Algorithm Integration Behavior for Discovering Group Membership Rules
Information exploitation processes use different data mining algorithms for obtaining knowledge patterns from data obtained on the problem domain. One of the assumptions when working with these algorithms is that the complexity of the membership domain of the cases they use does not affect the quali...
- Autores:
-
silva d, jesus g
Rondón Rodriguez, Carlos Andres
Ospino Abuabara, Cesar
León Castro, Nadia Angélica Gisela
Perez Coronell, Leidy
Hernandez-P, Hugo
REDONDO BILBAO, OSMAN ENRIQUE
Cabrera, Danelys
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5577
- Acceso en línea:
- https://hdl.handle.net/11323/5577
https://repositorio.cuc.edu.co/
- Palabra clave:
- Information exploitation engineering
Information exploitation process
Complexity of domains
Clustering and induction algorithm performance
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_b59f3f6b54af920b82406ab85aca2647 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5577 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Algorithm Integration Behavior for Discovering Group Membership Rules |
title |
Algorithm Integration Behavior for Discovering Group Membership Rules |
spellingShingle |
Algorithm Integration Behavior for Discovering Group Membership Rules Information exploitation engineering Information exploitation process Complexity of domains Clustering and induction algorithm performance |
title_short |
Algorithm Integration Behavior for Discovering Group Membership Rules |
title_full |
Algorithm Integration Behavior for Discovering Group Membership Rules |
title_fullStr |
Algorithm Integration Behavior for Discovering Group Membership Rules |
title_full_unstemmed |
Algorithm Integration Behavior for Discovering Group Membership Rules |
title_sort |
Algorithm Integration Behavior for Discovering Group Membership Rules |
dc.creator.fl_str_mv |
silva d, jesus g Rondón Rodriguez, Carlos Andres Ospino Abuabara, Cesar León Castro, Nadia Angélica Gisela Perez Coronell, Leidy Hernandez-P, Hugo REDONDO BILBAO, OSMAN ENRIQUE Cabrera, Danelys |
dc.contributor.author.spa.fl_str_mv |
silva d, jesus g Rondón Rodriguez, Carlos Andres Ospino Abuabara, Cesar León Castro, Nadia Angélica Gisela Perez Coronell, Leidy Hernandez-P, Hugo REDONDO BILBAO, OSMAN ENRIQUE Cabrera, Danelys |
dc.subject.spa.fl_str_mv |
Information exploitation engineering Information exploitation process Complexity of domains Clustering and induction algorithm performance |
topic |
Information exploitation engineering Information exploitation process Complexity of domains Clustering and induction algorithm performance |
description |
Information exploitation processes use different data mining algorithms for obtaining knowledge patterns from data obtained on the problem domain. One of the assumptions when working with these algorithms is that the complexity of the membership domain of the cases they use does not affect the quality of the obtained results. So, it is important to analyze the behavior of the information exploitation process through the discovery of group membership rules by using clustering and induction algorithms. This research characterizes the complexity of the domains in terms of the pieces of knowledge that describe them and information exploitation processes they seek to discover. The results of the experiments show that, in the case of the process for discovering group membership rules, the quality of the patterns differs depending on the algorithms used in the process and the complexity of the domains to which they are applied. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-05T21:18:13Z |
dc.date.available.none.fl_str_mv |
2019-11-05T21:18:13Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5577 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/5577 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a5c4cb4b-5656-4a4f-8fc8-194a442abd35/download https://repositorio.cuc.edu.co/bitstreams/a6a93474-88a7-4e5d-8b44-750a8391ef02/download https://repositorio.cuc.edu.co/bitstreams/1f708170-69d7-4c42-a738-1a6e328f9018/download https://repositorio.cuc.edu.co/bitstreams/b1220a7e-bc47-4af1-8d7e-716e25c8df63/download https://repositorio.cuc.edu.co/bitstreams/e2be61d6-f716-4af3-bc07-277e001f87c4/download |
bitstream.checksum.fl_str_mv |
db9e222f508b9a917a55c4af61b843b0 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 9c006f77b62820ae148b59335a0879a2 7ab458b4a6dae034994829467e0aab21 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166840396808192 |
spelling |
silva d, jesus gRondón Rodriguez, Carlos AndresOspino Abuabara, CesarLeón Castro, Nadia Angélica GiselaPerez Coronell, LeidyHernandez-P, HugoREDONDO BILBAO, OSMAN ENRIQUECabrera, Danelys2019-11-05T21:18:13Z2019-11-05T21:18:13Z2019https://hdl.handle.net/11323/5577Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Information exploitation processes use different data mining algorithms for obtaining knowledge patterns from data obtained on the problem domain. One of the assumptions when working with these algorithms is that the complexity of the membership domain of the cases they use does not affect the quality of the obtained results. So, it is important to analyze the behavior of the information exploitation process through the discovery of group membership rules by using clustering and induction algorithms. This research characterizes the complexity of the domains in terms of the pieces of knowledge that describe them and information exploitation processes they seek to discover. The results of the experiments show that, in the case of the process for discovering group membership rules, the quality of the patterns differs depending on the algorithms used in the process and the complexity of the domains to which they are applied.silva d, jesus g-will be generated-orcid-0000-0003-3555-9149-600Rondón Rodriguez, Carlos Andres-will be generated-orcid-0000-0002-9194-1185-600Ospino Abuabara, CesarLeón Castro, Nadia Angélica Gisela-will be generated-orcid-0000-0003-2513-9511-600Perez Coronell, Leidy-will be generated-orcid-0000-0001-5665-9910-600Hernandez-P, HugoREDONDO BILBAO, OSMAN ENRIQUE-will be generated-orcid-0000-0002-5477-0655-600Cabrera, Danelys-will be generated-orcid-0000-0002-9486-9764-600engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Information exploitation engineeringInformation exploitation processComplexity of domainsClustering and induction algorithm performanceAlgorithm Integration Behavior for Discovering Group Membership RulesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALAlgorithm Integration Behavior for Discovering Group Membership Rules.pdfAlgorithm Integration Behavior for Discovering Group Membership Rules.pdfapplication/pdf70279https://repositorio.cuc.edu.co/bitstreams/a5c4cb4b-5656-4a4f-8fc8-194a442abd35/downloaddb9e222f508b9a917a55c4af61b843b0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a6a93474-88a7-4e5d-8b44-750a8391ef02/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/1f708170-69d7-4c42-a738-1a6e328f9018/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAlgorithm Integration Behavior for Discovering Group Membership Rules.pdf.jpgAlgorithm Integration Behavior for Discovering Group Membership Rules.pdf.jpgimage/jpeg40916https://repositorio.cuc.edu.co/bitstreams/b1220a7e-bc47-4af1-8d7e-716e25c8df63/download9c006f77b62820ae148b59335a0879a2MD55TEXTAlgorithm Integration Behavior for Discovering Group Membership Rules.pdf.txtAlgorithm Integration Behavior for Discovering Group Membership Rules.pdf.txttext/plain1362https://repositorio.cuc.edu.co/bitstreams/e2be61d6-f716-4af3-bc07-277e001f87c4/download7ab458b4a6dae034994829467e0aab21MD5611323/5577oai:repositorio.cuc.edu.co:11323/55772024-09-17 14:16:41.504http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |