Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set
The Internet of Things is a system of networked devices that can gather, process, and share data through the Internet. The Internet of Things has vast potential to spread widely across various aspects of our lives. The educational process model is undergoing a transformation in which the learning re...
- Autores:
-
Shafiq, Aqsa
Naz, Sumera
Butt, Shariq Aziz
Piñeres Espitia, Gabriel
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13786
- Acceso en línea:
- https://hdl.handle.net/11323/13786
https://repositorio.cuc.edu.co/
- Palabra clave:
- AHP method
Internet of Things in enhancing learning environments
Probabilistic linguistic T-spherical fuzzy set
Weighted power average operator
Weighted power geometric operator
- Rights
- embargoedAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_ae8c38ffa631179f012562d98d2eb79b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13786 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set |
title |
Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set |
spellingShingle |
Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set AHP method Internet of Things in enhancing learning environments Probabilistic linguistic T-spherical fuzzy set Weighted power average operator Weighted power geometric operator |
title_short |
Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set |
title_full |
Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set |
title_fullStr |
Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set |
title_full_unstemmed |
Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set |
title_sort |
Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set |
dc.creator.fl_str_mv |
Shafiq, Aqsa Naz, Sumera Butt, Shariq Aziz Piñeres Espitia, Gabriel |
dc.contributor.author.none.fl_str_mv |
Shafiq, Aqsa Naz, Sumera Butt, Shariq Aziz Piñeres Espitia, Gabriel |
dc.subject.proposal.eng.fl_str_mv |
AHP method Internet of Things in enhancing learning environments Probabilistic linguistic T-spherical fuzzy set Weighted power average operator Weighted power geometric operator |
topic |
AHP method Internet of Things in enhancing learning environments Probabilistic linguistic T-spherical fuzzy set Weighted power average operator Weighted power geometric operator |
description |
The Internet of Things is a system of networked devices that can gather, process, and share data through the Internet. The Internet of Things has vast potential to spread widely across various aspects of our lives. The educational process model is undergoing a transformation in which the learning requirements for different students must be fulfilled in various ways. Our study presents a novel multi-attribute group decision-making strategy that examines how the Internet of Things can help to provide the best learning environment while also making the educational process more effective. The probabilistic linguistic T-spherical fuzzy set (PLT-SFS) is a modification of the T-spherical fuzzy set in which the degrees of membership, abstinence, and non-membership are characterized by probabilistic linguistic terms. Then two new aggregation operators, the PLT-SF weighted power average (PLT-SFWPA) operator and the PLT-SF weighted power geometric (PLT-SFWPG) operator, are introduced. After that, an approach to multi-attribute group decision-making based on the analytic hierarchy process is constructed in which the data are aggregated by the PLT-SFWPA operator. To illustrate the validity of the proposed approach, a case study of nine Internet of Things applications for enhancing learning environments is provided. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-22T12:08:36Z |
dc.date.available.none.fl_str_mv |
2024-11-22T12:08:36Z 2025-04-29 |
dc.date.issued.none.fl_str_mv |
2024-04-29 |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
draft |
dc.identifier.citation.none.fl_str_mv |
Shafiq, A., Naz, S., Butt, S.A. et al. Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set. J Supercomput 80, 17524–17574 (2024). https://doi.org/10.1007/s11227-024-06129-2. |
dc.identifier.issn.none.fl_str_mv |
0920-8542 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13786 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s11227-024-06129-2 |
dc.identifier.eissn.none.fl_str_mv |
1573-0484 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Shafiq, A., Naz, S., Butt, S.A. et al. Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set. J Supercomput 80, 17524–17574 (2024). https://doi.org/10.1007/s11227-024-06129-2. 0920-8542 10.1007/s11227-024-06129-2 1573-0484 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13786 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Journal of Supercomputing |
dc.relation.references.none.fl_str_mv |
Zadeh, L.A. Fuzzy sets (1965) Inf Control, 8 (3), pp. 338-353. Yager, R.R. Generalized orthopair fuzzy sets (2016) IEEE Trans Fuzzy Syst, 25 (5), pp. 1222-1230. Atanassov, K.T. Intuitionistic fuzzy sets (1986) Fuzzy Sets Syst, 20 (1), pp. 87-96. 937346 Yager, R.R. Pythagorean membership grades in multicriteria decision making (2013) IEEE Trans Fuzzy Syst, 22 (4), pp. 958-965. Herrera, F., Herrera-Viedma, E. Linguistic decision analysis: steps for solving decision problems under linguistic information (2000) Fuzzy Sets Syst, 115 (1), pp. 67-82. 1776304 Vashishth, T.K., Sharma, V., Sharma, K.K., Kumar, B., Chaudhary, S., Panwar, R. AIoT in education transforming learning environments and educational technology (2024) Artificial Intelligence of Things (AIoT) for Productivity and Organizational Transition, pp. 72-107. In:., https:// Meylani, R. Transforming education with the Internet of Things: a journey into smarter learning environments (2024) Int J Res Educ Sci, 10 (1), pp. 161-178 Dhir, S., Maheshwari, A., Sharma, S. Improving teaching-learning through smart classes using IoT (2024) Enhancing Education with Intelligent Systems and Data-Driven Instruction, pp. 107- 131. In:., https:// Yinka, K.R., Chidinma, A.E. (2024) The role and applications of Internet of Things (IoT) in higher education: uses and ways IoT affects students’ learning, 5, pp. 243-249. Nyaga, J.M. IoT-enhanced adaptive learning environments: personalized online education for the digital age (2023) Afr J Comput Inf Syst (AJCIS), 7, pp. 1-14. Tuǧrul, F. Evaluation of papers according to offset print quality: the intuitionistic fuzzy based multi criteria decision making mechanism (2024) Pigment Resin Technol, 53 (1), pp. 122-129 Jiafu, S., Wang, D., Xu, B., Zhang, F., Zhang, N. An interval-valued intuitionistic fuzzy group decision-making method for evaluating online knowledge payment products (2024) Appl Soft Comput, 150. Naz, S., Shafiq, A., Butt, S.A., Mazhar, S., Martinez, D.J., De la Hoz Franco, E. Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in Pakistan (2024) Heliyon, 10 (2024). Naz, S., Shafiq, A., Abbas, M. An approach for 2-tuple linguistic q-rung orthopair fuzzy MAGDM for the evaluation of historical sites with power Heronian mean (2024) J Supercomput, 80 (5), pp. 6435-6485. Naz, S., Akram, M., Shafiq, A., Akhtar, K. Optimal airport selection utilizing power muirhead mean based group decision model with 2-tuple linguistic q-rung orthopair fuzzy information (2024) Int J Mach Learn Cybern, 15 (2), pp. 303-340. Naz, S., Mehreen, R., Abbas, T., Piñeres-Espitia, G., Butt, S.A. An extended COPRAS method based on complex q-rung orthopair fuzzy 2-tuple linguistic Maclaurin symmetric mean aggregation operators (2024) J Ambient Intell Humanized Comput, 15 (4), pp. 2119-2142. Naz, S., Shafiq, A., Butt, S.A., Ijaz, R. A new approach to sentiment analysis algorithms: extended SWARA-MABAC method with 2-tuple linguistic q-rung orthopair fuzzy information (2023) Eng Appl Artif Intell, 126. Naz, S., Fatima, S.S., Butt, S.A., Tabassum, N. A MAGDM model based on 2-tuple linguistic variables and power Hamacher aggregation operators for optimal selection of digital marketing strategies (2023) Granul Comput, 8 (6), pp. 1955-1990. Naz, S., Saeed, M.R., Butt, S.A. Multi-attribute group decision-making based on 2-tuple linguistic cubic q-rung orthopair fuzzy DEMATEL analysis (2024) Granu Comput, 9 (1), p. 12. Zhang, S., Hu, L., Ma, Z., Liu, X. Two-rank multi-attribute group decision-making with linguistic distribution assessments: an optimization-based integrated approach (2023) Eng Appl Artif Intell, 121, pp. 106-170. Wang, Y.M., Jia, X., Song, H.H., Martinez, L. Improving consistency based on regret theory: a multi-attribute group decision making method with linguistic distribution assessments (2023) Expert Syst Appl, 221, pp. 119-748. Pang, Q., Wang, H., Xu, Z. Probabilistic linguistic term sets in multi-attribute group decision making (2016) Inf Sci, 369, pp. 128-143. Xie, M., Liu, J., Chen, S., Xu, G., Lin, M. Primary node election based on probabilistic linguistic term set with confidence interval in the PBFT consensus mechanism for blockchain (2023) Complex Intell Syst, 9 (2), pp. 1507-1524. Darko, A.P., Liang, D. Modeling customer satisfaction through online reviews: a FlowSort group decision model under probabilistic linguistic settings (2022) Expert Syst Appl, 195, pp. 116-649. Teng, F., Du, C., Shen, M., Liu, P. A dynamic large-scale multiple attribute group decision-making method with probabilistic linguistic term sets based on trust relationship and opinion correlation (2022) Inf Sci, 612, pp. 257-295. Han, X., Zhan, J. A sequential three-way decision-based group consensus method under probabilistic linguistic term sets (2023) Inf Sci, 624, pp. 567-589. Jin, F., Cai, Y., Zhou, L., Ding, T. Regret-rejoice two-stage multiplicative DEA models-driven cross-efficiency evaluation with probabilistic linguistic information (2023) Omega, 117, pp. 102-839. Mahmood, T., Ullah, K., Khan, Q., Jan, N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets (2019) Neural Comput Appl, 31, pp. 7041-7053. Akram, M., Naz, S., Feng, F., Shafiq, A. Assessment of hydropower plants in Pakistan: Muirhead mean-based 2-tuple linguistic T-spherical fuzzy model combining SWARA with COPRAS (2023) Arab J Sci Eng, 48 (5), pp. 5859-5888. Khan, M.R., Ullah, K., Khan, Q. Multi-attribute decision-making using Archimedean aggregation operator in Tspherical fuzzy environment (2023) Rep Mech Eng, 4 (1), pp. 18-38. Saad, M., Rafiq, A. Correlation coefficients for T-spherical fuzzy sets and their applications in pattern analysis and multi-attribute decision-making (2023) Granul Comput, 8 (4), pp. 851-862. Asif, K., Jamil, M.K., Karamti, H., Azeem, M., Ullah, K. Randic energies for T-spherical fuzzy Hamacher graphs and their applications in decision making for business plans (2023) Comput Appl Math, 42 (3), p. 106. 4557393 Wang, H., Mahmood, T., Ullah, K. Improved CoCoSo method based on frank softmax aggregation operators for Tspherical fuzzy multiple attribute group decision-making (2023) Int J Fuzzy Syst, 25 (3), pp. 1275-1310. Yager, R.R. The power average operator (2001) IEEE Trans Syst Man Cybern Part A Syst Hum, 31 (6), pp. 724-731. Kumar, K., Chen, S.M. Group decision making based on q-rung orthopair fuzzy weighted averaging aggregation operator of q-rung orthopair fuzzy numbers (2022) Inf Sci, 598, pp. 1-18. Jana, C., Garg, H., Pal, M. Multi-attribute decision making for power Dombi operators under Pythagorean fuzzy information with MABAC method (2023) J Ambient Intell Humaniz Comput, 14, pp. 10761-10778. Xu, Z., Yager, R.R. Power-geometric operators and their use in group decision making (2009) IEEE Trans Fuzzy Syst, 18 (1), pp. 94-105. Saaty, T.L. (1988) What is the analytic hierarchy process?, pp. 109-121. Berlin Heidelberg, Springer Kostić-Ljubisavljević, A., Samčović, A. Selection of available GIS software for education of students of telecommunications engineering by AHP methodology (2024) Educ Inf Technol, 29 (4), pp. 5001-5015. Kinay, A.O., Tezel, B.T. Modification of the fuzzy analytic hierarchy process via different ranking methods (2022) Int J Intell Syst, 37 (1), pp. 336-364. Cheng, Z., Lu, G., Wu, M., Li, Z., Deng, Y., Wu, J., Hu, B.X. Quantification and visualization of groundwater contamination prevention regionalization based on analytic hierarchy process method (AHP) in Guangdong– Hong Kong–Macao Greater Bay Area, South China (2024) J Hydrol, 628. He, S., Xu, H., Zhang, J., Xue, P. Risk assessment of oil and gas pipelines hot work based on AHP-FCE (2023) Petroleum, 9 (1), pp. 94-100. Roy, P.K., Shaw, K. A credit scoring model for SMEs using AHP and TOPSIS (2023) Int J Financ Econ, 28 (1), pp. 372-391. Moslem, S., Saraji, M.K., Mardani, A., Alkharabsheh, A., Duleba, S., Esztergar-Kiss, D. A systematic review of analytic hierarchy process applications to solve transportation problems: from 2003 to 2019 (2023) IEEE Access, 11, pp. 11973-11990. Deretarla, O., Erdebilli, B., Gundogan, M. An integrated analytic hierarchy process and complex proportional assessment for vendor selection in supply chain management (2023) Decis Anal J, 6, pp. 100-155. Nguyen, C.C., Vo, P., Doan, V.L., Nguyen, Q.B., Nguyen, T.C., Nguyen, Q.D. Assessment of the effects of rainfall frequency on landslide susceptibility mapping using AHP method: A case study for a mountainous region in central Vietnam (2023) Progress in Landslide Research and Technology, 1 (2), pp. 87-98. . Springer, Cham Gyani, J., Ahmed, A., Haq, M.A. MCDM and various prioritization methods in AHP for CSS: a comprehensive review (2022) IEEE Access, 10, pp. 33492-33511. Nazim, M., Mohammad, C.W., Sadiq, M. A comparison between fuzzy AHP and fuzzy TOPSIS methods to software requirements selection (2022) Alex Eng J, 61 (12), pp. 10851-10870. Nie, R.X., Wang, J.Q. Prospect theory-based consistency recovery strategies with multiplicative probabilistic linguistic preference relations in managing group decision making (2020) Arab J Sci Eng, 45 (3), pp. 2113-2130. Xu, Z. Deviation measures of linguistic preference relations in group decision making (2005) Omega, 33 (3), pp. 249-254. Gou, X., Xu, Z., Liao, H. Multiple criteria decision making based on Bonferroni means with hesitant fuzzy linguistic information (2017) Soft Comput, 21, pp. 6515-6529. Liu, P., Zhu, B., Wang, P., Shen, M. An approach based on linguistic spherical fuzzy sets for public evaluation of shared bicycles in China (2020) Eng Appl Artif Intell, 87, pp. 103-295. Liu, D., Huang, A. Consensus reaching process for fuzzy behavioral TOPSIS method with probabilistic linguistic q-rung orthopair fuzzy set based on correlation measure (2020) Int J Intell Syst, 35 (3), pp. 494-528. Ranjan, M.J., Kumar, B.P., Bhavani, T.D., Padmavathi, A.V., Bakka, V. Probabilistic linguistic q-rung orthopair fuzzy Archimedean aggregation operators for group decision-making (2023) Decis Mak Appl Manag Eng, 6 (2), pp. 639-667. Wei, G., Wei, C., Wu, J., Wang, H. Supplier selection of medical consumption products with a probabilistic linguistic MABAC method (2019) Int J Environ Res Public Health, 16 (24), pp. 50-82. Chen, L., Gou, X. The application of probabilistic linguistic CODAS method based on new score function in multi-criteria decision-making (2022) Comput Appl Math, 41, pp. 1-25. 4350303 Kayvanfar, V., Elomri, A., Kerbache, L., Vandchali, H.R., El Omri, A. A review of decision support systems in the Internet of Things and supply chain and logistics using web content mining (2024) Supply Chain Analyt, Li, L., Han, F., Li, J., An, S., Shi, K., Zhang, S., Zhangzhong, L. The development of variable system-based Internet of Things for the solar greenhouse and its application in lettuce (2024) Front Plant Sci, 15, p. 1292719. Hajlaoui, R., Moulahi, T., Zidi, S., El Khediri, S., Alaya, B., Sherali, Z. Towards smarter cyberthreats detection model for industrial Internet of Things (IIoT) 4.0 (2024) J Ind Inf Integr, Solanki, A., Sarkar, D., Shah, D. Evaluation of factors affecting the effective implementation of Internet of Things and cloud computing in the construction industry through WASPAS and TOPSIS methods (2024) Int J Constr Manag, 24 (2), pp. 226-239. |
dc.relation.citationendpage.none.fl_str_mv |
17574 |
dc.relation.citationstartpage.none.fl_str_mv |
17524 |
dc.relation.citationissue.none.fl_str_mv |
12 |
dc.relation.citationvolume.none.fl_str_mv |
80 |
dc.rights.eng.fl_str_mv |
© 2024 The Authors. |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2024 The Authors. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
7 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Netherlands |
dc.publisher.place.none.fl_str_mv |
Netherlands |
publisher.none.fl_str_mv |
Springer Netherlands |
dc.source.none.fl_str_mv |
https://link.springer.com/article/10.1007/s11227-024-06129-2 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/cbbb32a8-0af2-48d9-938e-860fe373c2d9/download https://repositorio.cuc.edu.co/bitstreams/7d98da69-d25e-4b64-a5f2-487f257bf72e/download https://repositorio.cuc.edu.co/bitstreams/9853949b-e9e1-4224-b19f-2267207eb8d9/download https://repositorio.cuc.edu.co/bitstreams/00586126-df7c-4370-b4e6-594c8ac5db46/download |
bitstream.checksum.fl_str_mv |
5c5bfe9f74c5ec85c4299ab3405e1583 73a5432e0b76442b22b026844140d683 0941ea5e7e00460561d91351fce09a17 cf332114b590075ec583c376735138ab |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166801707499520 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2024 The Authors.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfShafiq, AqsaNaz, SumeraButt, Shariq AzizPiñeres Espitia, Gabriel2024-11-22T12:08:36Z2025-04-292024-11-22T12:08:36Z2024-04-29Shafiq, A., Naz, S., Butt, S.A. et al. Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set. J Supercomput 80, 17524–17574 (2024). https://doi.org/10.1007/s11227-024-06129-2.0920-8542https://hdl.handle.net/11323/1378610.1007/s11227-024-06129-21573-0484Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The Internet of Things is a system of networked devices that can gather, process, and share data through the Internet. The Internet of Things has vast potential to spread widely across various aspects of our lives. The educational process model is undergoing a transformation in which the learning requirements for different students must be fulfilled in various ways. Our study presents a novel multi-attribute group decision-making strategy that examines how the Internet of Things can help to provide the best learning environment while also making the educational process more effective. The probabilistic linguistic T-spherical fuzzy set (PLT-SFS) is a modification of the T-spherical fuzzy set in which the degrees of membership, abstinence, and non-membership are characterized by probabilistic linguistic terms. Then two new aggregation operators, the PLT-SF weighted power average (PLT-SFWPA) operator and the PLT-SF weighted power geometric (PLT-SFWPG) operator, are introduced. After that, an approach to multi-attribute group decision-making based on the analytic hierarchy process is constructed in which the data are aggregated by the PLT-SFWPA operator. To illustrate the validity of the proposed approach, a case study of nine Internet of Things applications for enhancing learning environments is provided.7 páginasapplication/pdfengSpringer NetherlandsNetherlandshttps://link.springer.com/article/10.1007/s11227-024-06129-2Enhancing learning environments with IoT: a novel decision-making approach using probabilistic linguistic T-spherical fuzzy setArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceJournal of SupercomputingZadeh, L.A. Fuzzy sets (1965) Inf Control, 8 (3), pp. 338-353.Yager, R.R. Generalized orthopair fuzzy sets (2016) IEEE Trans Fuzzy Syst, 25 (5), pp. 1222-1230.Atanassov, K.T. Intuitionistic fuzzy sets (1986) Fuzzy Sets Syst, 20 (1), pp. 87-96. 937346Yager, R.R. Pythagorean membership grades in multicriteria decision making (2013) IEEE Trans Fuzzy Syst, 22 (4), pp. 958-965.Herrera, F., Herrera-Viedma, E. Linguistic decision analysis: steps for solving decision problems under linguistic information (2000) Fuzzy Sets Syst, 115 (1), pp. 67-82. 1776304Vashishth, T.K., Sharma, V., Sharma, K.K., Kumar, B., Chaudhary, S., Panwar, R. AIoT in education transforming learning environments and educational technology (2024) Artificial Intelligence of Things (AIoT) for Productivity and Organizational Transition, pp. 72-107. In:., https://Meylani, R. Transforming education with the Internet of Things: a journey into smarter learning environments (2024) Int J Res Educ Sci, 10 (1), pp. 161-178Dhir, S., Maheshwari, A., Sharma, S. Improving teaching-learning through smart classes using IoT (2024) Enhancing Education with Intelligent Systems and Data-Driven Instruction, pp. 107- 131. In:., https://Yinka, K.R., Chidinma, A.E. (2024) The role and applications of Internet of Things (IoT) in higher education: uses and ways IoT affects students’ learning, 5, pp. 243-249.Nyaga, J.M. IoT-enhanced adaptive learning environments: personalized online education for the digital age (2023) Afr J Comput Inf Syst (AJCIS), 7, pp. 1-14.Tuǧrul, F. Evaluation of papers according to offset print quality: the intuitionistic fuzzy based multi criteria decision making mechanism (2024) Pigment Resin Technol, 53 (1), pp. 122-129Jiafu, S., Wang, D., Xu, B., Zhang, F., Zhang, N. An interval-valued intuitionistic fuzzy group decision-making method for evaluating online knowledge payment products (2024) Appl Soft Comput, 150.Naz, S., Shafiq, A., Butt, S.A., Mazhar, S., Martinez, D.J., De la Hoz Franco, E. Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in Pakistan (2024) Heliyon, 10 (2024).Naz, S., Shafiq, A., Abbas, M. An approach for 2-tuple linguistic q-rung orthopair fuzzy MAGDM for the evaluation of historical sites with power Heronian mean (2024) J Supercomput, 80 (5), pp. 6435-6485.Naz, S., Akram, M., Shafiq, A., Akhtar, K. Optimal airport selection utilizing power muirhead mean based group decision model with 2-tuple linguistic q-rung orthopair fuzzy information (2024) Int J Mach Learn Cybern, 15 (2), pp. 303-340.Naz, S., Mehreen, R., Abbas, T., Piñeres-Espitia, G., Butt, S.A. An extended COPRAS method based on complex q-rung orthopair fuzzy 2-tuple linguistic Maclaurin symmetric mean aggregation operators (2024) J Ambient Intell Humanized Comput, 15 (4), pp. 2119-2142.Naz, S., Shafiq, A., Butt, S.A., Ijaz, R. A new approach to sentiment analysis algorithms: extended SWARA-MABAC method with 2-tuple linguistic q-rung orthopair fuzzy information (2023) Eng Appl Artif Intell, 126.Naz, S., Fatima, S.S., Butt, S.A., Tabassum, N. A MAGDM model based on 2-tuple linguistic variables and power Hamacher aggregation operators for optimal selection of digital marketing strategies (2023) Granul Comput, 8 (6), pp. 1955-1990.Naz, S., Saeed, M.R., Butt, S.A. Multi-attribute group decision-making based on 2-tuple linguistic cubic q-rung orthopair fuzzy DEMATEL analysis (2024) Granu Comput, 9 (1), p. 12.Zhang, S., Hu, L., Ma, Z., Liu, X. Two-rank multi-attribute group decision-making with linguistic distribution assessments: an optimization-based integrated approach (2023) Eng Appl Artif Intell, 121, pp. 106-170.Wang, Y.M., Jia, X., Song, H.H., Martinez, L. Improving consistency based on regret theory: a multi-attribute group decision making method with linguistic distribution assessments (2023) Expert Syst Appl, 221, pp. 119-748.Pang, Q., Wang, H., Xu, Z. Probabilistic linguistic term sets in multi-attribute group decision making (2016) Inf Sci, 369, pp. 128-143.Xie, M., Liu, J., Chen, S., Xu, G., Lin, M. Primary node election based on probabilistic linguistic term set with confidence interval in the PBFT consensus mechanism for blockchain (2023) Complex Intell Syst, 9 (2), pp. 1507-1524.Darko, A.P., Liang, D. Modeling customer satisfaction through online reviews: a FlowSort group decision model under probabilistic linguistic settings (2022) Expert Syst Appl, 195, pp. 116-649.Teng, F., Du, C., Shen, M., Liu, P. A dynamic large-scale multiple attribute group decision-making method with probabilistic linguistic term sets based on trust relationship and opinion correlation (2022) Inf Sci, 612, pp. 257-295.Han, X., Zhan, J. A sequential three-way decision-based group consensus method under probabilistic linguistic term sets (2023) Inf Sci, 624, pp. 567-589.Jin, F., Cai, Y., Zhou, L., Ding, T. Regret-rejoice two-stage multiplicative DEA models-driven cross-efficiency evaluation with probabilistic linguistic information (2023) Omega, 117, pp. 102-839.Mahmood, T., Ullah, K., Khan, Q., Jan, N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets (2019) Neural Comput Appl, 31, pp. 7041-7053.Akram, M., Naz, S., Feng, F., Shafiq, A. Assessment of hydropower plants in Pakistan: Muirhead mean-based 2-tuple linguistic T-spherical fuzzy model combining SWARA with COPRAS (2023) Arab J Sci Eng, 48 (5), pp. 5859-5888.Khan, M.R., Ullah, K., Khan, Q. Multi-attribute decision-making using Archimedean aggregation operator in Tspherical fuzzy environment (2023) Rep Mech Eng, 4 (1), pp. 18-38.Saad, M., Rafiq, A. Correlation coefficients for T-spherical fuzzy sets and their applications in pattern analysis and multi-attribute decision-making (2023) Granul Comput, 8 (4), pp. 851-862.Asif, K., Jamil, M.K., Karamti, H., Azeem, M., Ullah, K. Randic energies for T-spherical fuzzy Hamacher graphs and their applications in decision making for business plans (2023) Comput Appl Math, 42 (3), p. 106. 4557393Wang, H., Mahmood, T., Ullah, K. Improved CoCoSo method based on frank softmax aggregation operators for Tspherical fuzzy multiple attribute group decision-making (2023) Int J Fuzzy Syst, 25 (3), pp. 1275-1310.Yager, R.R. The power average operator (2001) IEEE Trans Syst Man Cybern Part A Syst Hum, 31 (6), pp. 724-731.Kumar, K., Chen, S.M. Group decision making based on q-rung orthopair fuzzy weighted averaging aggregation operator of q-rung orthopair fuzzy numbers (2022) Inf Sci, 598, pp. 1-18.Jana, C., Garg, H., Pal, M. Multi-attribute decision making for power Dombi operators under Pythagorean fuzzy information with MABAC method (2023) J Ambient Intell Humaniz Comput, 14, pp. 10761-10778.Xu, Z., Yager, R.R. Power-geometric operators and their use in group decision making (2009) IEEE Trans Fuzzy Syst, 18 (1), pp. 94-105.Saaty, T.L. (1988) What is the analytic hierarchy process?, pp. 109-121. Berlin Heidelberg, SpringerKostić-Ljubisavljević, A., Samčović, A. Selection of available GIS software for education of students of telecommunications engineering by AHP methodology (2024) Educ Inf Technol, 29 (4), pp. 5001-5015.Kinay, A.O., Tezel, B.T. Modification of the fuzzy analytic hierarchy process via different ranking methods (2022) Int J Intell Syst, 37 (1), pp. 336-364.Cheng, Z., Lu, G., Wu, M., Li, Z., Deng, Y., Wu, J., Hu, B.X. Quantification and visualization of groundwater contamination prevention regionalization based on analytic hierarchy process method (AHP) in Guangdong– Hong Kong–Macao Greater Bay Area, South China (2024) J Hydrol, 628.He, S., Xu, H., Zhang, J., Xue, P. Risk assessment of oil and gas pipelines hot work based on AHP-FCE (2023) Petroleum, 9 (1), pp. 94-100.Roy, P.K., Shaw, K. A credit scoring model for SMEs using AHP and TOPSIS (2023) Int J Financ Econ, 28 (1), pp. 372-391.Moslem, S., Saraji, M.K., Mardani, A., Alkharabsheh, A., Duleba, S., Esztergar-Kiss, D. A systematic review of analytic hierarchy process applications to solve transportation problems: from 2003 to 2019 (2023) IEEE Access, 11, pp. 11973-11990.Deretarla, O., Erdebilli, B., Gundogan, M. An integrated analytic hierarchy process and complex proportional assessment for vendor selection in supply chain management (2023) Decis Anal J, 6, pp. 100-155.Nguyen, C.C., Vo, P., Doan, V.L., Nguyen, Q.B., Nguyen, T.C., Nguyen, Q.D. Assessment of the effects of rainfall frequency on landslide susceptibility mapping using AHP method: A case study for a mountainous region in central Vietnam (2023) Progress in Landslide Research and Technology, 1 (2), pp. 87-98. . Springer, ChamGyani, J., Ahmed, A., Haq, M.A. MCDM and various prioritization methods in AHP for CSS: a comprehensive review (2022) IEEE Access, 10, pp. 33492-33511.Nazim, M., Mohammad, C.W., Sadiq, M. A comparison between fuzzy AHP and fuzzy TOPSIS methods to software requirements selection (2022) Alex Eng J, 61 (12), pp. 10851-10870.Nie, R.X., Wang, J.Q. Prospect theory-based consistency recovery strategies with multiplicative probabilistic linguistic preference relations in managing group decision making (2020) Arab J Sci Eng, 45 (3), pp. 2113-2130.Xu, Z. Deviation measures of linguistic preference relations in group decision making (2005) Omega, 33 (3), pp. 249-254.Gou, X., Xu, Z., Liao, H. Multiple criteria decision making based on Bonferroni means with hesitant fuzzy linguistic information (2017) Soft Comput, 21, pp. 6515-6529.Liu, P., Zhu, B., Wang, P., Shen, M. An approach based on linguistic spherical fuzzy sets for public evaluation of shared bicycles in China (2020) Eng Appl Artif Intell, 87, pp. 103-295.Liu, D., Huang, A. Consensus reaching process for fuzzy behavioral TOPSIS method with probabilistic linguistic q-rung orthopair fuzzy set based on correlation measure (2020) Int J Intell Syst, 35 (3), pp. 494-528.Ranjan, M.J., Kumar, B.P., Bhavani, T.D., Padmavathi, A.V., Bakka, V. Probabilistic linguistic q-rung orthopair fuzzy Archimedean aggregation operators for group decision-making (2023) Decis Mak Appl Manag Eng, 6 (2), pp. 639-667.Wei, G., Wei, C., Wu, J., Wang, H. Supplier selection of medical consumption products with a probabilistic linguistic MABAC method (2019) Int J Environ Res Public Health, 16 (24), pp. 50-82.Chen, L., Gou, X. The application of probabilistic linguistic CODAS method based on new score function in multi-criteria decision-making (2022) Comput Appl Math, 41, pp. 1-25. 4350303Kayvanfar, V., Elomri, A., Kerbache, L., Vandchali, H.R., El Omri, A. A review of decision support systems in the Internet of Things and supply chain and logistics using web content mining (2024) Supply Chain Analyt,Li, L., Han, F., Li, J., An, S., Shi, K., Zhang, S., Zhangzhong, L. The development of variable system-based Internet of Things for the solar greenhouse and its application in lettuce (2024) Front Plant Sci, 15, p. 1292719.Hajlaoui, R., Moulahi, T., Zidi, S., El Khediri, S., Alaya, B., Sherali, Z. Towards smarter cyberthreats detection model for industrial Internet of Things (IIoT) 4.0 (2024) J Ind Inf Integr,Solanki, A., Sarkar, D., Shah, D. Evaluation of factors affecting the effective implementation of Internet of Things and cloud computing in the construction industry through WASPAS and TOPSIS methods (2024) Int J Constr Manag, 24 (2), pp. 226-239.17574175241280AHP methodInternet of Things in enhancing learning environmentsProbabilistic linguistic T-spherical fuzzy setWeighted power average operatorWeighted power geometric operatorPublicationORIGINALEnhancing learning environments with IoT a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set.pdfEnhancing learning environments with IoT a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set.pdfapplication/pdf239114https://repositorio.cuc.edu.co/bitstreams/cbbb32a8-0af2-48d9-938e-860fe373c2d9/download5c5bfe9f74c5ec85c4299ab3405e1583MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/7d98da69-d25e-4b64-a5f2-487f257bf72e/download73a5432e0b76442b22b026844140d683MD52TEXTEnhancing learning environments with IoT a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set.pdf.txtEnhancing learning environments with IoT a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set.pdf.txtExtracted texttext/plain15036https://repositorio.cuc.edu.co/bitstreams/9853949b-e9e1-4224-b19f-2267207eb8d9/download0941ea5e7e00460561d91351fce09a17MD53THUMBNAILEnhancing learning environments with IoT a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set.pdf.jpgEnhancing learning environments with IoT a novel decision-making approach using probabilistic linguistic T-spherical fuzzy set.pdf.jpgGenerated Thumbnailimage/jpeg14481https://repositorio.cuc.edu.co/bitstreams/00586126-df7c-4370-b4e6-594c8ac5db46/downloadcf332114b590075ec583c376735138abMD5411323/13786oai:repositorio.cuc.edu.co:11323/137862024-11-23 04:02:16.264https://creativecommons.org/licenses/by/4.0/© 2024 The Authors.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |