Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva

Introduction— The optimal reactive power dispatch (ORPD) problem consists on finding the optimal settings of several reactive power resources in order to minimize system power losses. The ORPD is a complex combinatorial optimization problem that involves discrete and continuous variables as well as...

Full description

Autores:
Londoño Tamayo, Daniel Camilo
Lopez Lezama, Jesus Maria
Villa Acevedo, Walter Mauricio
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10314
Acceso en línea:
https://hdl.handle.net/11323/10314
https://repositorio.cuc.edu.co/
Palabra clave:
Reactive power
Metaheuristic techniques
Power loss minimization
Constraint handling
Mean-variance mapping optimization
Potencia reactiva
Técnicas metaheurísticas
Minimización de pérdidas
Manejo de restricciones
Optimización de mapeo de media-varianza
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_a94884112b528fa6cc67d30d1b9e7048
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10314
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva
dc.title.translated.none.fl_str_mv Mean-variance mapping optimization algorithm applied to the optimal reactive power dispatch
title Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva
spellingShingle Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva
Reactive power
Metaheuristic techniques
Power loss minimization
Constraint handling
Mean-variance mapping optimization
Potencia reactiva
Técnicas metaheurísticas
Minimización de pérdidas
Manejo de restricciones
Optimización de mapeo de media-varianza
title_short Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva
title_full Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva
title_fullStr Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva
title_full_unstemmed Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva
title_sort Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactiva
dc.creator.fl_str_mv Londoño Tamayo, Daniel Camilo
Lopez Lezama, Jesus Maria
Villa Acevedo, Walter Mauricio
dc.contributor.author.none.fl_str_mv Londoño Tamayo, Daniel Camilo
Lopez Lezama, Jesus Maria
Villa Acevedo, Walter Mauricio
dc.subject.proposal.eng.fl_str_mv Reactive power
Metaheuristic techniques
Power loss minimization
Constraint handling
Mean-variance mapping optimization
topic Reactive power
Metaheuristic techniques
Power loss minimization
Constraint handling
Mean-variance mapping optimization
Potencia reactiva
Técnicas metaheurísticas
Minimización de pérdidas
Manejo de restricciones
Optimización de mapeo de media-varianza
dc.subject.proposal.spa.fl_str_mv Potencia reactiva
Técnicas metaheurísticas
Minimización de pérdidas
Manejo de restricciones
Optimización de mapeo de media-varianza
description Introduction— The optimal reactive power dispatch (ORPD) problem consists on finding the optimal settings of several reactive power resources in order to minimize system power losses. The ORPD is a complex combinatorial optimization problem that involves discrete and continuous variables as well as a nonlinear objective function and nonlinear constraints. Objective— This article seeks to compare the performance of the mean-variance mapping optimization (MVMO) algorithm with other techniques reported in the specialized literature applied to the ORPD solution. Methodology— Two different constraint handling approaches are implemented within the MVMO algorithm: a conventional penalization of deviations from feasible solutions and a penalization by means of a product of subfunctions that serves to identify both when a solution is optimal and feasible. Several tests are carried out in IEEE benchmark power systems of 30 and 57 buses. Conclusions— The MVMO algorithm is effective in solving the ORPD problem. Results evidence that the MVMO algorithm outperforms or matches the quality of solutions reported by several solution techniques reported in the technical literature. The alternative handling constraint proposed for the MVMO reduces the computation time and guarantees both feasibility and optimality of the solutions found.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-07-10T16:43:59Z
dc.date.available.none.fl_str_mv 2023-07-10T16:43:59Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv D. Londoño Tamayo, J. López Lezama & W. Villa Acevedo, “ Mean-Variance Mapping Optimization Algorithm Applied to the Optimal Reactive Power Dispatch”, INGECUC, vol. 17. no. 1, pp. 239–255. DOI: http://doi.org/10.17981/ingecuc.17.1.2021.19
dc.identifier.issn.spa.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10314
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.17.1.2021.19
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv D. Londoño Tamayo, J. López Lezama & W. Villa Acevedo, “ Mean-Variance Mapping Optimization Algorithm Applied to the Optimal Reactive Power Dispatch”, INGECUC, vol. 17. no. 1, pp. 239–255. DOI: http://doi.org/10.17981/ingecuc.17.1.2021.19
0122-6517
10.17981/ingecuc.17.1.2021.19
2382-4700
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10314
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
dc.relation.references.spa.fl_str_mv [1] S. M. Mohseni-Bonab & A. Rabiee, “Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation,” IET Gener Transm Distrib, vol. 11, no. 4, pp. 815–829, Mar. 2017. https://doi.org/10.1049/ietgtd.2016.1545
[2] R. Mota-Palomino & V. H. Quintana, “Sparse Reactive Power Scheduling by a Penalty Function - Linear Programming Technique,” IEEE Trans Power Syst, vol. 1, no. 3, pp. 31–39, Ago. 1986. https://doi. org/10.1109/TPWRS.1986.4334951
[3] K. Aoki, M. Fan, & A. Nishikori, “Optimal VAr planning by approximation method for recursive mixedinteger linear programming,” IEEE Trans Power Syst, vol. 3, no. 4, pp. 1741–1747, Nov. 1988. https:// doi.org/10.1109/59.192990
[4] V. H. Quintana & M. Santos-Nieto, “Reactive-power dispatch by successive quadratic programming,” IEEE Trans Energy Convers, vol. 4, no. 3, pp. 425–435, Sep. 1989. https://doi.org/10.1109/60.43245
[5] F. C. Lu & Y. Y. Hsu, “Reactive power/voltage control in a distribution substation using dynamic programming,” Transm Distrib IEE Proc - Gener, vol. 142, no. 6, pp. 639–645, Nov. 1995. https://doi. org/10.1049/ip-gtd:19952210
[6] S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE Trans Power Syst, vol. 9, no. 1, pp. 136–146, Feb. 1994. https://doi.org/10.1109/59.317548
[7] A. A. A. E. Ela, M. A. Abido, & S. R. Spea, “Differential evolution algorithm for optimal reactive power dispatch,” Electr Power Syst Res, vol. 81, no. 2, pp. 458–464, Feb. 2011. https://doi.org/10.1016/j. epsr.2010.10.005
[8] A. Mukherjee & V. Mukherjee, “Solution of optimal reactive power dispatch by chaotic krill herd algorithm,” Transm Distrib IET Gener, vol. 9, no. 15, pp. 2351–2362, 2015. https://doi.org/10.1049/ietgtd.2015.0077
[9] A. H. Gandomi & A. H. Alavi, “Krill herd: A new bio-inspired optimization algorithm,” Commun Nonlinear Sci Numer Simul, vol. 17, no. 12, pp. 4831–4845, Dic. 2012. https://doi.org/10.1016/j.cnsns.2012.05.010
[10] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama & Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage security assessment,” presented at IEEE Power Engineering Society Winter Meeting. Conference Proceedings, Cat. No.01CH37194, COLO, USA, 2001. https://doi.org/10.1109/PESW.2001.916897
[11] A. A. A. Esmin, G. Lambert-Torres & A. C. Zambroni de Souza, “A hybrid particle swarm optimization applied to loss power minimization,” IEEE Trans Power Syst, vol. 20, no. 2, pp. 859–866, May. 2005. https://doi.org/10.1109/TPWRS.2005.846049
[12] D. Gutiérrez, W. M. Villa, & J. M. López-Lezama, “Flujo Óptimo Reactivo mediante Optimización por Enjambre de Partículas,” Inf Tecnol, vol. 28, no. 5, pp. 215–224, 2017. https://doi.org/10.4067/S0718- 07642017000500020
[13] K. Mahadevan & P. S. Kannan, “Comprehensive learning particle swarm optimization for reactive power dispatch,” Appl Soft Comput, vol. 10, no. 2, pp. 641–652, Mar. 2010. https://doi.org/10.1016/j. asoc.2009.08.038
[14] R. P. Singh, V. Mukherjee & S. P. Ghoshal, “Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers,” Appl Soft Comput, vol. 29, pp. 298–309, Apr. 2015. https://doi.org/10.1016/j.asoc.2015.01.006
[15] S. Duman, Y. Sönmez, U. Güvenç & N. Yörükeren, “Optimal reactive power dispatch using a gravitational search algorithm,” Transm Distrib IET Gener, vol. 6, no. 6, pp. 563–576, Jun. 2012. https://doi. org/10.1049/iet-gtd.2011.0681
[16] E. Rashedi, H. Nezamabadi-pour & S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf Sci, vol. 179, no. 13, pp. 2232–2248, Jun. 2009. https://doi.org/10.1016/j.ins.2009.03.004
[17] G. Chen, L. Liu, Z. Zhang, & S. Huang, “Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints,” Appl Soft Comput, vol. 50, pp. 58–70, Jan. 2017. https://doi.org/10.1016/j.asoc.2016.11.008
[18] B. Shaw, V. Mukherjee & S. P. Ghoshal, “Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm,” Int J Electr Power Energy Syst, vol. 55, pp. 29–40, Feb. 2014. https://doi.org/10.1016/j.ijepes.2013.08.010
[19] A. Rajan & T. Malakar, “Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm,” Int J Electr Power Energy Syst, vol. 66, pp. 9–24, Mar. 2015. https://doi.org/10.1016/j. ijepes.2014.10.041
[20] M. Ettappan, V. Vimala, S. Ramesh & V. T. Kesavan, “Optimal reactive power dispatch for real power loss minimization and voltage stability enhancement using Artificial Bee Colony Algorithm,” Microprocess Microsyst, vol. 76, Jul. 2020. https://doi.org/10.1016/j.micpro.2020.103085
[21] C. Dai, W. Chen, Y. Zhu, & X. Zhang, “Seeker Optimization Algorithm for Optimal Reactive Power Dispatch,” IEEE Trans Power Syst, vol. 24, no. 3, pp. 1218–1231, Aug. 2009. https://doi.org/10.1109/ TPWRS.2009.2021226
[22] A. Bhattacharya & P. K. Chattopadhyay, “Biogeography-Based Optimization for solution of Optimal Power Flow problem,” ECTI, ECTI-CON2010, CNX, pp. 435–439, May. 2010. Available: https://ieeexplore.ieee.org/document/5491454
[23] R. Ng Shin Mei, M. H. Sulaiman, Z. Mustaffa & H. Daniyal, “Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique,” Appl Soft Comput, vol. 59, pp. 210–222, Oct. 2017. https://doi.org/10.1016/j.asoc.2017.05.057
[24] A. A. Heidari, R. Ali Abbaspour & A. Rezaee Jordehi, “Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems,” Appl Soft Comput, vol. 57, pp. 657–671, Aug. 2017. https://doi.org/10.1016/j.asoc.2017.04.048
[25] D. Gutierrez Rojas, J. Lopez Lezama & W. Villa, “Metaheuristic Techniques Applied to the Optimal Reactive Power Dispatch: a Review,” IEEE Lat Am Trans, vol. 14, no. 5, pp. 2253–2263, May. 2016. https://doi.org/10.1109/TLA.2016.7530421
[26] W. M. Villa-Acevedo, J. M. López-Lezama, & J. A. Valencia-Velásquez, “A Novel Constraint Handling Approach for the Optimal Reactive Power Dispatch Problem,” Energies, vol. 11, no. 9, pp. 1–23, 2018. https://doi.org/10.3390/en11092352
[27] I. Erlich, G. K. Venayagamoorthy & N. Worawat, “A Mean-Variance Optimization algorithm,” presented at IEEE CEC, CEC, BCN, pp. 1–6, 18-23 Jul. 2010. https://doi.org/10.1109/CEC.2010.5586027
[28] I. Erlich, “Mean-variance mapping optimization algorithm home page,” UDE, 2018. Available: https:// www.uni-due.de/mvmo/
[29] J. L. Rueda & I. Erlich, “Optimal dispatch of reactive power sources by using MVMOs optimization,” presented at IEEE CIASG, CIASG, SG, 16-19 Apr. 2013. https://doi.org/10.1109/CIASG.2013.6611495
[30] J. C. Cepeda, J. L. Rueda & I. Erlich, “Identification of dynamic equivalents based on heuristic optimization for smart grid applications,” IEEE CEC, CEC, Bris, QLD, AU, 10-15 Jun. 2012. https://doi. org/10.1109/CEC.2012.6256493
[31] J. L. Rueda & I. Erlich, “Evaluation of the mean-variance mapping optimization for solving multimodal problems,” IEEE SIS, SIS, SG, 16-19 Apr. 2013. https://doi.org/10.1109/SIS.2013.6615153
dc.relation.citationendpage.spa.fl_str_mv 255
dc.relation.citationstartpage.spa.fl_str_mv 239
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.rights.spa.fl_str_mv Derechos de autor 2021 INGE CUC
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Derechos de autor 2021 INGE CUC
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 17 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/3109
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/fb569666-b13e-43fb-b28f-72b2dd9c26e3/download
https://repositorio.cuc.edu.co/bitstreams/67d6ead8-76ee-4e7b-be15-2a77eec4a0b8/download
https://repositorio.cuc.edu.co/bitstreams/df47b801-4c42-42d9-9866-abdbcb9b5ade/download
https://repositorio.cuc.edu.co/bitstreams/3af29b09-d631-46f3-88d6-6bac28918571/download
bitstream.checksum.fl_str_mv 8c4351dc059046ffb5c77543214b0c3a
2f9959eaf5b71fae44bbf9ec84150c7a
d0748aa9450726a10744a64dd3de81aa
941a8cf2b60613657470c12d6d3721e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166838083649536
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos de autor 2021 INGE CUChttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Londoño Tamayo, Daniel CamiloLopez Lezama, Jesus MariaVilla Acevedo, Walter Mauricio2023-07-10T16:43:59Z2023-07-10T16:43:59Z2021D. Londoño Tamayo, J. López Lezama & W. Villa Acevedo, “ Mean-Variance Mapping Optimization Algorithm Applied to the Optimal Reactive Power Dispatch”, INGECUC, vol. 17. no. 1, pp. 239–255. DOI: http://doi.org/10.17981/ingecuc.17.1.2021.190122-6517https://hdl.handle.net/11323/1031410.17981/ingecuc.17.1.2021.192382-4700Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction— The optimal reactive power dispatch (ORPD) problem consists on finding the optimal settings of several reactive power resources in order to minimize system power losses. The ORPD is a complex combinatorial optimization problem that involves discrete and continuous variables as well as a nonlinear objective function and nonlinear constraints. Objective— This article seeks to compare the performance of the mean-variance mapping optimization (MVMO) algorithm with other techniques reported in the specialized literature applied to the ORPD solution. Methodology— Two different constraint handling approaches are implemented within the MVMO algorithm: a conventional penalization of deviations from feasible solutions and a penalization by means of a product of subfunctions that serves to identify both when a solution is optimal and feasible. Several tests are carried out in IEEE benchmark power systems of 30 and 57 buses. Conclusions— The MVMO algorithm is effective in solving the ORPD problem. Results evidence that the MVMO algorithm outperforms or matches the quality of solutions reported by several solution techniques reported in the technical literature. The alternative handling constraint proposed for the MVMO reduces the computation time and guarantees both feasibility and optimality of the solutions found.Introducción— El problema del despacho óptimo de potencia reactiva (DOPR) consiste en encontrar la configuración óptima de diferentes recursos de potencia reactiva para minimizar las pérdidas de potencia del sistema. El DOPR es un problema complejo de optimización combinatorial que involucra variables discretas y continuas, así como una función objetivo no lineal y restricciones no lineales. Objetivo— En este artículo se busca comparar el desempeño del algoritmo de optimización de mapeo de media varianza (MVMO, por sus siglas en inglés) con otras técnicas reportadas en la literatura especializada aplicadas a la solución del DOPR. Metodología— En el algoritmo MVMO se aplican dos enfoques diferentes de manejo de restricciones: penalización convencional de las desviaciones de las soluciones factibles y penalización por medio del producto de subfunciones que sirve para identificar cuándo una solución es óptima y factible. Se realizan simulaciones en sistemas de prueba IEEE de 30 y 57 barras. Conclusiones— El algoritmo MVMO es efectivo para solucionar el DOPR. Los resultados evidencian que el algoritmo MVMO supera o iguala a varias técnicas reportadas en la literatura técnica en la calidad de soluciones. El manejo alternativo de restricciones propuesto para el MVMO reduce el tiempo de cálculo y garantiza tanto factibilidad como optimalidad de las soluciones encontradas.17 páginasapplication/pdfspaCorporación Universidad de la CostaColombiahttps://revistascientificas.cuc.edu.co/ingecuc/article/view/3109Algoritmo de optimización de mapeo de media varianza aplicado al despacho óptimo de potencia reactivaMean-variance mapping optimization algorithm applied to the optimal reactive power dispatchArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85INGE CUC[1] S. M. Mohseni-Bonab & A. Rabiee, “Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation,” IET Gener Transm Distrib, vol. 11, no. 4, pp. 815–829, Mar. 2017. https://doi.org/10.1049/ietgtd.2016.1545[2] R. Mota-Palomino & V. H. Quintana, “Sparse Reactive Power Scheduling by a Penalty Function - Linear Programming Technique,” IEEE Trans Power Syst, vol. 1, no. 3, pp. 31–39, Ago. 1986. https://doi. org/10.1109/TPWRS.1986.4334951[3] K. Aoki, M. Fan, & A. Nishikori, “Optimal VAr planning by approximation method for recursive mixedinteger linear programming,” IEEE Trans Power Syst, vol. 3, no. 4, pp. 1741–1747, Nov. 1988. https:// doi.org/10.1109/59.192990[4] V. H. Quintana & M. Santos-Nieto, “Reactive-power dispatch by successive quadratic programming,” IEEE Trans Energy Convers, vol. 4, no. 3, pp. 425–435, Sep. 1989. https://doi.org/10.1109/60.43245[5] F. C. Lu & Y. Y. Hsu, “Reactive power/voltage control in a distribution substation using dynamic programming,” Transm Distrib IEE Proc - Gener, vol. 142, no. 6, pp. 639–645, Nov. 1995. https://doi. org/10.1049/ip-gtd:19952210[6] S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE Trans Power Syst, vol. 9, no. 1, pp. 136–146, Feb. 1994. https://doi.org/10.1109/59.317548[7] A. A. A. E. Ela, M. A. Abido, & S. R. Spea, “Differential evolution algorithm for optimal reactive power dispatch,” Electr Power Syst Res, vol. 81, no. 2, pp. 458–464, Feb. 2011. https://doi.org/10.1016/j. epsr.2010.10.005[8] A. Mukherjee & V. Mukherjee, “Solution of optimal reactive power dispatch by chaotic krill herd algorithm,” Transm Distrib IET Gener, vol. 9, no. 15, pp. 2351–2362, 2015. https://doi.org/10.1049/ietgtd.2015.0077[9] A. H. Gandomi & A. H. Alavi, “Krill herd: A new bio-inspired optimization algorithm,” Commun Nonlinear Sci Numer Simul, vol. 17, no. 12, pp. 4831–4845, Dic. 2012. https://doi.org/10.1016/j.cnsns.2012.05.010[10] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama & Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage security assessment,” presented at IEEE Power Engineering Society Winter Meeting. Conference Proceedings, Cat. No.01CH37194, COLO, USA, 2001. https://doi.org/10.1109/PESW.2001.916897[11] A. A. A. Esmin, G. Lambert-Torres & A. C. Zambroni de Souza, “A hybrid particle swarm optimization applied to loss power minimization,” IEEE Trans Power Syst, vol. 20, no. 2, pp. 859–866, May. 2005. https://doi.org/10.1109/TPWRS.2005.846049[12] D. Gutiérrez, W. M. Villa, & J. M. López-Lezama, “Flujo Óptimo Reactivo mediante Optimización por Enjambre de Partículas,” Inf Tecnol, vol. 28, no. 5, pp. 215–224, 2017. https://doi.org/10.4067/S0718- 07642017000500020[13] K. Mahadevan & P. S. Kannan, “Comprehensive learning particle swarm optimization for reactive power dispatch,” Appl Soft Comput, vol. 10, no. 2, pp. 641–652, Mar. 2010. https://doi.org/10.1016/j. asoc.2009.08.038[14] R. P. Singh, V. Mukherjee & S. P. Ghoshal, “Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers,” Appl Soft Comput, vol. 29, pp. 298–309, Apr. 2015. https://doi.org/10.1016/j.asoc.2015.01.006[15] S. Duman, Y. Sönmez, U. Güvenç & N. Yörükeren, “Optimal reactive power dispatch using a gravitational search algorithm,” Transm Distrib IET Gener, vol. 6, no. 6, pp. 563–576, Jun. 2012. https://doi. org/10.1049/iet-gtd.2011.0681[16] E. Rashedi, H. Nezamabadi-pour & S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf Sci, vol. 179, no. 13, pp. 2232–2248, Jun. 2009. https://doi.org/10.1016/j.ins.2009.03.004[17] G. Chen, L. Liu, Z. Zhang, & S. Huang, “Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints,” Appl Soft Comput, vol. 50, pp. 58–70, Jan. 2017. https://doi.org/10.1016/j.asoc.2016.11.008[18] B. Shaw, V. Mukherjee & S. P. Ghoshal, “Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm,” Int J Electr Power Energy Syst, vol. 55, pp. 29–40, Feb. 2014. https://doi.org/10.1016/j.ijepes.2013.08.010[19] A. Rajan & T. Malakar, “Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm,” Int J Electr Power Energy Syst, vol. 66, pp. 9–24, Mar. 2015. https://doi.org/10.1016/j. ijepes.2014.10.041[20] M. Ettappan, V. Vimala, S. Ramesh & V. T. Kesavan, “Optimal reactive power dispatch for real power loss minimization and voltage stability enhancement using Artificial Bee Colony Algorithm,” Microprocess Microsyst, vol. 76, Jul. 2020. https://doi.org/10.1016/j.micpro.2020.103085[21] C. Dai, W. Chen, Y. Zhu, & X. Zhang, “Seeker Optimization Algorithm for Optimal Reactive Power Dispatch,” IEEE Trans Power Syst, vol. 24, no. 3, pp. 1218–1231, Aug. 2009. https://doi.org/10.1109/ TPWRS.2009.2021226[22] A. Bhattacharya & P. K. Chattopadhyay, “Biogeography-Based Optimization for solution of Optimal Power Flow problem,” ECTI, ECTI-CON2010, CNX, pp. 435–439, May. 2010. Available: https://ieeexplore.ieee.org/document/5491454[23] R. Ng Shin Mei, M. H. Sulaiman, Z. Mustaffa & H. Daniyal, “Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique,” Appl Soft Comput, vol. 59, pp. 210–222, Oct. 2017. https://doi.org/10.1016/j.asoc.2017.05.057[24] A. A. Heidari, R. Ali Abbaspour & A. Rezaee Jordehi, “Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems,” Appl Soft Comput, vol. 57, pp. 657–671, Aug. 2017. https://doi.org/10.1016/j.asoc.2017.04.048[25] D. Gutierrez Rojas, J. Lopez Lezama & W. Villa, “Metaheuristic Techniques Applied to the Optimal Reactive Power Dispatch: a Review,” IEEE Lat Am Trans, vol. 14, no. 5, pp. 2253–2263, May. 2016. https://doi.org/10.1109/TLA.2016.7530421[26] W. M. Villa-Acevedo, J. M. López-Lezama, & J. A. Valencia-Velásquez, “A Novel Constraint Handling Approach for the Optimal Reactive Power Dispatch Problem,” Energies, vol. 11, no. 9, pp. 1–23, 2018. https://doi.org/10.3390/en11092352[27] I. Erlich, G. K. Venayagamoorthy & N. Worawat, “A Mean-Variance Optimization algorithm,” presented at IEEE CEC, CEC, BCN, pp. 1–6, 18-23 Jul. 2010. https://doi.org/10.1109/CEC.2010.5586027[28] I. Erlich, “Mean-variance mapping optimization algorithm home page,” UDE, 2018. Available: https:// www.uni-due.de/mvmo/[29] J. L. Rueda & I. Erlich, “Optimal dispatch of reactive power sources by using MVMOs optimization,” presented at IEEE CIASG, CIASG, SG, 16-19 Apr. 2013. https://doi.org/10.1109/CIASG.2013.6611495[30] J. C. Cepeda, J. L. Rueda & I. Erlich, “Identification of dynamic equivalents based on heuristic optimization for smart grid applications,” IEEE CEC, CEC, Bris, QLD, AU, 10-15 Jun. 2012. https://doi. org/10.1109/CEC.2012.6256493[31] J. L. Rueda & I. Erlich, “Evaluation of the mean-variance mapping optimization for solving multimodal problems,” IEEE SIS, SIS, SG, 16-19 Apr. 2013. https://doi.org/10.1109/SIS.2013.6615153255239117Reactive powerMetaheuristic techniquesPower loss minimizationConstraint handlingMean-variance mapping optimizationPotencia reactivaTécnicas metaheurísticasMinimización de pérdidasManejo de restriccionesOptimización de mapeo de media-varianzaPublicationORIGINALAlgoritmo de Optimización de Mapeo de Media Varianza Aplicado al Despacho Óptimo de Potencia Reactiva.pdfAlgoritmo de Optimización de Mapeo de Media Varianza Aplicado al Despacho Óptimo de Potencia Reactiva.pdfArtículoapplication/pdf1032292https://repositorio.cuc.edu.co/bitstreams/fb569666-b13e-43fb-b28f-72b2dd9c26e3/download8c4351dc059046ffb5c77543214b0c3aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/67d6ead8-76ee-4e7b-be15-2a77eec4a0b8/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAlgoritmo de Optimización de Mapeo de Media Varianza Aplicado al Despacho Óptimo de Potencia Reactiva.pdf.txtAlgoritmo de Optimización de Mapeo de Media Varianza Aplicado al Despacho Óptimo de Potencia Reactiva.pdf.txtExtracted texttext/plain42124https://repositorio.cuc.edu.co/bitstreams/df47b801-4c42-42d9-9866-abdbcb9b5ade/downloadd0748aa9450726a10744a64dd3de81aaMD53THUMBNAILAlgoritmo de Optimización de Mapeo de Media Varianza Aplicado al Despacho Óptimo de Potencia Reactiva.pdf.jpgAlgoritmo de Optimización de Mapeo de Media Varianza Aplicado al Despacho Óptimo de Potencia Reactiva.pdf.jpgGenerated Thumbnailimage/jpeg12348https://repositorio.cuc.edu.co/bitstreams/3af29b09-d631-46f3-88d6-6bac28918571/download941a8cf2b60613657470c12d6d3721e6MD5411323/10314oai:repositorio.cuc.edu.co:11323/103142024-09-17 14:16:20.751https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos de autor 2021 INGE CUCopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=