing algorithm for location and routing scheduling problems with cross-docking in the supply chain. J Manuf Syst 32(2):335–347
Mousavi SM, Vahdani B, Tavakkoli-Moghaddam R, Hashemi H (2014) Location of cross-docking centers and vehicle routing scheduling under uncertainty: a fuzzy possibilistic–stochastic programming model. Appl Math Model 38(7–8):2249–2264
Nguyen PK, Crainic TG, Toulouse M (2013) A tabu search for time-dependent multi-zone multi-trip vehicle routing problem with time windows. Eur J Oper Res 231(1):43–56
Onstein AT, Ektesaby M, Rezaei J, Tavasszy LA, van Damme DA (2020) Importance of factors driving firms’ decisions on spatial distribution structures. Int J Log Res Appl 23(1):24–43
Pan B, Zhang Z, Lim A (2021) Multi-trip time-dependent vehicle routing problem with time windows. Eur J Oper Res 291(1):218–231
Prescott‐Gagnon E, Desaulniers G, Rousseau LM (2009) A branch‐and‐price‐based large neighborhood search algorithm for the vehicle routing problem with time windows. Netw Int J 54(4):190–204
Psychas I-D, Marinaki M, Marinakis Y, Migdalas A (2017) Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems. Energy Syst 8(4):785–814
Qureshi AG, Taniguchi E, Yamada T (2010) Exact solution for the vehicle routing problem with semi soft time windows and its application. Procedia Soc Behav Sci 2(3):5931–5943
Ramudhin A, Chaabane A, Kharoune M, Paquet M (2008) Carbon market sensitive green supply chain network design. 2008 IEEE international conference on industrial engineering and engineering management, IEEE
Redlingshöfer B, Coudurier B, Georget M (2017) Quantifying food loss during primary production and processing in France. J Clean Prod 164:703–714
Rezaei S, Kheirkhah A (2018) A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations. Comput Math Organ Theory 24:51–98
Ross A, Jayaraman V (2008) An evaluation of new heuristics for the location of cross-dock distribution centers in supply chain network design. Comput Ind Eng 55(1):64–79
Santos FA, Mateus GR, da Cunha AS (2011) A branch-and-price algorithm for a vehicle routing problem with cross-docking. Electronic Notes in Discrete Mathematics 37:249–254
Shahabi-Shahmiri R, Asian S, Tavakkoli-Moghaddam R, Mousavi SM, Rajabzadeh M (2021) A routing and scheduling problem for cross-docking networks with perishable products, heterogeneous vehicles and split delivery. Comput Ind Eng 157
Song M-X, Li J-Q, Han Y-Q, Han Y-Y, Liu L-L, Sun Q (2020) Metaheuristics for solving the vehicle routing problem with the time windows and energy consumption in cold chain logistics. Appl Soft Comput 95
Soysal M, Bloemhof-Ruwaard JM, Bektaş T (2015) The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations. Int J Prod Econ 164:366–378
Srivastava G, Singh A, Mallipeddi R (2021) NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows. Expert Syst Appl 176
Suzuki Y (2011) A new truck-routing approach for reducing fuel consumption and pollutants emission. Transp Res Part D: Transp Environ 16(1):73–77
Theophilus O, Dulebenets MA, Pasha J, Lau Y-Y, Fathollahi-Fard AM, Mazaheri A (2021) Truck scheduling optimization at a cold-chain cross-docking terminal with product perishability considerations. Comput Ind Eng 156
Van Belle J, Valckenaers P, Cattrysse D (2012) Cross-docking: State of the art. Omega 40(6):827–846
Vasiljevic D, Stepanovic M, Manojlovic O (2013) Cross-docking implementation in distribution of food products. Eкoнoмикa Пoљoпpивpeдe 60(1):91–101
Vidal T, Crainic TG, Gendreau M, Prins C (2014) Implicit depot assignments and rotations in vehicle routing heuristics. Eur J Oper Res 237(1):15–28
Vincent FY, Jewpanya P, Redi AP, Tsao Y-C (2021) Adaptive neighborhood simulated annealing for the heterogeneous fleet vehicle routing problem with multiple cross-docks. Comput Oper Res 129
Wang J, Jagannathan AKR, Zuo X, Murray CC (2017) Two-layer simulated annealing and tabu search heuristics for a vehicle routing problem with cross docks and split deliveries. Comput Ind Eng 112:84–98
Wang Y, Assogba K, Liu Y, Ma X, Xu M, Wang Y (2018) Two-echelon location-routing optimization with time windows based on customer clustering. Expert Syst Appl 104:244–260
Wang Y, Li Q, Guan X, Xu M, Liu Y, Wang H (2021) Two-echelon collaborative multi-depot multi-period vehicle routing problem. Expert Syst Appl 167
Wang Y, Ran L, Guan X, Fan J, Sun Y, Wang H (2022) Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups. Expert Syst Appl 197
Xiao Y, Zhao Q, Kaku I, Xu Y (2012) Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput Oper Res 39(7):1419–1431
Yang S, Ning L, Tong LC, Shang P (2022) Integrated electric logistics vehicle recharging station location–routing problem with mixed backhauls and recharging strategies. Transportation Research Part C: Emerging Technologies 140
Yang Y, Chi H, Tang O, Zhou W, Fan T (2019) Cross perishable effect on optimal inventory preservation control. Eur J Oper Res 276(3):998–1012
Zhao P, Luo W, Han X (2019) Time-dependent and bi-objective vehicle routing problem with time windows. Advances in Production Engineering & Management 14(2):201–212
Zhen L, Ma C, Wang K, Xiao L, Zhang W (2020) Multi-depot multi-trip vehicle routing problem with time windows and release dates. Transp Res E Logist Transp Rev 135:101866
dc.relation.citationendpage.none.fl_str_mv 1765
dc.relation.citationstartpage.none.fl_str_mv 1742
dc.relation.citationissue.none.fl_str_mv 4
dc.relation.citationvolume.none.fl_str_mv 16
dc.rights.eng.fl_str_mv © 2024 Springer Nature
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2024 Springer Nature
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 9 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer New York
dc.publisher.place.none.fl_str_mv United States
publisher.none.fl_str_mv Springer New York
dc.source.none.fl_str_mv https://link.springer.com/article/10.1007/s12063-023-00379-8
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/81937fbb-4c2b-409c-87cd-6bd62a7835b7/download
https://repositorio.cuc.edu.co/bitstreams/176ee976-dfd2-4f50-a7e4-3de5e691f11d/download
https://repositorio.cuc.edu.co/bitstreams/2e6e4cad-e2e3-4f83-8b25-24569c81af0b/download
https://repositorio.cuc.edu.co/bitstreams/4965b89a-7e97-4bb7-af0a-5196796daee7/download
bitstream.checksum.fl_str_mv 7eabb4cbd605a7f4f7a6f9a592fbd3b5
73a5432e0b76442b22b026844140d683
3f84fdd7294cac1ea6d5113958cf1436
f3d435ab6823adfa168dd14ce274a0cc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166660408737792
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2024 Springer Naturehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAcevedo-Chedid, JaimeSoto, Melissa CaroOspina-Mateus, HolmanSalas-Navarro, KatherinneSana, Shib Sankar2024-10-03T15:51:44Z2024-122024-10-03T15:51:44Z2023-12Acevedo-Chedid, J., Soto, M.C., Ospina-Mateus, H. et al. An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods. Oper Manag Res 16, 1742–1765 (2023). https://doi.org/10.1007/s12063-023-00379-81936-9735https://hdl.handle.net/11323/1341810.1007/s12063-023-00379-81936-9743Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/vThe effective distribution of perishable food items is a critical aspect of managing the food industry's supply chain, given their physical–chemical, biological characteristics and composition, which make them highly susceptible to rapid deterioration. This research presents a transport model incorporating a cross-dock system to efficiently deliver goods from production plants to markets. The model incorporates a vehicle routing model that considers time windows for pick-ups and deliveries, optimal cross-dock center locations, a heterogeneous vehicle fleet of limited capacity, and scheduling product collections, arrivals, and departures. The model is a mixed-integer non-linear optimization model that effectively minimizes logistics costs and environmental impacts by considering various parameters such as speed, waiting times, loading and unloading times, and costs associated with the entire operation. The findings demonstrate that the cross-dock structure is highly conducive to distributing perishable goods, achieved by minimizing collection and distribution operations, adhering to designated time windows, and efficiently allocating resources. The GAMS 23.6.5 software is used to program the model, employing various solution strategies, including experimental tests with scenarios, as well as the "posterior," "Pareto optimization," and "weighted sum" methods. The case study in Sincelejo (Sucre, Colombia) reported the best solution, representing 60% of logistics and 40% of environmental costs. The results show complete compliance with routes, no inventory generation, and the necessity of two inbounds and two outbound vehicles for collection from suppliers and delivery to retailers. This study presents an efficient model for managing the transportation of perishable goods, contributing to sustainable distribution activities, and environmental conservation in the food industry's supply chain.9 páginasapplication/pdfengSpringer New YorkUnited Stateshttps://link.springer.com/article/10.1007/s12063-023-00379-8An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foodsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceOperations Management ResearchAgi MA, Soni HN (2020) Joint pricing and inventory decisions for perishable products with age-, stock-, and price-dependent demand rate. J Oper Res Soc 71(1):85–99Agrawal AK, Yadav S, Gupta AA, Pandey S (2022) A genetic algorithm model for optimizing vehicle routing problems with perishable products under time-window and quality requirements. Decis Anal J 5:100139Agustina D, Lee C, Piplani R (2014) Vehicle scheduling and routing at a cross docking center for food supply chains. Int J Prod Econ 152:29–41Ahkamiraad A, Wang Y (2018) Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows. Comput Ind Eng 119:76–84Ahmadizar F, Zeynivand M, Arkat J (2015) Two-level vehicle routing with cross-docking in a three-echelon supply chain: A genetic algorithm approach. Appl Math Model 39(22):7065–7081Ai TJ, Kachitvichyanukul V (2009) Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem. Comput Ind Eng 56(1):380–387Alamatsaz K, Ahmadi A, Mirzapour Al-e-hashem SMJ (2022) A multiobjective model for the green capacitated location-routing problem considering drivers’ satisfaction and time window with uncertain demand. Environ Sci Pollut Res 29(4):5052–5071Amorim P, Günther H-O, Almada-Lobo B (2012) Multiobjective integrated production and distribution planning of perishable products. Int J Prod Econ 138(1):89–101Anbuudayasankar S, Ganesh K, Mohapatra S (2016) Models for practical routing problems in logistics. SpringerApte UM, Viswanathan S (2000) Effective cross docking for improving distribution efficiencies. Int J Logist 3(3):291–302Ashtineh H, Pishvaee MS (2019) Alternative fuel vehicle-routing problem: A life cycle analysis of transportation fuels. J Clean Prod 219:166–182Azi N, Gendreau M, Potvin J-Y (2010) An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles. Eur J Oper Res 202(3):756–763Baldacci R, Mingozzi A (2009) A unified exact method for solving different classes of vehicle routing problems. Math Program 120(2):347–380Ballou RH, Rahardja H, Sakai N (2002) Selected country circuity factors for road travel distance estimation. Transp Res Part A Policy Pract 36(9):843–848Baniamerian A, Bashiri M, Tavakkoli-Moghaddam R (2019) Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with cross-docking. Appl Soft Comput 75:441–460Belhaiza S, Hansen P, Laporte G (2014) A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Comput Oper Res 52:269–281Benjamin AM, Beasley JE (2010) Metaheuristics for the waste collection vehicle routing problem with time windows, driver rest period and multiple disposal facilities. Comput Oper Res 37(12):2270–2280Benrqya Y (2019) Costs and benefits of using cross-docking in the retail supply chain: A case study of an FMCG company. Int J Retail Distribut ManagBirim Ş (2016) Vehicle routing problem with cross docking: A simulated annealing approach. Procedia Soc Behav Sci 235:149–158Brandão J (2009) A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem. Eur J Oper Res 195(3):716–728Bravo Urria MI (2015) Modelo de programación matemática para el VRPPDTW multiobjetivo con flota heterogénea y propuesta de algoritmo evolutivo para su resoluciónBräysy O, Porkka PP, Dullaert W, Repoussis PP, Tarantilis CD (2009) A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time windows. Expert Syst Appl 36(4):8460–8475Castellucci PB, Costa AM, Toledo F (2021) Network scheduling problem with cross-docking and loading constraints. Comput Oper Res 132Chaudhary V, Kulshrestha R, Routroy S (2018). State-of-the-art literature review on inventory models for perishable products. J Adv Manag ResChen C. Qiu R, Hu X (2018) The location-routing problem with full truckloads in low-carbon supply chain network designing Math Probl EngChen H-K, Hsueh C-F, Chang M-S (2009) Production scheduling and vehicle routing with time windows for perishable food products. Comput Oper Res 36(7):2311–2319Chen P, Huang H-K, Dong X-Y (2010) Iterated variable neighborhood descent algorithm for the capacitated vehicle routing problem. Expert Syst Appl 37(2):1620–1627Cóccola M, Méndez C, Zamarripa M, Espuña A (2012) Integrated production and distribution management with cross docking in supply chains. Comput Aided Chem Eng Elsevier 31:1050–1054Cóccola M, Méndez CA, Dondo RG (2015) A branch-and-price approach to evaluate the role of cross-docking operations in consolidated supply chains. Comput Chem Eng 80:15–29DECC D (2011) Guidelines to Defra/DECC's GHG conversion factors for company reporting. London: Department for Environment, Food and Rural Affairs and Department for Energy and Climate ChangeErdoğan S, Miller-Hooks E (2012) A green vehicle routing problem. Transp Res E Logist Transp Rev 48(1):100–114Fachini RF, Armentano VA (2020) Logic-based Benders decomposition for the heterogeneous fixed fleet vehicle routing problem with time windows. Comput Ind Eng 148Ghasemkhani A, Tavakkoli-Moghaddam R, Rahimi Y, Shahnejat-Bushehri S, Tavakkoli-Moghaddam H (2022) Integrated production-inventory-routing problem for multi-perishable products under uncertainty by meta-heuristic algorithms. Int J Prod Res 60(9):2766–2786Ghoseiri K, Ghannadpour SF (2010) Multiobjective vehicle routing problem with time windows using goal programming and genetic algorithm. Appl Soft Comput 10(4):1096–1107Golestani M, Moosavirad SH, Asadi Y, Biglari S (2021) A multiobjective green hub location problem with multi item-multi temperature joint distribution for perishable products in cold supply chain. Sustain Prod Consum 27:1183–1194Gómez J, Baca A (2014) Analisis de operaciones cross docking directas e indirectas en Colombia. Universidad Militar nueva Granada, BogotáGoodarzi AH, Zegordi SH (2016) A location-routing problem for cross-docking networks: A biogeography-based optimization algorithm. Comput Ind Eng 102:132–146Govindan K, Jafarian A, Khodaverdi R, Devika K (2014) Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. Int J Prod Econ 152:9–28Grangier P, Gendreau M, Lehuédé F, Rousseau L-M (2017) A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking. Comput Oper Res 84:116–126Halloran A, Clement J, Kornum N, Bucatariu C, Magid J (2014) Addressing food waste reduction in Denmark. Food Policy 49:294–301Hanchuan P, Ruifang W, Hao D, Feng Z (2013) The Research of logistics cost and influencing factors based on cross docking. Procedia Soc Behav Sci 96:1812–1817Hasani-Goodarzi A, Tavakkoli-Moghaddam R (2012) Capacitated vehicle routing problem for multi-product cross-docking with split deliveries and pickups. Procedia Soc Behav Sci 62:1360–1365Hasani Goodarzi A, Nahavandi N, Zegordi SH (2018) A multiobjective imperialist competitive algorithm for vehicle routing problem in cross-docking networks with time windows. J Ind Syst Eng 11(1):1–23İlhan İ (2021) An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem. Swarm Evol Comput 64Imran A, Salhi S, Wassan NA (2009) A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem. Eur J Oper Res 197(2):509–518Kaboudani Y, Ghodsypour SH, Kia H, Shahmardan A (2020) Vehicle routing and scheduling in cross docks with forward and reverse logistics. Oper Res Int Journal 20(3):1589–1622Kalenatic D, Bello CAL, Rodríguez LJG, Velasco FJR (2008) Localización de una plataforma de cross docking en el contexto de logística focalizada utilizando distancias euclidianas. Cienc Ing Neogranad 18(1):17–34Kara I, Kara BY, Yetis MK (2007) Energy minimizing vehicle routing problem. Combinatorial Optimization and Applications: First International Conference, COCOA 2007, Xi’an, China, August 14–16, 2007. Proceedings 1, SpringerKinnear E (1997) Is there any magic in cross-docking? Int J Supply Chain Manag 2(2):49–52Konstantakopoulos GD, Gayialis SP, Kechagias EP (2022) Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification. Oper Res Int J 22(3):2033–2062Kuo J-C, Chen M-C (2010) Developing an advanced multi-temperature joint distribution system for the food cold chain. Food Control 21(4):559–566Kwon Y-J, Choi Y-J, Lee D-H (2013) Heterogeneous fixed fleet vehicle routing considering carbon emission. Transp Res Part D: Transp Environ 23:81–89Lee YH, Jung JW, Lee KM (2006) Vehicle routing scheduling for cross-docking in the supply chain. Comput Ind Eng 51(2):247–256Leggieri V, Haouari M (2017) A practical solution approach for the green vehicle routing problem. Transp Res E Logist Transp Rev 104:97–112Lei H, Laporte G, Guo B (2011) The capacitated vehicle routing problem with stochastic demands and time windows. Comput Oper Res 38(12):1775–1783Li X, Tian P, Leung SC (2010) Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm. Int J Prod Econ 125(1):137–145Liang X, Wang N, Zhang M, Jiang B (2023) Bi-objective multi-period vehicle routing for perishable goods delivery considering customer satisfaction. Expert Syst Appl 220Liao C-J, Lin Y, Shih SC (2010) Vehicle routing with cross-docking in the supply chain. Expert Syst Appl 37(10):6868–6873Lin S-W, Lee Z-J, Ying K-C, Lee C-Y (2009) Applying hybrid meta-heuristics for capacitated vehicle routing problem. Expert Syst Appl 36(2):1505–1512Maknoon Y, Laporte G (2017) Vehicle routing with cross-dock selection. Comput Oper Res 77:254–266Marinakis Y, Marinaki M, Migdalas A (2019) A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows. Inf Sci 481:311–329Masmoudi MA, Hosny M, Demir E, Genikomsakis KN, Cheikhrouhou N (2018) The dial-a-ride problem with electric vehicles and battery swapping stations. Transp Res E Logist Transp Rev 118:392–420Medina LBR, La Rota ECG, Castro JAO (2011) Una revisión al estado del arte del problema de ruteo de vehículos: Evolución histórica y métodos de solución. Ingeniería 16(2):35–55Minner S, Transchel S (2017) Order variability in perishable product supply chains. Eur J Oper Res 260(1):93–107Mohtashami A (2015) A novel dynamic genetic algorithm-based method for vehicle scheduling in cross docking systems with frequent unloading operation. Comput Ind Eng 90:221–240Montoya-Torres JR, Franco JL, Isaza SN, Jiménez HF, Herazo-Padilla N (2015) A literature review on the vehicle routing problem with multiple depots. Comput Ind Eng 79:115–129Mousavi SM, Tavakkoli-Moghaddam R (2013) A hybrid simulated annealing algorithm for location and routing scheduling problems with cross-docking in the supply chain. J Manuf Syst 32(2):335–347Mousavi SM, Vahdani B, Tavakkoli-Moghaddam R, Hashemi H (2014) Location of cross-docking centers and vehicle routing scheduling under uncertainty: a fuzzy possibilistic–stochastic programming model. Appl Math Model 38(7–8):2249–2264Nguyen PK, Crainic TG, Toulouse M (2013) A tabu search for time-dependent multi-zone multi-trip vehicle routing problem with time windows. Eur J Oper Res 231(1):43–56Onstein AT, Ektesaby M, Rezaei J, Tavasszy LA, van Damme DA (2020) Importance of factors driving firms’ decisions on spatial distribution structures. Int J Log Res Appl 23(1):24–43Pan B, Zhang Z, Lim A (2021) Multi-trip time-dependent vehicle routing problem with time windows. Eur J Oper Res 291(1):218–231Prescott‐Gagnon E, Desaulniers G, Rousseau LM (2009) A branch‐and‐price‐based large neighborhood search algorithm for the vehicle routing problem with time windows. Netw Int J 54(4):190–204Psychas I-D, Marinaki M, Marinakis Y, Migdalas A (2017) Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems. Energy Syst 8(4):785–814Qureshi AG, Taniguchi E, Yamada T (2010) Exact solution for the vehicle routing problem with semi soft time windows and its application. Procedia Soc Behav Sci 2(3):5931–5943Ramudhin A, Chaabane A, Kharoune M, Paquet M (2008) Carbon market sensitive green supply chain network design. 2008 IEEE international conference on industrial engineering and engineering management, IEEERedlingshöfer B, Coudurier B, Georget M (2017) Quantifying food loss during primary production and processing in France. J Clean Prod 164:703–714Rezaei S, Kheirkhah A (2018) A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations. Comput Math Organ Theory 24:51–98Ross A, Jayaraman V (2008) An evaluation of new heuristics for the location of cross-dock distribution centers in supply chain network design. Comput Ind Eng 55(1):64–79Santos FA, Mateus GR, da Cunha AS (2011) A branch-and-price algorithm for a vehicle routing problem with cross-docking. Electronic Notes in Discrete Mathematics 37:249–254Shahabi-Shahmiri R, Asian S, Tavakkoli-Moghaddam R, Mousavi SM, Rajabzadeh M (2021) A routing and scheduling problem for cross-docking networks with perishable products, heterogeneous vehicles and split delivery. Comput Ind Eng 157Song M-X, Li J-Q, Han Y-Q, Han Y-Y, Liu L-L, Sun Q (2020) Metaheuristics for solving the vehicle routing problem with the time windows and energy consumption in cold chain logistics. Appl Soft Comput 95Soysal M, Bloemhof-Ruwaard JM, Bektaş T (2015) The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations. Int J Prod Econ 164:366–378Srivastava G, Singh A, Mallipeddi R (2021) NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows. Expert Syst Appl 176Suzuki Y (2011) A new truck-routing approach for reducing fuel consumption and pollutants emission. Transp Res Part D: Transp Environ 16(1):73–77Theophilus O, Dulebenets MA, Pasha J, Lau Y-Y, Fathollahi-Fard AM, Mazaheri A (2021) Truck scheduling optimization at a cold-chain cross-docking terminal with product perishability considerations. Comput Ind Eng 156Van Belle J, Valckenaers P, Cattrysse D (2012) Cross-docking: State of the art. Omega 40(6):827–846Vasiljevic D, Stepanovic M, Manojlovic O (2013) Cross-docking implementation in distribution of food products. Eкoнoмикa Пoљoпpивpeдe 60(1):91–101Vidal T, Crainic TG, Gendreau M, Prins C (2014) Implicit depot assignments and rotations in vehicle routing heuristics. Eur J Oper Res 237(1):15–28Vincent FY, Jewpanya P, Redi AP, Tsao Y-C (2021) Adaptive neighborhood simulated annealing for the heterogeneous fleet vehicle routing problem with multiple cross-docks. Comput Oper Res 129Wang J, Jagannathan AKR, Zuo X, Murray CC (2017) Two-layer simulated annealing and tabu search heuristics for a vehicle routing problem with cross docks and split deliveries. Comput Ind Eng 112:84–98Wang Y, Assogba K, Liu Y, Ma X, Xu M, Wang Y (2018) Two-echelon location-routing optimization with time windows based on customer clustering. Expert Syst Appl 104:244–260Wang Y, Li Q, Guan X, Xu M, Liu Y, Wang H (2021) Two-echelon collaborative multi-depot multi-period vehicle routing problem. Expert Syst Appl 167Wang Y, Ran L, Guan X, Fan J, Sun Y, Wang H (2022) Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups. Expert Syst Appl 197Xiao Y, Zhao Q, Kaku I, Xu Y (2012) Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput Oper Res 39(7):1419–1431Yang S, Ning L, Tong LC, Shang P (2022) Integrated electric logistics vehicle recharging station location–routing problem with mixed backhauls and recharging strategies. Transportation Research Part C: Emerging Technologies 140Yang Y, Chi H, Tang O, Zhou W, Fan T (2019) Cross perishable effect on optimal inventory preservation control. Eur J Oper Res 276(3):998–1012Zhao P, Luo W, Han X (2019) Time-dependent and bi-objective vehicle routing problem with time windows. Advances in Production Engineering & Management 14(2):201–212Zhen L, Ma C, Wang K, Xiao L, Zhang W (2020) Multi-depot multi-trip vehicle routing problem with time windows and release dates. Transp Res E Logist Transp Rev 135:10186617651742416Cross-dockingLocation problemPerishableSupply ChainTime WindowsVehicle Routing ProblemPublicationORIGINALAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdfAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdfapplication/pdf300160https://repositorio.cuc.edu.co/bitstreams/81937fbb-4c2b-409c-87cd-6bd62a7835b7/download7eabb4cbd605a7f4f7a6f9a592fbd3b5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/176ee976-dfd2-4f50-a7e4-3de5e691f11d/download73a5432e0b76442b22b026844140d683MD52TEXTAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.txtAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.txtExtracted texttext/plain22421https://repositorio.cuc.edu.co/bitstreams/2e6e4cad-e2e3-4f83-8b25-24569c81af0b/download3f84fdd7294cac1ea6d5113958cf1436MD53THUMBNAILAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.jpgAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.jpgGenerated Thumbnailimage/jpeg16291https://repositorio.cuc.edu.co/bitstreams/4965b89a-7e97-4bb7-af0a-5196796daee7/downloadf3d435ab6823adfa168dd14ce274a0ccMD5411323/13418oai:repositorio.cuc.edu.co:11323/134182024-10-04 03:00:54.07https://creativecommons.org/licenses/by/4.0/© 2024 Springer Natureopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K