Electrification of industrial processes as an alternative to replace conventional thermal power sources.

The electrification of industrial processes offers sustainable opportunities for reducing carbon footprints and enhancing energy efficiency in the chemical industry. This paper presents an overview of recent research developments in incorporating electrical energy as a replacement for conventional t...

Full description

Autores:
Muñoz Maldonado, Yecid
Correa Quintana, Edgar
Ospino Castro, Adalberto
Ospino C., Adalberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13608
Acceso en línea:
https://hdl.handle.net/11323/13608
https://repositorio.cuc.edu.co/
Palabra clave:
Chemical process electrification
Electric–magnetic fields
Heat pumps
Microwaves
Plasma
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_93a0b03c92c121458da90189a9d80dbd
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13608
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Electrification of industrial processes as an alternative to replace conventional thermal power sources.
title Electrification of industrial processes as an alternative to replace conventional thermal power sources.
spellingShingle Electrification of industrial processes as an alternative to replace conventional thermal power sources.
Chemical process electrification
Electric–magnetic fields
Heat pumps
Microwaves
Plasma
title_short Electrification of industrial processes as an alternative to replace conventional thermal power sources.
title_full Electrification of industrial processes as an alternative to replace conventional thermal power sources.
title_fullStr Electrification of industrial processes as an alternative to replace conventional thermal power sources.
title_full_unstemmed Electrification of industrial processes as an alternative to replace conventional thermal power sources.
title_sort Electrification of industrial processes as an alternative to replace conventional thermal power sources.
dc.creator.fl_str_mv Muñoz Maldonado, Yecid
Correa Quintana, Edgar
Ospino Castro, Adalberto
Ospino C., Adalberto
dc.contributor.author.none.fl_str_mv Muñoz Maldonado, Yecid
Correa Quintana, Edgar
Ospino Castro, Adalberto
Ospino C., Adalberto
dc.subject.proposal.eng.fl_str_mv Chemical process electrification
Electric–magnetic fields
Heat pumps
Microwaves
Plasma
topic Chemical process electrification
Electric–magnetic fields
Heat pumps
Microwaves
Plasma
description The electrification of industrial processes offers sustainable opportunities for reducing carbon footprints and enhancing energy efficiency in the chemical industry. This paper presents an overview of recent research developments in incorporating electrical energy as a replacement for conventional thermal sources like gas and coal in industrial sectors. A literature review was conducted, identifying 70 relevant articles published until September 2020. The topics cover applications for industrial hydrogen generation processes and others, heat pumps, heat pumps, vapor re-compression systems, electric and magnetic fields as heat sources, nanoparticles for improved heat exchange, and ionized gases (plasma) in heating systems. While the application of industrial electrification shows promise globally, its sustainability depends on the efficiency and cost of electrical energy production and transportation at the regional and national levels. Among the various technologies, heat pumps integrated with vapor re-compression systems (VCR) for chemical processes, particularly in industrial distillation product separation columns, appear to be the most viable and widely applicable for waste heat recovery in the near future. Other technologies like electrochemical, plasma, microwave, magnetic, and electric field heating are still in the early stages of development or are limited to specific pilot or laboratory-scale processes.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-09-29
dc.date.accessioned.none.fl_str_mv 2024-10-30T15:49:54Z
dc.date.available.none.fl_str_mv 2024-10-30T15:49:54Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Muñoz-Maldonado, Y.; Correa-Quintana, E.; Ospino-Castro, A. Electrification of Industrial Processes as an Alternative to Replace Conventional Thermal Power Sources. Energies 2023, 16, 6894. https://doi.org/10.3390/en16196894.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13608
dc.identifier.doi.none.fl_str_mv 10.3390/en16196894
dc.identifier.eissn.none.fl_str_mv 1996-1073
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Muñoz-Maldonado, Y.; Correa-Quintana, E.; Ospino-Castro, A. Electrification of Industrial Processes as an Alternative to Replace Conventional Thermal Power Sources. Energies 2023, 16, 6894. https://doi.org/10.3390/en16196894.
10.3390/en16196894
1996-1073
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13608
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Energies
dc.relation.references.none.fl_str_mv Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R.; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [CrossRef]
Kleidon, A. Energy Balance. In Encyclopedia of Ecology, 2nd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 50–63. [CrossRef]
Energy Transition Commission. Reaching Net-Zero Carbon Emissions from Harder-to-Abate Sectors by Mid-Century; Energy Transition Commission: London, UK, 2018.
U.S. DOE; EERE Advanced Manufacturing Office. Manufacturing Energy and Carbon Footprints (2014 MECS). 2018. Available online: https://www.energy.gov/eere/amo/%0Amanufacturing-energy-and-carbon-footprints-2014-mecs (accessed on 18 October 2020)
U.S. Department. of Energy. Quadrennial Technology Review: Process Heating Technology Assessment; U.S. Department of Energy: Washington, DC, USA, 2019. Available online: https://energy.gov/sites/prod/files/2016/06/f32/%0AQTR2015-6I-Process-Hea ting.pdf (accessed on 10 August 2019).
Van Kranenburg, K.; Schols, E.; Gelevert, H.; De Kler, R.; Van Delft, Y.; Weeda, M. Empowering the Chemical Industry. Opportunities for Electrification; Tno-Ecn. 2016, p. 32. Available online: https://www.tno.nl/media/7514/voltachem_electrificat ion_whitepaper_2016.pdf (accessed on 5 July 2023)
Gerres, T.; Ávila, J.P.C.; Llamas, P.L.; Román, T.G.S. A review of cross-sector decarbonisation potentials in the European energy intensive industry. J. Clean. Prod. 2019, 210, 585–601. [CrossRef]
Rajabloo, T.; De Ceuninck, W.; Van Wortswinkel, L.; Rezakazemi, M.; Aminabhavi, T. Environmental management of industrial decarbonization with focus on chemical sectors: A review. J. Environ. Manag. 2022, 302, 114055. [CrossRef]
Wei, M.; McMillan, C.A.; Can, S.D.L.R.D. Electrification of industry: Potential, challenges and outlook. Curr. Sustain. Energy Rep. 2019, 6, 140–148. [CrossRef]
Van Geem, K.M.; Weckhuysen, B.M. Toward an e-chemistree: Materials for electrification of the chemical industry. MRS Bull. 2021, 46, 1187–1196. [CrossRef]
Hassan, A.; Patel, M.K.; Parra, D. An assessment of the impacts of renewable and conventional electricity supply on the cost and value of power-to-gas. Int. J. Hydrogen Energy 2019, 44, 9577–9593. [CrossRef]
Arpagaus, C.; Bless, F.; Uhlmann, M.; Schiffmann, J.; Bertsch, S.S. High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy 2018, 152, 985–1010. [CrossRef]
van de Bor, D.; Ferreira, C.I. Quick selection of industrial heat pump types including the impact of thermodynamic losses. Energy 2013, 53, 312–322. [CrossRef]
Waite, M.; Modi, V. Electricity Load Implications of Space Heating Decarbonization Pathways. Joule 2020, 4, 376–394. [CrossRef]
Nellissen, P.; Wolf, S. Heat Pumps in Non-Domestic Applications in Europe: Potential for an Energy Revolution. 8th EHPA Eur. Heat Pump Forum, 28 May 2015, Brussels, no. 2015. 2015, pp. 1–17. Available online: https://docplayer.net/41987374-Heat-pu mps-in-non-domestic-applications-in-europe-potential-for-an-energy-revolution.html (accessed on 5 July 2023)
Kosmadakis, G. Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries. Appl. Therm. Eng. 2019, 156, 287–298. [CrossRef]
Motasemi, F.; Afzal, M.T. A review on the microwave-assisted pyrolysis technique. Renew. Sustain. Energy Rev. 2013, 28, 317–330. [CrossRef]
Wang, Z.; Gao, D.; Diao, B.; Tan, L.; Zhang, W.; Liu, K. Comparative performance of electric heater vs. RF heating for heavy oil recovery. Appl. Therm. Eng. 2019, 160, 114105. [CrossRef]
Siesing, L.; Lundström, F.; Frogner, K.; Cedell, T.; Andersson, M. Towards energy efficient heating in industrial processes—Three steps to achieve maximized efficiency in an induction heating system. Procedia Manuf. 2018, 25, 404–411. [CrossRef]
Bendixen, F.B.; Eriksen, W.L.; Aasberg-petersen, K.; Frandsen, C.; Chorkendorff, I.; Mortensen, P.M. Industrial Hydrogen Production. Science 2019, 759, 756–759
Pacheco, J.; Valdivia, R.; Pacheco, M.; Clemente, A. H2 yielding rate comparison in a warm plasma reactor and thermal cracking furnace. Int. J. Hydrogen Energy 2020, 45, 31243–31254. [CrossRef]
Chen, F. Introduction to Plasma Physics; Springer Science & Business Media: New York, NY, USA, 2012.
Sikarwar, V.S.; Hrabovský, M.; Van Oost, G.; Pohoˇrelý, M.; Jeremiáš, M. Progress in waste utilization via thermal plasma. Prog. Energy Combust. Sci. 2020, 81, 100873. [CrossRef]
Robinson, J.; Kingman, S.; Snape, C.; Barranco, R.; Shang, H.; Bradley, M.; Bradshaw, S. Remediation of oil-contaminated drill cuttings using continuous microwave heating. Chem. Eng. J. 2009, 152, 458–463. [CrossRef]
Hou, Y.; Qi, S.; You, H.; Huang, Z.; Niu, Q. The study on pyrolysis of oil-based drilling cuttings by microwave and electric heating. J. Environ. Manag. 2018, 228, 312–318. [CrossRef]
Li, Z.; Khaled, U.; Al-Rashed, A.A.; Goodarzi, M.; Sarafraz, M.; Meer, R. Heat transfer evaluation of a micro heat exchanger cooling with spherical carbon-acetone nanofluid. Int. J. Heat Mass Transf. 2020, 149, 119124. [CrossRef]
Safaei, A.; Nezhad, A.H.; Rashidi, A. High temperature nanofluids based on therminol 66 for improving the heat exchangers power in gas refineries. Appl. Therm. Eng. 2020, 170, 114991. [CrossRef]
Shakiba, A.; Vahedi, K. Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger. J. Magn. Magn. Mater. 2016, 402, 131–142. [CrossRef]
Creswell, J.W.; Creswell, J.D. Research Design,Qualitative,Quantitative,and Mixed Methods Approaches, 5th ed.; SAGE: Newcastle upon Tyne, UK, 2018.
Sugiyama, M. Climate change mitigation and electrification. Energy Policy 2012, 44, 464–468. [CrossRef]
Kafandaris, S.; Manne, A.S.; Richels, R.G. Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits; MIT Press: Cambridge, MA, USA, 1992.
Lechtenböhmer, S.; Nilsson, L.J.; Åhman, M.; Schneider, C. Decarbonising the energy intensive basic materials industry through electrification—Implications for future EU electricity demand. Energy 2016, 115, 1623–1631. [CrossRef]
Timmerberg, S.; Kaltschmitt, M.; Finkbeiner, M. Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas—GHG emissions and costs. Energy Convers. Manag. X 2020, 7, 100043. [CrossRef]
Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [CrossRef]
Leonelli, C.; Mason, T.J. Microwave and ultrasonic processing: Now a realistic option for industry. Chem. Eng. Process.—Process. Intensif. 2010, 49, 885–900. [CrossRef]
U.S Department of Energy. Innovating Clean Energy Technologies in Advanced Manufacturing; U.S Department of Energy: Washington, DC, USA, 2015
Liang, C.-H.; Zhang, X.-S.; Li, X.-W.; Zhu, X. Study on the performance of a solar assisted air source heat pump system for building heating. Energy Build. 2011, 43, 2188–2196. [CrossRef]
IEA Launches Industrial Heat Pump Project. 2010. Available online: http://www.ammonia21.com/news/view/1870 (accessed on 5 July 2023).
Zhang, J.; Zhang, H.-H.; He, Y.-L.; Tao, W.-Q. A comprehensive review on advances and applications of industrial heat pumps based on the practices in China. Appl. Energy 2016, 178, 800–825. [CrossRef]
Wu, X.; Xing, Z.; He, Z.; Wang, X.; Chen, W. Performance evaluation of a capacity-regulated high temperature heat pump for waste heat recovery in dyeing industry. Appl. Therm. Eng. 2016, 93, 1193–1201. [CrossRef]
Xie, Y.; Song, L.; Liu, C. Analysis of a solar assisted heat pump dryer with a storage tank. In Proceedings of the 2006 ASME International of Solar Energy Conference, Denver, CO, USA, 8–13 July 2006.
Rubin, I. Materiales Plásticos,Propiedades y Aplicaciones. Mexico. 2004. Available online: https://buscaenbuja.ujaen.es/discove ry/fulldisplay?docid=alma991003081879704994&context=L&vid=34CBUA_UJA:VU1&lang=es&search_scope=CATALOGO& adaptor=Local%20Search%20Engine&tab=Jaen&offset=0 (accessed on 5 July 2023).
Mohai, I.; Szépvölgyi, J. Treatment of particulate metallurgical wastes in thermal plasmas. Chem. Eng. Process.—Process. Intensif. 2005, 44, 225–229. [CrossRef]
Tzeng, C.-C.; Kuo, Y.-Y.; Huang, T.-F.; Lin, D.-L.; Yu, Y.-J. Treatment of radioactive wastes by plasma incineration and vitrification for final disposal. J. Hazard. Mater. 1998, 58, 207–220. [CrossRef]
Boulos, M.; Fauchais, P.; Pfender, E. Thermal Plasmas: Fundamentals and Applications; Springer Science & Business Media: New York, NY, USA, 2013.
Aminian, J.; Arshad, A.K. Performance analysis of syngas production in a water thermal plasma reactor. Int. J. Hydrogen Energy 2020, 45, 30017–30028. [CrossRef]
Tamošiunas, A.; Grigaitien ¯ e, V.; Valatkeviˇcius, P.; Valinˇcius, V. Syngas production from hydrocarbon-containing gas in ambient of ˙ water vapor plasma. Catal. Today 2012, 196, 81–85. [CrossRef]
Cai, X.; Wei, X.; Wu, J.; Ding, J.; Du, C. Plasma pyrolysis and gasification of carambola leaves using non-thermal arc plasma. Waste Dispos. Sustain. Energy 2020, 2, 193–207. [CrossRef]
Shie, J.-L.; Chen, L.-X.; Lin, K.-L.; Chang, C.-Y. Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste. Energy 2014, 66, 82–89. [CrossRef]
Rong, F.; Victor, D.G. Coal liquefaction policy in China: Explaining the policy reversal since 2006. Energy Policy 2011, 39, 8175–8184. [CrossRef]
Andersen, J.; Christensen, J.; Østberg, M.; Bogaerts, A.; Jensen, A. Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor. Chem. Eng. J. 2020, 397, 125519. [CrossRef]
Jamróz, P.; Kordylewski, W.; Wnukowski, M. Microwave plasma application in decomposition and steam reforming of model tar compounds. Fuel Process. Technol. 2018, 169, 1–14. [CrossRef]
Pozar, D. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1998
Metaxas, A. Foundations of Electroheat: A Unified Approach; John Wiley & Sons: Hoboken, NJ, USA, 1996.
Hong, Y.C.; Lee, S.J.; Shin, D.H.; Kim, Y.J.; Lee, B.J.; Cho, S.Y.; Chang, H.S. Syngas production from gasification of brown coal in a microwave torch plasma. Energy 2012, 47, 36–40. [CrossRef]
Arshad, R.N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M.H.; Jusoh, Y.M.; Bekhit, A.E.-D.; Roobab, U.; Manzoor, M.F.; Aadil, R.M. Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends Food Sci. Technol. 2020, 104, 1–13. [CrossRef]
Shahriari, A.; Birbarah, P.; Oh, J.; Miljkovic, N.; Bahadur, V. Electric Field–Based Control and Enhancement of Boiling and Condensation. Nanoscale Microscale Thermophys. Eng. 2016, 21, 102–121. [CrossRef]
Di Marco, P. Influence of force fields and flow patterns on boiling heat transfer performance: A review. J. Heat Transf. 2012, 134, 030801. [CrossRef]
Zonouzi, S.A.; Aminfar, H.; Mohammadpourfard, M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF. Appl. Therm. Eng. 2019, 151, 11–25. [CrossRef]
Takise, K.; Sato, A.; Muraguchi, K.; Ogo, S.; Sekine, Y. Steam reforming of aromatic hydrocarbon at low temperature in electric field. Appl. Catal. A: Gen. 2019, 573, 56–63. [CrossRef]
Kucherov, A.V.; Finashina, E.D.; Kustov, L.M.; Simanzhenkov, V. Electric heating of the Mo–V–Fe–Nb–O catalyst bed in oxidative dehydrogenation of ethane. Mendeleev Commun. 2020, 30, 657–659. [CrossRef]
Yongphet, P.; Wang, J.; Kiatsiriroat, T.; Wang, D.; Deethayat, T.; Quaye, E.K.; Zhang, W.; Yang, S. Enhancement of biodiesel production from soybean oil by electric field and its chemical kinetics. Chem. Eng. Process.—Process. Intensif. 2020, 153, 107997. [CrossRef]
Choi, S.U.; Siginer, D.; Wang, H. Enhancing Thermal Conductivity of Fluids with Nanoparticles Developments and Applications of Non-Newtonian Flows; ASME: New York, NY, USA, 1995
Quan, X.; Gao, M.; Cheng, P.; Li, J. An experimental investigation of pool boiling heat transfer on smooth/rib surfaces under an electric field. Int. J. Heat Mass Transf. 2015, 85, 595–608. [CrossRef]
Gavahian, M.; Tiwari, B.K. Moderate electric fields and ohmic heating as promising fermentation tools. Innov. Food Sci. Emerg. Technol. 2020, 64, 102422. [CrossRef]
Dou, L.; Fu, M.; Gao, Y.; Wang, L.; Yan, C.; Ma, T.; Zhang, Q.; Li, X. Efficient sulfur resistance of Fe, La and Ce doped hierarchically structured catalysts for low-temperature methanation integrated with electric internal heating. Fuel 2021, 283, 118984. [CrossRef]
Primo, A.; He, J.; Jurca, B.; Cojocaru, B.; Bucur, C.; Parvulescu, V.I.; Garcia, H. CO2 methanation catalyzed by oriented MoS2 nanoplatelets supported on few layers graphene. Appl. Catal. B Environ. 2019, 245, 351–359. [CrossRef]
Wang, Y.; Liao, B.; Qiu, L.; Wang, D.; Xue, Q. Numerical simulation of enhancing shale gas recovery using electrical resistance heating method. Int. J. Heat Mass Transf. 2019, 128, 1218–1228. [CrossRef]
Wismann, S.T.; Engbæk, J.S.; Vendelbo, S.B.; Bendixen, F.B.; Eriksen, W.L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendorff, I.B.; Mortensen, P.M. Electrified methane reforming: A compact approach to greener industrial hydrogen production Science. Science 2019, 364, 756–759. [CrossRef] [PubMed]
Qin, P.; Xu, H.; Liu, M.; Xiao, C.; Forrest, K.E.; Samuelsen, S.; Tarroja, B. Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China. Appl. Energy 2020, 279, 115694. [CrossRef]
Grasso, M. Towards a broader climate ethics: Confronting the oil industry with morally relevant facts. Energy Res. Soc. Sci. 2020, 62, 101383. [CrossRef]
Navas-Anguita, Z.; García-Gusano, D.; Dufour, J.; Iribarren, D. Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. Appl. Energy 2020, 259, 114121. [CrossRef]
Goeppert, A.; Olah, G.A.; Prakash, G.K.S. Chapter 3.26—Toward a Sustainable Carbon Cycle: The Methanol Economy. In Green Chemistry; Török, B., Dransfield, T.B.T.-G.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 919–962
Wolf, S.; Blesl, M. Model-based quantification of the contribution of industrial heat pumps to the European climate change mitigation strategy. ECEEE Ind. Summer Study Proc. 2016, 477–488. Available online: https://www.eceee.org/library/conference _proceedings/eceee_Industrial_Summer_Study/2016/4-technology-products-and-systems/model-based-quantification-of-t he-contribution-of-industrial-heat-pumps-to-the-european-climate-change-mitigation-strategy/ (accessed on 5 July 2023).
dc.relation.citationendpage.none.fl_str_mv 20
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationissue.none.fl_str_mv 6894
dc.relation.citationvolume.none.fl_str_mv 16
dc.rights.eng.fl_str_mv © 2023 by the authors.
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2023 by the authors.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 20 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.none.fl_str_mv Switzerland
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv https://www.mdpi.com/1996-1073/16/19/6894
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d0120402-f521-42d2-8b31-0a7a539884d6/download
https://repositorio.cuc.edu.co/bitstreams/501a7cde-5ced-4c4d-a608-8be5b79cc263/download
https://repositorio.cuc.edu.co/bitstreams/37874f17-6039-4dd1-9b57-be57765f004b/download
https://repositorio.cuc.edu.co/bitstreams/49c169a2-848e-4d80-88db-f1972a2b1169/download
bitstream.checksum.fl_str_mv 88e3bf220d855f229a0284b35f292a0e
73a5432e0b76442b22b026844140d683
bcf6d5ae21776a78d625b2680bc8e92d
3e21c938461a2e38e182aded01502a76
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166785812135936
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2023 by the authors.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Muñoz Maldonado, YecidCorrea Quintana, EdgarOspino Castro, AdalbertoOspino C., Adalbertovirtual::910-12024-10-30T15:49:54Z2024-10-30T15:49:54Z2023-09-29Muñoz-Maldonado, Y.; Correa-Quintana, E.; Ospino-Castro, A. Electrification of Industrial Processes as an Alternative to Replace Conventional Thermal Power Sources. Energies 2023, 16, 6894. https://doi.org/10.3390/en16196894.https://hdl.handle.net/11323/1360810.3390/en161968941996-1073Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The electrification of industrial processes offers sustainable opportunities for reducing carbon footprints and enhancing energy efficiency in the chemical industry. This paper presents an overview of recent research developments in incorporating electrical energy as a replacement for conventional thermal sources like gas and coal in industrial sectors. A literature review was conducted, identifying 70 relevant articles published until September 2020. The topics cover applications for industrial hydrogen generation processes and others, heat pumps, heat pumps, vapor re-compression systems, electric and magnetic fields as heat sources, nanoparticles for improved heat exchange, and ionized gases (plasma) in heating systems. While the application of industrial electrification shows promise globally, its sustainability depends on the efficiency and cost of electrical energy production and transportation at the regional and national levels. Among the various technologies, heat pumps integrated with vapor re-compression systems (VCR) for chemical processes, particularly in industrial distillation product separation columns, appear to be the most viable and widely applicable for waste heat recovery in the near future. Other technologies like electrochemical, plasma, microwave, magnetic, and electric field heating are still in the early stages of development or are limited to specific pilot or laboratory-scale processes.20 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Switzerlandhttps://www.mdpi.com/1996-1073/16/19/6894Electrification of industrial processes as an alternative to replace conventional thermal power sources.Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85EnergiesRissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R.; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [CrossRef]Kleidon, A. Energy Balance. In Encyclopedia of Ecology, 2nd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 50–63. [CrossRef]Energy Transition Commission. Reaching Net-Zero Carbon Emissions from Harder-to-Abate Sectors by Mid-Century; Energy Transition Commission: London, UK, 2018.U.S. DOE; EERE Advanced Manufacturing Office. Manufacturing Energy and Carbon Footprints (2014 MECS). 2018. Available online: https://www.energy.gov/eere/amo/%0Amanufacturing-energy-and-carbon-footprints-2014-mecs (accessed on 18 October 2020)U.S. Department. of Energy. Quadrennial Technology Review: Process Heating Technology Assessment; U.S. Department of Energy: Washington, DC, USA, 2019. Available online: https://energy.gov/sites/prod/files/2016/06/f32/%0AQTR2015-6I-Process-Hea ting.pdf (accessed on 10 August 2019).Van Kranenburg, K.; Schols, E.; Gelevert, H.; De Kler, R.; Van Delft, Y.; Weeda, M. Empowering the Chemical Industry. Opportunities for Electrification; Tno-Ecn. 2016, p. 32. Available online: https://www.tno.nl/media/7514/voltachem_electrificat ion_whitepaper_2016.pdf (accessed on 5 July 2023)Gerres, T.; Ávila, J.P.C.; Llamas, P.L.; Román, T.G.S. A review of cross-sector decarbonisation potentials in the European energy intensive industry. J. Clean. Prod. 2019, 210, 585–601. [CrossRef]Rajabloo, T.; De Ceuninck, W.; Van Wortswinkel, L.; Rezakazemi, M.; Aminabhavi, T. Environmental management of industrial decarbonization with focus on chemical sectors: A review. J. Environ. Manag. 2022, 302, 114055. [CrossRef]Wei, M.; McMillan, C.A.; Can, S.D.L.R.D. Electrification of industry: Potential, challenges and outlook. Curr. Sustain. Energy Rep. 2019, 6, 140–148. [CrossRef]Van Geem, K.M.; Weckhuysen, B.M. Toward an e-chemistree: Materials for electrification of the chemical industry. MRS Bull. 2021, 46, 1187–1196. [CrossRef]Hassan, A.; Patel, M.K.; Parra, D. An assessment of the impacts of renewable and conventional electricity supply on the cost and value of power-to-gas. Int. J. Hydrogen Energy 2019, 44, 9577–9593. [CrossRef]Arpagaus, C.; Bless, F.; Uhlmann, M.; Schiffmann, J.; Bertsch, S.S. High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy 2018, 152, 985–1010. [CrossRef]van de Bor, D.; Ferreira, C.I. Quick selection of industrial heat pump types including the impact of thermodynamic losses. Energy 2013, 53, 312–322. [CrossRef]Waite, M.; Modi, V. Electricity Load Implications of Space Heating Decarbonization Pathways. Joule 2020, 4, 376–394. [CrossRef]Nellissen, P.; Wolf, S. Heat Pumps in Non-Domestic Applications in Europe: Potential for an Energy Revolution. 8th EHPA Eur. Heat Pump Forum, 28 May 2015, Brussels, no. 2015. 2015, pp. 1–17. Available online: https://docplayer.net/41987374-Heat-pu mps-in-non-domestic-applications-in-europe-potential-for-an-energy-revolution.html (accessed on 5 July 2023)Kosmadakis, G. Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries. Appl. Therm. Eng. 2019, 156, 287–298. [CrossRef]Motasemi, F.; Afzal, M.T. A review on the microwave-assisted pyrolysis technique. Renew. Sustain. Energy Rev. 2013, 28, 317–330. [CrossRef]Wang, Z.; Gao, D.; Diao, B.; Tan, L.; Zhang, W.; Liu, K. Comparative performance of electric heater vs. RF heating for heavy oil recovery. Appl. Therm. Eng. 2019, 160, 114105. [CrossRef]Siesing, L.; Lundström, F.; Frogner, K.; Cedell, T.; Andersson, M. Towards energy efficient heating in industrial processes—Three steps to achieve maximized efficiency in an induction heating system. Procedia Manuf. 2018, 25, 404–411. [CrossRef]Bendixen, F.B.; Eriksen, W.L.; Aasberg-petersen, K.; Frandsen, C.; Chorkendorff, I.; Mortensen, P.M. Industrial Hydrogen Production. Science 2019, 759, 756–759Pacheco, J.; Valdivia, R.; Pacheco, M.; Clemente, A. H2 yielding rate comparison in a warm plasma reactor and thermal cracking furnace. Int. J. Hydrogen Energy 2020, 45, 31243–31254. [CrossRef]Chen, F. Introduction to Plasma Physics; Springer Science & Business Media: New York, NY, USA, 2012.Sikarwar, V.S.; Hrabovský, M.; Van Oost, G.; Pohoˇrelý, M.; Jeremiáš, M. Progress in waste utilization via thermal plasma. Prog. Energy Combust. Sci. 2020, 81, 100873. [CrossRef]Robinson, J.; Kingman, S.; Snape, C.; Barranco, R.; Shang, H.; Bradley, M.; Bradshaw, S. Remediation of oil-contaminated drill cuttings using continuous microwave heating. Chem. Eng. J. 2009, 152, 458–463. [CrossRef]Hou, Y.; Qi, S.; You, H.; Huang, Z.; Niu, Q. The study on pyrolysis of oil-based drilling cuttings by microwave and electric heating. J. Environ. Manag. 2018, 228, 312–318. [CrossRef]Li, Z.; Khaled, U.; Al-Rashed, A.A.; Goodarzi, M.; Sarafraz, M.; Meer, R. Heat transfer evaluation of a micro heat exchanger cooling with spherical carbon-acetone nanofluid. Int. J. Heat Mass Transf. 2020, 149, 119124. [CrossRef]Safaei, A.; Nezhad, A.H.; Rashidi, A. High temperature nanofluids based on therminol 66 for improving the heat exchangers power in gas refineries. Appl. Therm. Eng. 2020, 170, 114991. [CrossRef]Shakiba, A.; Vahedi, K. Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger. J. Magn. Magn. Mater. 2016, 402, 131–142. [CrossRef]Creswell, J.W.; Creswell, J.D. Research Design,Qualitative,Quantitative,and Mixed Methods Approaches, 5th ed.; SAGE: Newcastle upon Tyne, UK, 2018.Sugiyama, M. Climate change mitigation and electrification. Energy Policy 2012, 44, 464–468. [CrossRef]Kafandaris, S.; Manne, A.S.; Richels, R.G. Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits; MIT Press: Cambridge, MA, USA, 1992.Lechtenböhmer, S.; Nilsson, L.J.; Åhman, M.; Schneider, C. Decarbonising the energy intensive basic materials industry through electrification—Implications for future EU electricity demand. Energy 2016, 115, 1623–1631. [CrossRef]Timmerberg, S.; Kaltschmitt, M.; Finkbeiner, M. Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas—GHG emissions and costs. Energy Convers. Manag. X 2020, 7, 100043. [CrossRef]Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [CrossRef]Leonelli, C.; Mason, T.J. Microwave and ultrasonic processing: Now a realistic option for industry. Chem. Eng. Process.—Process. Intensif. 2010, 49, 885–900. [CrossRef]U.S Department of Energy. Innovating Clean Energy Technologies in Advanced Manufacturing; U.S Department of Energy: Washington, DC, USA, 2015Liang, C.-H.; Zhang, X.-S.; Li, X.-W.; Zhu, X. Study on the performance of a solar assisted air source heat pump system for building heating. Energy Build. 2011, 43, 2188–2196. [CrossRef]IEA Launches Industrial Heat Pump Project. 2010. Available online: http://www.ammonia21.com/news/view/1870 (accessed on 5 July 2023).Zhang, J.; Zhang, H.-H.; He, Y.-L.; Tao, W.-Q. A comprehensive review on advances and applications of industrial heat pumps based on the practices in China. Appl. Energy 2016, 178, 800–825. [CrossRef]Wu, X.; Xing, Z.; He, Z.; Wang, X.; Chen, W. Performance evaluation of a capacity-regulated high temperature heat pump for waste heat recovery in dyeing industry. Appl. Therm. Eng. 2016, 93, 1193–1201. [CrossRef]Xie, Y.; Song, L.; Liu, C. Analysis of a solar assisted heat pump dryer with a storage tank. In Proceedings of the 2006 ASME International of Solar Energy Conference, Denver, CO, USA, 8–13 July 2006.Rubin, I. Materiales Plásticos,Propiedades y Aplicaciones. Mexico. 2004. Available online: https://buscaenbuja.ujaen.es/discove ry/fulldisplay?docid=alma991003081879704994&context=L&vid=34CBUA_UJA:VU1&lang=es&search_scope=CATALOGO& adaptor=Local%20Search%20Engine&tab=Jaen&offset=0 (accessed on 5 July 2023).Mohai, I.; Szépvölgyi, J. Treatment of particulate metallurgical wastes in thermal plasmas. Chem. Eng. Process.—Process. Intensif. 2005, 44, 225–229. [CrossRef]Tzeng, C.-C.; Kuo, Y.-Y.; Huang, T.-F.; Lin, D.-L.; Yu, Y.-J. Treatment of radioactive wastes by plasma incineration and vitrification for final disposal. J. Hazard. Mater. 1998, 58, 207–220. [CrossRef]Boulos, M.; Fauchais, P.; Pfender, E. Thermal Plasmas: Fundamentals and Applications; Springer Science & Business Media: New York, NY, USA, 2013.Aminian, J.; Arshad, A.K. Performance analysis of syngas production in a water thermal plasma reactor. Int. J. Hydrogen Energy 2020, 45, 30017–30028. [CrossRef]Tamošiunas, A.; Grigaitien ¯ e, V.; Valatkeviˇcius, P.; Valinˇcius, V. Syngas production from hydrocarbon-containing gas in ambient of ˙ water vapor plasma. Catal. Today 2012, 196, 81–85. [CrossRef]Cai, X.; Wei, X.; Wu, J.; Ding, J.; Du, C. Plasma pyrolysis and gasification of carambola leaves using non-thermal arc plasma. Waste Dispos. Sustain. Energy 2020, 2, 193–207. [CrossRef]Shie, J.-L.; Chen, L.-X.; Lin, K.-L.; Chang, C.-Y. Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste. Energy 2014, 66, 82–89. [CrossRef]Rong, F.; Victor, D.G. Coal liquefaction policy in China: Explaining the policy reversal since 2006. Energy Policy 2011, 39, 8175–8184. [CrossRef]Andersen, J.; Christensen, J.; Østberg, M.; Bogaerts, A.; Jensen, A. Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor. Chem. Eng. J. 2020, 397, 125519. [CrossRef]Jamróz, P.; Kordylewski, W.; Wnukowski, M. Microwave plasma application in decomposition and steam reforming of model tar compounds. Fuel Process. Technol. 2018, 169, 1–14. [CrossRef]Pozar, D. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1998Metaxas, A. Foundations of Electroheat: A Unified Approach; John Wiley & Sons: Hoboken, NJ, USA, 1996.Hong, Y.C.; Lee, S.J.; Shin, D.H.; Kim, Y.J.; Lee, B.J.; Cho, S.Y.; Chang, H.S. Syngas production from gasification of brown coal in a microwave torch plasma. Energy 2012, 47, 36–40. [CrossRef]Arshad, R.N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M.H.; Jusoh, Y.M.; Bekhit, A.E.-D.; Roobab, U.; Manzoor, M.F.; Aadil, R.M. Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends Food Sci. Technol. 2020, 104, 1–13. [CrossRef]Shahriari, A.; Birbarah, P.; Oh, J.; Miljkovic, N.; Bahadur, V. Electric Field–Based Control and Enhancement of Boiling and Condensation. Nanoscale Microscale Thermophys. Eng. 2016, 21, 102–121. [CrossRef]Di Marco, P. Influence of force fields and flow patterns on boiling heat transfer performance: A review. J. Heat Transf. 2012, 134, 030801. [CrossRef]Zonouzi, S.A.; Aminfar, H.; Mohammadpourfard, M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF. Appl. Therm. Eng. 2019, 151, 11–25. [CrossRef]Takise, K.; Sato, A.; Muraguchi, K.; Ogo, S.; Sekine, Y. Steam reforming of aromatic hydrocarbon at low temperature in electric field. Appl. Catal. A: Gen. 2019, 573, 56–63. [CrossRef]Kucherov, A.V.; Finashina, E.D.; Kustov, L.M.; Simanzhenkov, V. Electric heating of the Mo–V–Fe–Nb–O catalyst bed in oxidative dehydrogenation of ethane. Mendeleev Commun. 2020, 30, 657–659. [CrossRef]Yongphet, P.; Wang, J.; Kiatsiriroat, T.; Wang, D.; Deethayat, T.; Quaye, E.K.; Zhang, W.; Yang, S. Enhancement of biodiesel production from soybean oil by electric field and its chemical kinetics. Chem. Eng. Process.—Process. Intensif. 2020, 153, 107997. [CrossRef]Choi, S.U.; Siginer, D.; Wang, H. Enhancing Thermal Conductivity of Fluids with Nanoparticles Developments and Applications of Non-Newtonian Flows; ASME: New York, NY, USA, 1995Quan, X.; Gao, M.; Cheng, P.; Li, J. An experimental investigation of pool boiling heat transfer on smooth/rib surfaces under an electric field. Int. J. Heat Mass Transf. 2015, 85, 595–608. [CrossRef]Gavahian, M.; Tiwari, B.K. Moderate electric fields and ohmic heating as promising fermentation tools. Innov. Food Sci. Emerg. Technol. 2020, 64, 102422. [CrossRef]Dou, L.; Fu, M.; Gao, Y.; Wang, L.; Yan, C.; Ma, T.; Zhang, Q.; Li, X. Efficient sulfur resistance of Fe, La and Ce doped hierarchically structured catalysts for low-temperature methanation integrated with electric internal heating. Fuel 2021, 283, 118984. [CrossRef]Primo, A.; He, J.; Jurca, B.; Cojocaru, B.; Bucur, C.; Parvulescu, V.I.; Garcia, H. CO2 methanation catalyzed by oriented MoS2 nanoplatelets supported on few layers graphene. Appl. Catal. B Environ. 2019, 245, 351–359. [CrossRef]Wang, Y.; Liao, B.; Qiu, L.; Wang, D.; Xue, Q. Numerical simulation of enhancing shale gas recovery using electrical resistance heating method. Int. J. Heat Mass Transf. 2019, 128, 1218–1228. [CrossRef]Wismann, S.T.; Engbæk, J.S.; Vendelbo, S.B.; Bendixen, F.B.; Eriksen, W.L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendorff, I.B.; Mortensen, P.M. Electrified methane reforming: A compact approach to greener industrial hydrogen production Science. Science 2019, 364, 756–759. [CrossRef] [PubMed]Qin, P.; Xu, H.; Liu, M.; Xiao, C.; Forrest, K.E.; Samuelsen, S.; Tarroja, B. Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China. Appl. Energy 2020, 279, 115694. [CrossRef]Grasso, M. Towards a broader climate ethics: Confronting the oil industry with morally relevant facts. Energy Res. Soc. Sci. 2020, 62, 101383. [CrossRef]Navas-Anguita, Z.; García-Gusano, D.; Dufour, J.; Iribarren, D. Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. Appl. Energy 2020, 259, 114121. [CrossRef]Goeppert, A.; Olah, G.A.; Prakash, G.K.S. Chapter 3.26—Toward a Sustainable Carbon Cycle: The Methanol Economy. In Green Chemistry; Török, B., Dransfield, T.B.T.-G.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 919–962Wolf, S.; Blesl, M. Model-based quantification of the contribution of industrial heat pumps to the European climate change mitigation strategy. ECEEE Ind. Summer Study Proc. 2016, 477–488. Available online: https://www.eceee.org/library/conference _proceedings/eceee_Industrial_Summer_Study/2016/4-technology-products-and-systems/model-based-quantification-of-t he-contribution-of-industrial-heat-pumps-to-the-european-climate-change-mitigation-strategy/ (accessed on 5 July 2023).201689416Chemical process electrificationElectric–magnetic fieldsHeat pumpsMicrowavesPlasmaPublicationaf89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::910-1af89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::910-1https://scholar.google.es/citations?user=ODmDjToAAAAJ&hl=esvirtual::910-10000-0003-1466-0424virtual::910-1ORIGINALElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdfElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdfapplication/pdf3104151https://repositorio.cuc.edu.co/bitstreams/d0120402-f521-42d2-8b31-0a7a539884d6/download88e3bf220d855f229a0284b35f292a0eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/501a7cde-5ced-4c4d-a608-8be5b79cc263/download73a5432e0b76442b22b026844140d683MD52TEXTElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdf.txtElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdf.txtExtracted texttext/plain95777https://repositorio.cuc.edu.co/bitstreams/37874f17-6039-4dd1-9b57-be57765f004b/downloadbcf6d5ae21776a78d625b2680bc8e92dMD53THUMBNAILElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdf.jpgElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdf.jpgGenerated Thumbnailimage/jpeg15744https://repositorio.cuc.edu.co/bitstreams/49c169a2-848e-4d80-88db-f1972a2b1169/download3e21c938461a2e38e182aded01502a76MD5411323/13608oai:repositorio.cuc.edu.co:11323/136082025-02-25 11:44:57.694https://creativecommons.org/licenses/by/4.0/© 2023 by the authors.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K