Algorithm Integration Behavior for Discovering Group Membership Rules

Information exploitation processes use different data mining algorithms for obtaining knowledge patterns from data obtained on the problem domain. One of the assumptions when working with these algorithms is that the complexity of the membership domain of the cases they use does not affect the quali...

Full description

Autores:
silva d, jesus g
Rondón Rodriguez, Carlos Andres
Ospino Abuabara, Cesar
León Castro, Nadia Angélica Gisela
Perez Coronell, Leidy
Hernandez-P, Hugo
REDONDO BILBAO, OSMAN ENRIQUE
Cabrera, Danelys
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5577
Acceso en línea:
https://hdl.handle.net/11323/5577
https://repositorio.cuc.edu.co/
Palabra clave:
Information exploitation engineering
Information exploitation process
Complexity of domains
Clustering and induction algorithm performance
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_b59f3f6b54af920b82406ab85aca2647
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5577
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Algorithm Integration Behavior for Discovering Group Membership Rules
title Algorithm Integration Behavior for Discovering Group Membership Rules
spellingShingle Algorithm Integration Behavior for Discovering Group Membership Rules
Information exploitation engineering
Information exploitation process
Complexity of domains
Clustering and induction algorithm performance
title_short Algorithm Integration Behavior for Discovering Group Membership Rules
title_full Algorithm Integration Behavior for Discovering Group Membership Rules
title_fullStr Algorithm Integration Behavior for Discovering Group Membership Rules
title_full_unstemmed Algorithm Integration Behavior for Discovering Group Membership Rules
title_sort Algorithm Integration Behavior for Discovering Group Membership Rules
dc.creator.fl_str_mv silva d, jesus g
Rondón Rodriguez, Carlos Andres
Ospino Abuabara, Cesar
León Castro, Nadia Angélica Gisela
Perez Coronell, Leidy
Hernandez-P, Hugo
REDONDO BILBAO, OSMAN ENRIQUE
Cabrera, Danelys
dc.contributor.author.spa.fl_str_mv silva d, jesus g
Rondón Rodriguez, Carlos Andres
Ospino Abuabara, Cesar
León Castro, Nadia Angélica Gisela
Perez Coronell, Leidy
Hernandez-P, Hugo
REDONDO BILBAO, OSMAN ENRIQUE
Cabrera, Danelys
dc.subject.spa.fl_str_mv Information exploitation engineering
Information exploitation process
Complexity of domains
Clustering and induction algorithm performance
topic Information exploitation engineering
Information exploitation process
Complexity of domains
Clustering and induction algorithm performance
description Information exploitation processes use different data mining algorithms for obtaining knowledge patterns from data obtained on the problem domain. One of the assumptions when working with these algorithms is that the complexity of the membership domain of the cases they use does not affect the quality of the obtained results. So, it is important to analyze the behavior of the information exploitation process through the discovery of group membership rules by using clustering and induction algorithms. This research characterizes the complexity of the domains in terms of the pieces of knowledge that describe them and information exploitation processes they seek to discover. The results of the experiments show that, in the case of the process for discovering group membership rules, the quality of the patterns differs depending on the algorithms used in the process and the complexity of the domains to which they are applied.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-05T21:18:13Z
dc.date.available.none.fl_str_mv 2019-11-05T21:18:13Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5577
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/5577
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a5c4cb4b-5656-4a4f-8fc8-194a442abd35/download
https://repositorio.cuc.edu.co/bitstreams/a6a93474-88a7-4e5d-8b44-750a8391ef02/download
https://repositorio.cuc.edu.co/bitstreams/1f708170-69d7-4c42-a738-1a6e328f9018/download
https://repositorio.cuc.edu.co/bitstreams/b1220a7e-bc47-4af1-8d7e-716e25c8df63/download
https://repositorio.cuc.edu.co/bitstreams/e2be61d6-f716-4af3-bc07-277e001f87c4/download
bitstream.checksum.fl_str_mv db9e222f508b9a917a55c4af61b843b0
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
9c006f77b62820ae148b59335a0879a2
7ab458b4a6dae034994829467e0aab21
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166840396808192
spelling silva d, jesus gRondón Rodriguez, Carlos AndresOspino Abuabara, CesarLeón Castro, Nadia Angélica GiselaPerez Coronell, LeidyHernandez-P, HugoREDONDO BILBAO, OSMAN ENRIQUECabrera, Danelys2019-11-05T21:18:13Z2019-11-05T21:18:13Z2019https://hdl.handle.net/11323/5577Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Information exploitation processes use different data mining algorithms for obtaining knowledge patterns from data obtained on the problem domain. One of the assumptions when working with these algorithms is that the complexity of the membership domain of the cases they use does not affect the quality of the obtained results. So, it is important to analyze the behavior of the information exploitation process through the discovery of group membership rules by using clustering and induction algorithms. This research characterizes the complexity of the domains in terms of the pieces of knowledge that describe them and information exploitation processes they seek to discover. The results of the experiments show that, in the case of the process for discovering group membership rules, the quality of the patterns differs depending on the algorithms used in the process and the complexity of the domains to which they are applied.silva d, jesus g-will be generated-orcid-0000-0003-3555-9149-600Rondón Rodriguez, Carlos Andres-will be generated-orcid-0000-0002-9194-1185-600Ospino Abuabara, CesarLeón Castro, Nadia Angélica Gisela-will be generated-orcid-0000-0003-2513-9511-600Perez Coronell, Leidy-will be generated-orcid-0000-0001-5665-9910-600Hernandez-P, HugoREDONDO BILBAO, OSMAN ENRIQUE-will be generated-orcid-0000-0002-5477-0655-600Cabrera, Danelys-will be generated-orcid-0000-0002-9486-9764-600engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Information exploitation engineeringInformation exploitation processComplexity of domainsClustering and induction algorithm performanceAlgorithm Integration Behavior for Discovering Group Membership RulesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALAlgorithm Integration Behavior for Discovering Group Membership Rules.pdfAlgorithm Integration Behavior for Discovering Group Membership Rules.pdfapplication/pdf70279https://repositorio.cuc.edu.co/bitstreams/a5c4cb4b-5656-4a4f-8fc8-194a442abd35/downloaddb9e222f508b9a917a55c4af61b843b0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a6a93474-88a7-4e5d-8b44-750a8391ef02/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/1f708170-69d7-4c42-a738-1a6e328f9018/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAlgorithm Integration Behavior for Discovering Group Membership Rules.pdf.jpgAlgorithm Integration Behavior for Discovering Group Membership Rules.pdf.jpgimage/jpeg40916https://repositorio.cuc.edu.co/bitstreams/b1220a7e-bc47-4af1-8d7e-716e25c8df63/download9c006f77b62820ae148b59335a0879a2MD55TEXTAlgorithm Integration Behavior for Discovering Group Membership Rules.pdf.txtAlgorithm Integration Behavior for Discovering Group Membership Rules.pdf.txttext/plain1362https://repositorio.cuc.edu.co/bitstreams/e2be61d6-f716-4af3-bc07-277e001f87c4/download7ab458b4a6dae034994829467e0aab21MD5611323/5577oai:repositorio.cuc.edu.co:11323/55772024-09-17 14:16:41.504http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=