Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+

This work reports S-TiO2 doped coatings to reduce Cr6+ to Cr3+ obtained from a Ti electrode through the Plasma Electrolytic Oxidation (PEO) process. The Ti sheets (20 × 20 × 1 mm) were submerged on 0.1 M H2SO4, and values of the duty cycle from 2% to 50% were applied to obtain various materials. SEM...

Full description

Autores:
Vargas-Villanueva, Steven
Velásquez-Tamayo, Juan Pablo
Torres-Cerón, Darwin Augusto
Mercado, D. Fabio
Torres-Palma, Ricardo A.
Riassetto, David
Soledad Riva, Julieta
Amaya-Roncancio, S.
Castilla-Acevedo, Samir Fernando
Restrepo-Parra, Elisabeth
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13988
Acceso en línea:
https://hdl.handle.net/11323/13988
https://repositorio.cuc.edu.co/
Palabra clave:
Cr6+
Reduction
PEO
Duty cycle
Wastewater
S-TiO2
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_a7be074b6dcae3312beddc3885bb275f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13988
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+
title Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+
spellingShingle Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+
Cr6+
Reduction
PEO
Duty cycle
Wastewater
S-TiO2
title_short Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+
title_full Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+
title_fullStr Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+
title_full_unstemmed Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+
title_sort Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+
dc.creator.fl_str_mv Vargas-Villanueva, Steven
Velásquez-Tamayo, Juan Pablo
Torres-Cerón, Darwin Augusto
Mercado, D. Fabio
Torres-Palma, Ricardo A.
Riassetto, David
Soledad Riva, Julieta
Amaya-Roncancio, S.
Castilla-Acevedo, Samir Fernando
Restrepo-Parra, Elisabeth
dc.contributor.author.none.fl_str_mv Vargas-Villanueva, Steven
Velásquez-Tamayo, Juan Pablo
Torres-Cerón, Darwin Augusto
Mercado, D. Fabio
Torres-Palma, Ricardo A.
Riassetto, David
Soledad Riva, Julieta
Amaya-Roncancio, S.
Castilla-Acevedo, Samir Fernando
Restrepo-Parra, Elisabeth
dc.subject.proposal.eng.fl_str_mv Cr6+
Reduction
PEO
Duty cycle
Wastewater
S-TiO2
topic Cr6+
Reduction
PEO
Duty cycle
Wastewater
S-TiO2
description This work reports S-TiO2 doped coatings to reduce Cr6+ to Cr3+ obtained from a Ti electrode through the Plasma Electrolytic Oxidation (PEO) process. The Ti sheets (20 × 20 × 1 mm) were submerged on 0.1 M H2SO4, and values of the duty cycle from 2% to 50% were applied to obtain various materials. SEM, XRD, AFM, XPS, and DRS techniques were used to characterize the resultant surfaces. It was observed that the duty cycle strongly in fluences the crystalline/amorphous ratio, anatase/rutile ratio, porosity density, pores size distribution, and surface roughness. Besides, it is explained that the introduction of SO4 2- into the TiO2 structure can take place either in the Ti or O places in the crystalline lattice. All materials showed photocatalytic properties to reduce Cr6+ to Cr3+ under UVC light (254 nm), decreasing the efficiency with the increase of the duty cycle. Addi tionally, the introduction of EDTA showed a positive synergy with the heterogeneous photocatalytic process when the material was obtained with the highest duty cycle. This last result was attributed to the relatively low bandgap and the high recombination rate; furthermore, EDTA acts as holes and hydroxyl radical scavenger. Thus, the photoelectrochemical system for the treatment of wastewater was evaluated, and again, the same materials showed the highest performance. In the same way, the re-use of the material obtained with the 2% duty cycle was tested, getting satisfactory results, obtaining 96.14 ± 2.77% Cr6+ reduction even after seven cycles of reuse.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-10
dc.date.accessioned.none.fl_str_mv 2025-02-26T17:23:53Z
dc.date.available.none.fl_str_mv 2025-02-26T17:23:53Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Steven Vargas-Villanueva, Juan Pablo Velásquez-Tamayo, Darwin Augusto Torres-Cerón, D. Fabio Mercado, Ricardo A. Torres-Palma, David Riassetto, Julieta Soledad Riva, S. Amaya-Roncancio, Samir Fernando Castilla-Acevedo, Elisabeth Restrepo-Parra, Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+, Journal of Environmental Chemical Engineering, Volume 11, Issue 5, 2023, 110246, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.110246.
dc.identifier.issn.none.fl_str_mv 2213-2929
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13988
dc.identifier.doi.none.fl_str_mv 10.1016/j.jece.2023.110246
dc.identifier.eissn.none.fl_str_mv 2213-3437
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Steven Vargas-Villanueva, Juan Pablo Velásquez-Tamayo, Darwin Augusto Torres-Cerón, D. Fabio Mercado, Ricardo A. Torres-Palma, David Riassetto, Julieta Soledad Riva, S. Amaya-Roncancio, Samir Fernando Castilla-Acevedo, Elisabeth Restrepo-Parra, Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+, Journal of Environmental Chemical Engineering, Volume 11, Issue 5, 2023, 110246, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.110246.
2213-2929
10.1016/j.jece.2023.110246
2213-3437
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13988
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Journal of environmental chemical engineering
dc.relation.references.none.fl_str_mv M. Brumovský, J. Oborn´ a, P. Lacina, M. Hegedüs, O. Sracek, J. Kolaˇrík, M. Petr, J. Kaˇslík, T. Hofmann, J. Filip, Sulfidated nano-scale zerovalent iron is able to effectively reduce in situ hexavalent chromium in a contaminated aquifer, J. Hazard. Mater. 405 (2021), 124665, https://doi.org/10.1016/J. JHAZMAT.2020.124665.
I. Ali, J.O. Kim, Visible-light-assisted photocatalytic activity of bismuth-TiO2 nanotube composites for chromium reduction and dye degradation, Chemosphere 207 (2018) 285–292, https://doi.org/10.1016/J.CHEMOSPHERE.2018.05.075.
J. Zhou, Y. Wang, J. Wang, W. Qiao, D. Long, L. Ling, Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres, J. Colloid Interface Sci. 462 (2016) 200–207, https://doi.org/ 10.1016/J.JCIS.2015.10.001.
D.R. Lindsay, K.J. Farley, R.F. Carbonaro, Oxidation of CrIII to CrVI during chlorination of drinking water, J. Environ. Monit. 14 (2012) 1789, https://doi.org/ 10.1039/c2em00012a.
World Health Organization, Guidelines for Drinking water Quality 3 ed, Geneva, 2004.
H. Qi, S. Wang, H. Liu, Y. Gao, T. Wang, Y. Huang, Synthesis of an organic–inorganic polypyrrole/titanium(IV) biphosphate hybrid for Cr(VI) removal, J. Mol. Liq. 215 (2016) 402–409, https://doi.org/10.1016/J. MOLLIQ.2015.12.060.
P. Malaviya, A. Singh, Physicochemical technologies for remediation of chromiumcontaining waters and wastewaters, Crit. Rev. Environ. Sci. Technol. 41 (2011) 1111–1172, https://doi.org/10.1080/10643380903392817.
R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study, Adsorpt. Sci. Technol. 36 (2018) 1066–1099, https://doi.org/10.1177/ 0263617417750739.
K.E. Ukhurebor, U.O. Aigbe, R.B. Onyancha, W. Nwankwo, O.A. Osibote, H. K. Paumo, O.M. Ama, C.O. Adetunji, I.U. Siloko, Effect of hexavalent chromium on the environment and removal techniques: a review, J. Environ. Manag. 280 (2021), 111809, https://doi.org/10.1016/j.jenvman.2020.111809.
J. Saien, A. Azizi, A.R. Soleymani, Parameter evaluation, kinetics, and energy consumption for Cr(VI) photocatalytic reduction under mild conditions, J. Iran. Chem. Soc. 11 (5) (2014) 1439–1448, https://doi.org/10.1007/S13738-014-0419- 5.
W. Liu, L. Yang, S. Xu, Y. Chen, B. Liu, Z. Li, C. Jiang, Efficient removal of hexavalent chromium from water by an adsorption–reduction mechanism with sandwiched nanocomposites, RSC Adv. 8 (2018) 15087–15093, https://doi.org/ 10.1039/C8RA01805G.
V.E. Pakade, N.T. Tavengwa, L.M. Madikizela, Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods, RSC Adv. 9 (2019) 26142–26164, https://doi.org/10.1039/C9RA05188K.
G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020), 103988, https://doi.org/10.1016/j. jece.2020.103988
O.A. Arotiba, B.O. Orimolade, B.A. Koiki, Visible light–driven photoelectrocatalytic semiconductor heterojunction anodes for water treatment applications, Curr. Opin. Electrochem. 22 (2020) 25–34, https://doi.org/10.1016/j.coelec.2020.03.018.
F. Di Natale, A. Erto, A. Lancia, D. Musmarra, Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon, J. Hazard. Mater. 281 (2015) 47–55, https://doi.org/10.1016/J.JHAZMAT.2014.07.072.
J.B. Islam, M. Furukawa, I. Tateishi, S. Kawakami, H. Katsumata, S. Kaneco, Enhanced photocatalytic reduction of toxic Cr(VI) with Cu modified ZnO nanoparticles in presence of EDTA under UV illumination, SN Appl. Sci. 1 (2019) 1240, https://doi.org/10.1007/s42452-019-1282-x.
C.M. Ma, Y.S. Shen, P.H. Lin, Photoreduction of Cr(VI) ions in aqueous solutions by UV/ photocatalytic processes, Int. J. Photoenergy 2012 (2012) 1–7, https://doi. org/10.1155/2012/381971.
X. Jin, X. Zhou, P. Sun, S. Lin, W. Cao, Z. Li, W. Liu, Photocatalytic degradation of norfloxacin using N-doped TiO2: optimization, mechanism, identification of intermediates and toxicity evaluation, Chemosphere 237 (2019), 124433, https:// doi.org/10.1016/J.CHEMOSPHERE.2019.124433.
M.P.B. Vega, M. Hinojosa-Reyes, A. Hernandez-Ramírez, ´ J.L.G. Mar, V. RodríguezGonz´ alez, L. Hinojosa-Reyes, Visible light photocatalytic activity of sol–gel Nidoped TiO2 on p-arsanilic acid degradation, J. Sol-Gel Sci. Technol. 85 (3) (2018) 723–731, https://doi.org/10.1007/S10971-018-4579-0.
J. Lang, K. Takahashi, M. Kubo, M. Shimada, Preparation of TiO2-CNT-Ag ternary composite film with enhanced photocatalytic activity via plasma-enhanced chemical vapor deposition, Catalysts 12 (2022) 508, https://doi.org/10.3390/ CATAL12050508
R. Guo, Y. Bao, Q. Kang, C. Liu, W. Zhang, Q. Zhu, Solvent-controlled synthesis and photocatalytic activity of hollow TiO2 microspheres prepared by the solvothermal method, Colloids Surf. A Physicochem Eng. Asp. 633 (2022), 127931, https://doi. org/10.1016/J.COLSURFA.2021.127931.
L. Zhang, J. Guo, B. Hao, H. Ma, WO3/TiO2 heterojunction photocatalyst prepared by reactive magnetron sputtering for Rhodamine B dye degradation, Opt. Mater. (Amst. ) 133 (2022), 113035, https://doi.org/10.1016/J.OPTMAT.2022.113035.
A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy, Surf. Coat. Technol. 130 (2000) 195–206, https://doi.org/10.1016/S0257-8972(00)00719-2
F. Simchen, M. Sieber, A. Kopp, T. Lampke, Introduction to plasma electrolytic oxidation—an overview of the process and applications, Coatings 10 (2020) 628, https://doi.org/10.3390/COATINGS10070628.
S. Durdu, O.F. ¨ Deniz, I. Kutbay, M. Usta, Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation, J. Alloy. Compd. 551 (2013) 422–429, https://doi.org/10.1016/J.JALLCOM.2012.11.024
O.A. Galvis, D. Quintero, J.G. Castano, ˜ H. Liu, G.E. Thompson, P. Skeldon, F. Echeverría, Formation of grooved and porous coatings on titanium by plasma electrolytic oxidation in H2SO4/H3PO4 electrolytes and effects of coating morphology on adhesive bonding, Surf. Coat. Technol. 269 (2015) 238–249, https://doi.org/10.1016/j.surfcoat.2015.02.036
X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer, M. L. Zheludkevich, Plasma electrolytic oxidation coatings with particle additions – a review, Surf. Coat. Technol. 307 (2016) 1165–1182, https://doi.org/10.1016/j. surfcoat.2016.08.055.
A. Fattah-Alhosseini, M.K. Keshavarz, M. Molaei, S.O. Gashti, Plasma electrolytic oxidation (PEO) process on commercially pure Ti surface: effects of electrolyte on the microstructure and corrosion behavior of coatings, Metall. Mater. Trans. A 49 (10) (2018) 4966–4979, https://doi.org/10.1007/S11661-018-4824-8.
M.V. Diamanti, M.P. Pedeferri, Effect of anodic oxidation parameters on the titanium oxides formation 49 (2007) 939–948, https://doi.org/10.1016/j. corsci.2006.04.002.
S. Vargas-Villanueva, D.A. Torres-Ceron, S. Amaya-Roncancio, I.D. ArellanoRamírez, J.S. Riva, E. Restrepo-Parra, Study of the incorporation of S in TiO2/SO4 2− Coatings produced by PEO process through XPS and DFT, Appl. Surf. Sci. 599 (2022), 153811, https://doi.org/10.1016/j.apsusc.2022.153811.
A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol. 122 (1999) 73–93, https://doi.org/ 10.1016/S0257-8972(99)00441-7.
H. Khanmohammadi, S.R. Allahkaram, N. Towhidi, Microstructural, corrosion and mechanical behavior of two step plasma electrolyte oxidation ceramic coatings, Trans. Nonferrous Met. Soc. China 27 (2017) 2225–2233, https://doi.org/ 10.1016/S1003-6326(17)60248-6.
B. Yoo, K.R. Shin, D.Y. Hwang, D.H. Lee, D.H. Shin, Effect of surface roughness on leakage current and corrosion resistance of oxide layer on AZ91 Mg alloy prepared by plasma electrolytic oxidation, Appl. Surf. Sci. 256 (2010) 6667–6672, https:// doi.org/10.1016/J.APSUSC.2010.04.067.
R.A. Spurr, H. Myers, Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal. Chem. 29 (1957) 760–762, https://doi.org/10.1021/ ac60125a006.
J. Pelleg, E. Elish, D. Mogilyanski, Evaluation of average domain size and microstrain in a silicide film by the Williamson-Hall method, Metall. Mater. Trans. A 36 (2005) 3187–3194, https://doi.org/10.1007/s11661-005-0089-0.
V. Alexander, A. Naumkin, Kraut-Vass, W. Stephen, Gaarenstroom, J.P. Cedric, NIST X-ray Photoelectron Spectroscopy Database, Measurement Services Division of the National Institute of Standards and Technology (NIST) 20899, NIST,, 2012, p. 20899, https://doi.org/10.18434/T4T88K.
American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 2017.
A.V. Rangel, M.G. Becerra, H. Guerrero-Amaya, L.M. Ballesteros, D.F. Mercado, Sulfate radical anion activated agro-industrial residues for Cr(VI) adsorption: is this activation process technically and economically feasible? J. Clean. Prod. 289 (2021), 125793 https://doi.org/10.1016/j.jclepro.2021.125793.
R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New perspectives for advanced oxidation processes, J. Environ. Manag. 195 (2017) 93–99, https://doi.org/ 10.1016/j.jenvman.2017.04.010.
M.-K. Han, J.-B. Im, M.-J. Hwang, B.-J. Kim, H.-Y. Kim, Y.-J. Park, Effect of indium content on the microstructure, mechanical properties and corrosion behavior of titanium alloys, Metals 5 (2015) 850–862, https://doi.org/10.3390/met5020850.
L. Liu, H. Zhao, J.M. Andino, Y. Li, Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry, ACS Catal. 2 (2012) 1817–1828, https://doi.org/ 10.1021/cs300273q.
F. Scarpelli, T.F. Mastropietro, T. Poerio, N. Godbert, Mesoporous TiO2 Thin Films: State of the Art, in: Titanium Dioxide - Material for a Sustainable Environment, InTech, 2018, https://doi.org/10.5772/intechopen.74244.
M.T. Colomer, K.J. Duarte, A.L. Ortiz, D.F. Mercado, L.M. Ballesteros-Rueda, Influence of Pr3+ doping on the synthesis of colloidal sols and nanoparticulate TiO2 xerogels and their photocatalytic activity, Mater. Charact. 182 (2021), 111536, https://doi.org/10.1016/j.matchar.2021.111536.
M. Gonçalves, J. Pereira, J. Matos, H. Vasconcelos, Photonic band gap and bactericide performance of amorphous sol-gel titania: an alternative to crystalline TiO2, Molecules 23 (2018) 1677, https://doi.org/10.3390/molecules23071677.
D.A. Torres-Ceron, E. Restrepo-Parra, C.D. Acosta-Medina, D. Escobar-Rincon, R. Ospina-Ospina, Study of duty cycle influence on the band gap energy of TiO2/P coatings obtained by PEO process, Surf. Coat. Technol. 375 (2019) 221–228, https://doi.org/10.1016/j.surfcoat.2019.06.021.
H.-P. Qi, H.-L. Wang, Facile synthesis of Pr-doped molecularly imprinted TiO2 mesocrystals with high preferential photocatalytic degradation performance, Appl. Surf. Sci. 511 (2020), 145607, https://doi.org/10.1016/j.apsusc.2020.145607.
K. Yang, Y. Dai, B. Huang, Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles, J. Phys. Chem. C 111 (2007) 18985–18994, https://doi.org/10.1021/JP0756350.
D.A. Torres-Ceron, S. Amaya-Roncancio, J.S. Riva, A. Vargas-Eudor, D. EscobarRincon, E. Restrepo-Parra, Incorporation of P5+ and P3− from phosphate precursor in TiO2:P coatings produced by PEO: XPS and DFT study, Surf. Coat. Technol. 421 (2021), 127437, https://doi.org/10.1016/j.surfcoat.2021.127437.
M. Murata, K. Wakino, S. Ikeda, X-ray photoelectron spectroscopic study of perovskite titanates and related compounds: An example of the effect of polarization on chemical shifts, J. Electron Spectros. Relat. Phenom. 6 (1975) 459–464, https://doi.org/10.1016/0368-2048(75)80032-6.
T. Boningari, S.N.R. Inturi, M. Suidan, P.G. Smirniotis, Novel one-step synthesis of sulfur doped-TiO2 by flame spray pyrolysis for visible light photocatalytic degradation of acetaldehyde, Chem. Eng. J. 339 (2018) 249–258, https://doi.org/ 10.1016/j.cej.2018.01.063.
T. Dickinson, A.F. Povey, P.M.A. Sherwood, Dissolution and passivation of nickel. An X-ray photoelectron spectroscopic study, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 73 (1977) 327–343, https://doi.org/10.1039/ F19777300327
H. Martinez, C. Auriel, D. Gonbeau, M. Loudet, G. Pfister-Guillouzo, Studies of 1T TiS2 by STM, AFM and XPS: the mechanism of hydrolysis in air, Appl. Surf. Sci. 93 (1996) 231–235, https://doi.org/10.1016/0169-4332(95)00339-8.
M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard, Micro-arc oxidized S-TiO2 nanoporous layers: Cationic or anionic doping? Mater. Lett. 64 (2010) 2215–2218, https://doi.org/10.1016/j.matlet.2010.07.010.
M. Aliofkhazraei, D.D. Macdonald, E. Matykina, E.V. Parfenov, V.S. Egorkin, J. A. Curran, S.C. Troughton, S.L. Sinebryukhov, S.V. Gnedenkov, T. Lampke, F. Simchen, H.F. Nabavi, Review of plasma electrolytic oxidation of titanium substrates: mechanism, properties, applications and limitations, Appl. Surf. Sci. Adv. 5 (2021), 100121, https://doi.org/10.1016/j.apsadv.2021.100121
J. Cai, F. Cao, L. Chang, J. Zheng, J. Zhang, C. Cao, The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film, Appl. Surf. Sci. 257 (2011) 3804–3811, https://doi.org/10.1016/J. APSUSC.2010.11.153
M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, R. Molaei, In situ derivation of sulfur activated TiO2 nano porous layers through pulse-micro arc oxidation technology, Mater. Res. Bull. 46 (2011) 1642–1647, https://doi.org/10.1016/j. materresbull.2011.06.017.
M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, R. Molaei, In situ derivation of sulfur activated TiO2 nano porous layers through pulse-micro arc oxidation technology, Mater. Res. Bull. 46 (2011) 1642–1647, https://doi.org/10.1016/j. materresbull.2011.06.017.
B. Kasalica, M. Petkovi´c-Benazzouz, M. Sarvan, I. Belˇca, B. Maksimovi´c, B. Misailovi´c, Z. Popovi´c, Mechanisms of plasma electrolytic oxidation of aluminum at the multi-hour timescales, Surf. Coat. Technol. 390 (2020), 125681, https://doi.org/10.1016/J.SURFCOAT.2020.125681.
R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28 (1936) 988–994, https://doi.org/10.1021/ie50320a024.
M. Szabo, ´ J. Kalm´ ar, T. Ditroi, ´ G. Bell´er, G. Lente, N. Simic, I. F´ abi´ an, Equilibria and kinetics of chromium(VI) speciation in aqueous solution – a comprehensive study from pH 2 to 11, Inorg. Chim. Acta 472 (2018) 295–301, https://doi.org/ 10.1016/J.ICA.2017.05.038.
F.E.B. Coelho, V.M. Candelario, E.M.R. Araújo, T.L.S. Miranda, G. Magnacca, Photocatalytic reduction of Cr(VI) in the presence of humic acid using immobilized Ce–ZrO2 under visible light, Nanomaterials 10 (10) (2020) 779, https://doi.org/ 10.3390/NANO10040779.
S.A. Rosli, N. Alias, N. Bashirom, S. Ismail, W.K. Tan, G. Kawamura, A. Matsuda, Z. Lockman, Hexavalent chromium removal via photoreduction by sunlight on titanium–dioxide nanotubes formed by anodization with a fluorinated glycerol–water electrolyte, Catalysts Vol. 11 (11) (2021) 376, https://doi.org/ 10.3390/CATAL11030376
J.B. Islam, M. Furukawa, I. Tateishi, H. Katsumata, S. Kaneco, Photocatalytic reduction of hexavalent chromium with nanosized TiO2 in presence of formic acid, ChemEngineering 3 (3) (2019) 33, https://doi.org/10.3390/ CHEMENGINEERING3020033.
L. Xu, Y. Liu, Z. Hu, J.C. Yu, Converting cellulose waste into a high-efficiency photocatalyst for Cr(VI) reduction via molecular oxygen activation, Appl. Catal. B 295 (2021), 120253, https://doi.org/10.1016/J.APCATB.2021.120253.
M.I. Litter, Last advances on TiO2-photocatalytic removal of chromium, uranium and arsenic, Curr. Opin. Green Sustain. Chem. 6 (2017) 150–158, https://doi.org/ 10.1016/J.COGSC.2017.04.002.
S. El Hakim, T. Chave, S.I. Nikitenko, Photocatalytic and sonocatalytic degradation of EDTA and Rhodamine B over Ti0 and Ti@TiO2 nanoparticles, Catalysts 11 (2021) 928, https://doi.org/10.3390/CATAL11080928/S1.
J. Threeprom, S. Purachaka, L. Potipan, Simultaneous determination of Cr(III)– EDTA and Cr(VI) by ion interaction chromatography using a C18 column, J. Chromatogr. A 1073 (2005) 291–295, https://doi.org/10.1016/j. chroma.2004.09.053.
Z. Yao, F. Jia, Y. Jiang, C. Li, Z. Jiang, X. Bai, Photocatalytic reduction of potassium chromate by Zn-doped TiO2/Ti film catalyst, Appl. Surf. Sci. 256 (2010) 1793–1797, https://doi.org/10.1016/j.apsusc.2009.10.005.
D.A. Torres, F. Gordillo-Delgado, J. Plazas-Saldana, ˜ Formation of TiO2 nanostructure by plasma electrolytic oxidation for Cr(VI) reduction, J. Phys. Conf. Ser. 786 (2017), 012046, https://doi.org/10.1088/1742-6596/786/1/012046.
dc.relation.citationendpage.none.fl_str_mv 14
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationissue.none.fl_str_mv 5
dc.relation.citationvolume.none.fl_str_mv 11
dc.rights.eng.fl_str_mv © 2023 Elsevier Ltd. All rights reserved
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2023 Elsevier Ltd. All rights reserved
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv United Kingdom
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2213343723009855
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/b8904a4d-41f6-490b-9174-d8057abd94c5/download
https://repositorio.cuc.edu.co/bitstreams/d2ed0238-a4fd-487a-8241-269f8b150441/download
https://repositorio.cuc.edu.co/bitstreams/87835f2e-77eb-48d5-985f-dfacda43ae67/download
https://repositorio.cuc.edu.co/bitstreams/1ab1d635-0bf4-48cf-a558-319f899e1654/download
bitstream.checksum.fl_str_mv 3eb3eca1de5df94a652d3084c9761bdc
73a5432e0b76442b22b026844140d683
161f1885268b9485cd4fbdc2aee93c0e
e07655a0ecba78108199c5aa906b0041
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166722256896000
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 Elsevier Ltd. All rights reservedhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas-Villanueva, StevenVelásquez-Tamayo, Juan PabloTorres-Cerón, Darwin AugustoMercado, D. FabioTorres-Palma, Ricardo A.Riassetto, DavidSoledad Riva, JulietaAmaya-Roncancio, S.Castilla-Acevedo, Samir FernandoRestrepo-Parra, Elisabeth2025-02-26T17:23:53Z2025-02-26T17:23:53Z2023-10Steven Vargas-Villanueva, Juan Pablo Velásquez-Tamayo, Darwin Augusto Torres-Cerón, D. Fabio Mercado, Ricardo A. Torres-Palma, David Riassetto, Julieta Soledad Riva, S. Amaya-Roncancio, Samir Fernando Castilla-Acevedo, Elisabeth Restrepo-Parra, Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+, Journal of Environmental Chemical Engineering, Volume 11, Issue 5, 2023, 110246, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.110246.2213-2929https://hdl.handle.net/11323/1398810.1016/j.jece.2023.1102462213-3437Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This work reports S-TiO2 doped coatings to reduce Cr6+ to Cr3+ obtained from a Ti electrode through the Plasma Electrolytic Oxidation (PEO) process. The Ti sheets (20 × 20 × 1 mm) were submerged on 0.1 M H2SO4, and values of the duty cycle from 2% to 50% were applied to obtain various materials. SEM, XRD, AFM, XPS, and DRS techniques were used to characterize the resultant surfaces. It was observed that the duty cycle strongly in fluences the crystalline/amorphous ratio, anatase/rutile ratio, porosity density, pores size distribution, and surface roughness. Besides, it is explained that the introduction of SO4 2- into the TiO2 structure can take place either in the Ti or O places in the crystalline lattice. All materials showed photocatalytic properties to reduce Cr6+ to Cr3+ under UVC light (254 nm), decreasing the efficiency with the increase of the duty cycle. Addi tionally, the introduction of EDTA showed a positive synergy with the heterogeneous photocatalytic process when the material was obtained with the highest duty cycle. This last result was attributed to the relatively low bandgap and the high recombination rate; furthermore, EDTA acts as holes and hydroxyl radical scavenger. Thus, the photoelectrochemical system for the treatment of wastewater was evaluated, and again, the same materials showed the highest performance. In the same way, the re-use of the material obtained with the 2% duty cycle was tested, getting satisfactory results, obtaining 96.14 ± 2.77% Cr6+ reduction even after seven cycles of reuse.14 páginasapplication/pdfengElsevier B.V.United Kingdomhttps://www.sciencedirect.com/science/article/pii/S2213343723009855Impact of the duty cycle on the morphology and photocatalytic properties of S-TiO2 obtained by plasma electrolytic oxidation to treat real electroplating wastewater contaminated with Cr6+Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of environmental chemical engineeringM. Brumovský, J. Oborn´ a, P. Lacina, M. Hegedüs, O. Sracek, J. Kolaˇrík, M. Petr, J. Kaˇslík, T. Hofmann, J. Filip, Sulfidated nano-scale zerovalent iron is able to effectively reduce in situ hexavalent chromium in a contaminated aquifer, J. Hazard. Mater. 405 (2021), 124665, https://doi.org/10.1016/J. JHAZMAT.2020.124665.I. Ali, J.O. Kim, Visible-light-assisted photocatalytic activity of bismuth-TiO2 nanotube composites for chromium reduction and dye degradation, Chemosphere 207 (2018) 285–292, https://doi.org/10.1016/J.CHEMOSPHERE.2018.05.075.J. Zhou, Y. Wang, J. Wang, W. Qiao, D. Long, L. Ling, Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres, J. Colloid Interface Sci. 462 (2016) 200–207, https://doi.org/ 10.1016/J.JCIS.2015.10.001.D.R. Lindsay, K.J. Farley, R.F. Carbonaro, Oxidation of CrIII to CrVI during chlorination of drinking water, J. Environ. Monit. 14 (2012) 1789, https://doi.org/ 10.1039/c2em00012a.World Health Organization, Guidelines for Drinking water Quality 3 ed, Geneva, 2004.H. Qi, S. Wang, H. Liu, Y. Gao, T. Wang, Y. Huang, Synthesis of an organic–inorganic polypyrrole/titanium(IV) biphosphate hybrid for Cr(VI) removal, J. Mol. Liq. 215 (2016) 402–409, https://doi.org/10.1016/J. MOLLIQ.2015.12.060.P. Malaviya, A. Singh, Physicochemical technologies for remediation of chromiumcontaining waters and wastewaters, Crit. Rev. Environ. Sci. Technol. 41 (2011) 1111–1172, https://doi.org/10.1080/10643380903392817.R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study, Adsorpt. Sci. Technol. 36 (2018) 1066–1099, https://doi.org/10.1177/ 0263617417750739.K.E. Ukhurebor, U.O. Aigbe, R.B. Onyancha, W. Nwankwo, O.A. Osibote, H. K. Paumo, O.M. Ama, C.O. Adetunji, I.U. Siloko, Effect of hexavalent chromium on the environment and removal techniques: a review, J. Environ. Manag. 280 (2021), 111809, https://doi.org/10.1016/j.jenvman.2020.111809.J. Saien, A. Azizi, A.R. Soleymani, Parameter evaluation, kinetics, and energy consumption for Cr(VI) photocatalytic reduction under mild conditions, J. Iran. Chem. Soc. 11 (5) (2014) 1439–1448, https://doi.org/10.1007/S13738-014-0419- 5.W. Liu, L. Yang, S. Xu, Y. Chen, B. Liu, Z. Li, C. Jiang, Efficient removal of hexavalent chromium from water by an adsorption–reduction mechanism with sandwiched nanocomposites, RSC Adv. 8 (2018) 15087–15093, https://doi.org/ 10.1039/C8RA01805G.V.E. Pakade, N.T. Tavengwa, L.M. Madikizela, Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods, RSC Adv. 9 (2019) 26142–26164, https://doi.org/10.1039/C9RA05188K.G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020), 103988, https://doi.org/10.1016/j. jece.2020.103988O.A. Arotiba, B.O. Orimolade, B.A. Koiki, Visible light–driven photoelectrocatalytic semiconductor heterojunction anodes for water treatment applications, Curr. Opin. Electrochem. 22 (2020) 25–34, https://doi.org/10.1016/j.coelec.2020.03.018.F. Di Natale, A. Erto, A. Lancia, D. Musmarra, Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon, J. Hazard. Mater. 281 (2015) 47–55, https://doi.org/10.1016/J.JHAZMAT.2014.07.072.J.B. Islam, M. Furukawa, I. Tateishi, S. Kawakami, H. Katsumata, S. Kaneco, Enhanced photocatalytic reduction of toxic Cr(VI) with Cu modified ZnO nanoparticles in presence of EDTA under UV illumination, SN Appl. Sci. 1 (2019) 1240, https://doi.org/10.1007/s42452-019-1282-x.C.M. Ma, Y.S. Shen, P.H. Lin, Photoreduction of Cr(VI) ions in aqueous solutions by UV/ photocatalytic processes, Int. J. Photoenergy 2012 (2012) 1–7, https://doi. org/10.1155/2012/381971.X. Jin, X. Zhou, P. Sun, S. Lin, W. Cao, Z. Li, W. Liu, Photocatalytic degradation of norfloxacin using N-doped TiO2: optimization, mechanism, identification of intermediates and toxicity evaluation, Chemosphere 237 (2019), 124433, https:// doi.org/10.1016/J.CHEMOSPHERE.2019.124433.M.P.B. Vega, M. Hinojosa-Reyes, A. Hernandez-Ramírez, ´ J.L.G. Mar, V. RodríguezGonz´ alez, L. Hinojosa-Reyes, Visible light photocatalytic activity of sol–gel Nidoped TiO2 on p-arsanilic acid degradation, J. Sol-Gel Sci. Technol. 85 (3) (2018) 723–731, https://doi.org/10.1007/S10971-018-4579-0.J. Lang, K. Takahashi, M. Kubo, M. Shimada, Preparation of TiO2-CNT-Ag ternary composite film with enhanced photocatalytic activity via plasma-enhanced chemical vapor deposition, Catalysts 12 (2022) 508, https://doi.org/10.3390/ CATAL12050508R. Guo, Y. Bao, Q. Kang, C. Liu, W. Zhang, Q. Zhu, Solvent-controlled synthesis and photocatalytic activity of hollow TiO2 microspheres prepared by the solvothermal method, Colloids Surf. A Physicochem Eng. Asp. 633 (2022), 127931, https://doi. org/10.1016/J.COLSURFA.2021.127931.L. Zhang, J. Guo, B. Hao, H. Ma, WO3/TiO2 heterojunction photocatalyst prepared by reactive magnetron sputtering for Rhodamine B dye degradation, Opt. Mater. (Amst. ) 133 (2022), 113035, https://doi.org/10.1016/J.OPTMAT.2022.113035.A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy, Surf. Coat. Technol. 130 (2000) 195–206, https://doi.org/10.1016/S0257-8972(00)00719-2F. Simchen, M. Sieber, A. Kopp, T. Lampke, Introduction to plasma electrolytic oxidation—an overview of the process and applications, Coatings 10 (2020) 628, https://doi.org/10.3390/COATINGS10070628.S. Durdu, O.F. ¨ Deniz, I. Kutbay, M. Usta, Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation, J. Alloy. Compd. 551 (2013) 422–429, https://doi.org/10.1016/J.JALLCOM.2012.11.024O.A. Galvis, D. Quintero, J.G. Castano, ˜ H. Liu, G.E. Thompson, P. Skeldon, F. Echeverría, Formation of grooved and porous coatings on titanium by plasma electrolytic oxidation in H2SO4/H3PO4 electrolytes and effects of coating morphology on adhesive bonding, Surf. Coat. Technol. 269 (2015) 238–249, https://doi.org/10.1016/j.surfcoat.2015.02.036X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer, M. L. Zheludkevich, Plasma electrolytic oxidation coatings with particle additions – a review, Surf. Coat. Technol. 307 (2016) 1165–1182, https://doi.org/10.1016/j. surfcoat.2016.08.055.A. Fattah-Alhosseini, M.K. Keshavarz, M. Molaei, S.O. Gashti, Plasma electrolytic oxidation (PEO) process on commercially pure Ti surface: effects of electrolyte on the microstructure and corrosion behavior of coatings, Metall. Mater. Trans. A 49 (10) (2018) 4966–4979, https://doi.org/10.1007/S11661-018-4824-8.M.V. Diamanti, M.P. Pedeferri, Effect of anodic oxidation parameters on the titanium oxides formation 49 (2007) 939–948, https://doi.org/10.1016/j. corsci.2006.04.002.S. Vargas-Villanueva, D.A. Torres-Ceron, S. Amaya-Roncancio, I.D. ArellanoRamírez, J.S. Riva, E. Restrepo-Parra, Study of the incorporation of S in TiO2/SO4 2− Coatings produced by PEO process through XPS and DFT, Appl. Surf. Sci. 599 (2022), 153811, https://doi.org/10.1016/j.apsusc.2022.153811.A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol. 122 (1999) 73–93, https://doi.org/ 10.1016/S0257-8972(99)00441-7.H. Khanmohammadi, S.R. Allahkaram, N. Towhidi, Microstructural, corrosion and mechanical behavior of two step plasma electrolyte oxidation ceramic coatings, Trans. Nonferrous Met. Soc. China 27 (2017) 2225–2233, https://doi.org/ 10.1016/S1003-6326(17)60248-6.B. Yoo, K.R. Shin, D.Y. Hwang, D.H. Lee, D.H. Shin, Effect of surface roughness on leakage current and corrosion resistance of oxide layer on AZ91 Mg alloy prepared by plasma electrolytic oxidation, Appl. Surf. Sci. 256 (2010) 6667–6672, https:// doi.org/10.1016/J.APSUSC.2010.04.067.R.A. Spurr, H. Myers, Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal. Chem. 29 (1957) 760–762, https://doi.org/10.1021/ ac60125a006.J. Pelleg, E. Elish, D. Mogilyanski, Evaluation of average domain size and microstrain in a silicide film by the Williamson-Hall method, Metall. Mater. Trans. A 36 (2005) 3187–3194, https://doi.org/10.1007/s11661-005-0089-0.V. Alexander, A. Naumkin, Kraut-Vass, W. Stephen, Gaarenstroom, J.P. Cedric, NIST X-ray Photoelectron Spectroscopy Database, Measurement Services Division of the National Institute of Standards and Technology (NIST) 20899, NIST,, 2012, p. 20899, https://doi.org/10.18434/T4T88K.American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 2017.A.V. Rangel, M.G. Becerra, H. Guerrero-Amaya, L.M. Ballesteros, D.F. Mercado, Sulfate radical anion activated agro-industrial residues for Cr(VI) adsorption: is this activation process technically and economically feasible? J. Clean. Prod. 289 (2021), 125793 https://doi.org/10.1016/j.jclepro.2021.125793.R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New perspectives for advanced oxidation processes, J. Environ. Manag. 195 (2017) 93–99, https://doi.org/ 10.1016/j.jenvman.2017.04.010.M.-K. Han, J.-B. Im, M.-J. Hwang, B.-J. Kim, H.-Y. Kim, Y.-J. Park, Effect of indium content on the microstructure, mechanical properties and corrosion behavior of titanium alloys, Metals 5 (2015) 850–862, https://doi.org/10.3390/met5020850.L. Liu, H. Zhao, J.M. Andino, Y. Li, Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry, ACS Catal. 2 (2012) 1817–1828, https://doi.org/ 10.1021/cs300273q.F. Scarpelli, T.F. Mastropietro, T. Poerio, N. Godbert, Mesoporous TiO2 Thin Films: State of the Art, in: Titanium Dioxide - Material for a Sustainable Environment, InTech, 2018, https://doi.org/10.5772/intechopen.74244.M.T. Colomer, K.J. Duarte, A.L. Ortiz, D.F. Mercado, L.M. Ballesteros-Rueda, Influence of Pr3+ doping on the synthesis of colloidal sols and nanoparticulate TiO2 xerogels and their photocatalytic activity, Mater. Charact. 182 (2021), 111536, https://doi.org/10.1016/j.matchar.2021.111536.M. Gonçalves, J. Pereira, J. Matos, H. Vasconcelos, Photonic band gap and bactericide performance of amorphous sol-gel titania: an alternative to crystalline TiO2, Molecules 23 (2018) 1677, https://doi.org/10.3390/molecules23071677.D.A. Torres-Ceron, E. Restrepo-Parra, C.D. Acosta-Medina, D. Escobar-Rincon, R. Ospina-Ospina, Study of duty cycle influence on the band gap energy of TiO2/P coatings obtained by PEO process, Surf. Coat. Technol. 375 (2019) 221–228, https://doi.org/10.1016/j.surfcoat.2019.06.021.H.-P. Qi, H.-L. Wang, Facile synthesis of Pr-doped molecularly imprinted TiO2 mesocrystals with high preferential photocatalytic degradation performance, Appl. Surf. Sci. 511 (2020), 145607, https://doi.org/10.1016/j.apsusc.2020.145607.K. Yang, Y. Dai, B. Huang, Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles, J. Phys. Chem. C 111 (2007) 18985–18994, https://doi.org/10.1021/JP0756350.D.A. Torres-Ceron, S. Amaya-Roncancio, J.S. Riva, A. Vargas-Eudor, D. EscobarRincon, E. Restrepo-Parra, Incorporation of P5+ and P3− from phosphate precursor in TiO2:P coatings produced by PEO: XPS and DFT study, Surf. Coat. Technol. 421 (2021), 127437, https://doi.org/10.1016/j.surfcoat.2021.127437.M. Murata, K. Wakino, S. Ikeda, X-ray photoelectron spectroscopic study of perovskite titanates and related compounds: An example of the effect of polarization on chemical shifts, J. Electron Spectros. Relat. Phenom. 6 (1975) 459–464, https://doi.org/10.1016/0368-2048(75)80032-6.T. Boningari, S.N.R. Inturi, M. Suidan, P.G. Smirniotis, Novel one-step synthesis of sulfur doped-TiO2 by flame spray pyrolysis for visible light photocatalytic degradation of acetaldehyde, Chem. Eng. J. 339 (2018) 249–258, https://doi.org/ 10.1016/j.cej.2018.01.063.T. Dickinson, A.F. Povey, P.M.A. Sherwood, Dissolution and passivation of nickel. An X-ray photoelectron spectroscopic study, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 73 (1977) 327–343, https://doi.org/10.1039/ F19777300327H. Martinez, C. Auriel, D. Gonbeau, M. Loudet, G. Pfister-Guillouzo, Studies of 1T TiS2 by STM, AFM and XPS: the mechanism of hydrolysis in air, Appl. Surf. Sci. 93 (1996) 231–235, https://doi.org/10.1016/0169-4332(95)00339-8.M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard, Micro-arc oxidized S-TiO2 nanoporous layers: Cationic or anionic doping? Mater. Lett. 64 (2010) 2215–2218, https://doi.org/10.1016/j.matlet.2010.07.010.M. Aliofkhazraei, D.D. Macdonald, E. Matykina, E.V. Parfenov, V.S. Egorkin, J. A. Curran, S.C. Troughton, S.L. Sinebryukhov, S.V. Gnedenkov, T. Lampke, F. Simchen, H.F. Nabavi, Review of plasma electrolytic oxidation of titanium substrates: mechanism, properties, applications and limitations, Appl. Surf. Sci. Adv. 5 (2021), 100121, https://doi.org/10.1016/j.apsadv.2021.100121J. Cai, F. Cao, L. Chang, J. Zheng, J. Zhang, C. Cao, The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film, Appl. Surf. Sci. 257 (2011) 3804–3811, https://doi.org/10.1016/J. APSUSC.2010.11.153M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, R. Molaei, In situ derivation of sulfur activated TiO2 nano porous layers through pulse-micro arc oxidation technology, Mater. Res. Bull. 46 (2011) 1642–1647, https://doi.org/10.1016/j. materresbull.2011.06.017.M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, R. Molaei, In situ derivation of sulfur activated TiO2 nano porous layers through pulse-micro arc oxidation technology, Mater. Res. Bull. 46 (2011) 1642–1647, https://doi.org/10.1016/j. materresbull.2011.06.017.B. Kasalica, M. Petkovi´c-Benazzouz, M. Sarvan, I. Belˇca, B. Maksimovi´c, B. Misailovi´c, Z. Popovi´c, Mechanisms of plasma electrolytic oxidation of aluminum at the multi-hour timescales, Surf. Coat. Technol. 390 (2020), 125681, https://doi.org/10.1016/J.SURFCOAT.2020.125681.R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28 (1936) 988–994, https://doi.org/10.1021/ie50320a024.M. Szabo, ´ J. Kalm´ ar, T. Ditroi, ´ G. Bell´er, G. Lente, N. Simic, I. F´ abi´ an, Equilibria and kinetics of chromium(VI) speciation in aqueous solution – a comprehensive study from pH 2 to 11, Inorg. Chim. Acta 472 (2018) 295–301, https://doi.org/ 10.1016/J.ICA.2017.05.038.F.E.B. Coelho, V.M. Candelario, E.M.R. Araújo, T.L.S. Miranda, G. Magnacca, Photocatalytic reduction of Cr(VI) in the presence of humic acid using immobilized Ce–ZrO2 under visible light, Nanomaterials 10 (10) (2020) 779, https://doi.org/ 10.3390/NANO10040779.S.A. Rosli, N. Alias, N. Bashirom, S. Ismail, W.K. Tan, G. Kawamura, A. Matsuda, Z. Lockman, Hexavalent chromium removal via photoreduction by sunlight on titanium–dioxide nanotubes formed by anodization with a fluorinated glycerol–water electrolyte, Catalysts Vol. 11 (11) (2021) 376, https://doi.org/ 10.3390/CATAL11030376J.B. Islam, M. Furukawa, I. Tateishi, H. Katsumata, S. Kaneco, Photocatalytic reduction of hexavalent chromium with nanosized TiO2 in presence of formic acid, ChemEngineering 3 (3) (2019) 33, https://doi.org/10.3390/ CHEMENGINEERING3020033.L. Xu, Y. Liu, Z. Hu, J.C. Yu, Converting cellulose waste into a high-efficiency photocatalyst for Cr(VI) reduction via molecular oxygen activation, Appl. Catal. B 295 (2021), 120253, https://doi.org/10.1016/J.APCATB.2021.120253.M.I. Litter, Last advances on TiO2-photocatalytic removal of chromium, uranium and arsenic, Curr. Opin. Green Sustain. Chem. 6 (2017) 150–158, https://doi.org/ 10.1016/J.COGSC.2017.04.002.S. El Hakim, T. Chave, S.I. Nikitenko, Photocatalytic and sonocatalytic degradation of EDTA and Rhodamine B over Ti0 and Ti@TiO2 nanoparticles, Catalysts 11 (2021) 928, https://doi.org/10.3390/CATAL11080928/S1.J. Threeprom, S. Purachaka, L. Potipan, Simultaneous determination of Cr(III)– EDTA and Cr(VI) by ion interaction chromatography using a C18 column, J. Chromatogr. A 1073 (2005) 291–295, https://doi.org/10.1016/j. chroma.2004.09.053.Z. Yao, F. Jia, Y. Jiang, C. Li, Z. Jiang, X. Bai, Photocatalytic reduction of potassium chromate by Zn-doped TiO2/Ti film catalyst, Appl. Surf. Sci. 256 (2010) 1793–1797, https://doi.org/10.1016/j.apsusc.2009.10.005.D.A. Torres, F. Gordillo-Delgado, J. Plazas-Saldana, ˜ Formation of TiO2 nanostructure by plasma electrolytic oxidation for Cr(VI) reduction, J. Phys. Conf. Ser. 786 (2017), 012046, https://doi.org/10.1088/1742-6596/786/1/012046.141511Cr6+ReductionPEODuty cycleWastewaterS-TiO2PublicationORIGINALImpact of the duty cycle on the morphology and photocatalytic properties.pdfImpact of the duty cycle on the morphology and photocatalytic properties.pdfapplication/pdf5904056https://repositorio.cuc.edu.co/bitstreams/b8904a4d-41f6-490b-9174-d8057abd94c5/download3eb3eca1de5df94a652d3084c9761bdcMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/d2ed0238-a4fd-487a-8241-269f8b150441/download73a5432e0b76442b22b026844140d683MD52TEXTImpact of the duty cycle on the morphology and photocatalytic properties.pdf.txtImpact of the duty cycle on the morphology and photocatalytic properties.pdf.txtExtracted texttext/plain67738https://repositorio.cuc.edu.co/bitstreams/87835f2e-77eb-48d5-985f-dfacda43ae67/download161f1885268b9485cd4fbdc2aee93c0eMD53THUMBNAILImpact of the duty cycle on the morphology and photocatalytic properties.pdf.jpgImpact of the duty cycle on the morphology and photocatalytic properties.pdf.jpgGenerated Thumbnailimage/jpeg14414https://repositorio.cuc.edu.co/bitstreams/1ab1d635-0bf4-48cf-a558-319f899e1654/downloade07655a0ecba78108199c5aa906b0041MD5411323/13988oai:repositorio.cuc.edu.co:11323/139882025-02-27 04:02:19.784https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 Elsevier Ltd. All rights reservedopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K