Electrification of industrial processes as an alternative to replace conventional thermal power sources.
The electrification of industrial processes offers sustainable opportunities for reducing carbon footprints and enhancing energy efficiency in the chemical industry. This paper presents an overview of recent research developments in incorporating electrical energy as a replacement for conventional t...
- Autores:
-
Muñoz Maldonado, Yecid
Correa Quintana, Edgar
Ospino Castro, Adalberto
Ospino C., Adalberto
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13608
- Acceso en línea:
- https://hdl.handle.net/11323/13608
https://repositorio.cuc.edu.co/
- Palabra clave:
- Chemical process electrification
Electric–magnetic fields
Heat pumps
Microwaves
Plasma
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_93a0b03c92c121458da90189a9d80dbd |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13608 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Electrification of industrial processes as an alternative to replace conventional thermal power sources. |
title |
Electrification of industrial processes as an alternative to replace conventional thermal power sources. |
spellingShingle |
Electrification of industrial processes as an alternative to replace conventional thermal power sources. Chemical process electrification Electric–magnetic fields Heat pumps Microwaves Plasma |
title_short |
Electrification of industrial processes as an alternative to replace conventional thermal power sources. |
title_full |
Electrification of industrial processes as an alternative to replace conventional thermal power sources. |
title_fullStr |
Electrification of industrial processes as an alternative to replace conventional thermal power sources. |
title_full_unstemmed |
Electrification of industrial processes as an alternative to replace conventional thermal power sources. |
title_sort |
Electrification of industrial processes as an alternative to replace conventional thermal power sources. |
dc.creator.fl_str_mv |
Muñoz Maldonado, Yecid Correa Quintana, Edgar Ospino Castro, Adalberto Ospino C., Adalberto |
dc.contributor.author.none.fl_str_mv |
Muñoz Maldonado, Yecid Correa Quintana, Edgar Ospino Castro, Adalberto Ospino C., Adalberto |
dc.subject.proposal.eng.fl_str_mv |
Chemical process electrification Electric–magnetic fields Heat pumps Microwaves Plasma |
topic |
Chemical process electrification Electric–magnetic fields Heat pumps Microwaves Plasma |
description |
The electrification of industrial processes offers sustainable opportunities for reducing carbon footprints and enhancing energy efficiency in the chemical industry. This paper presents an overview of recent research developments in incorporating electrical energy as a replacement for conventional thermal sources like gas and coal in industrial sectors. A literature review was conducted, identifying 70 relevant articles published until September 2020. The topics cover applications for industrial hydrogen generation processes and others, heat pumps, heat pumps, vapor re-compression systems, electric and magnetic fields as heat sources, nanoparticles for improved heat exchange, and ionized gases (plasma) in heating systems. While the application of industrial electrification shows promise globally, its sustainability depends on the efficiency and cost of electrical energy production and transportation at the regional and national levels. Among the various technologies, heat pumps integrated with vapor re-compression systems (VCR) for chemical processes, particularly in industrial distillation product separation columns, appear to be the most viable and widely applicable for waste heat recovery in the near future. Other technologies like electrochemical, plasma, microwave, magnetic, and electric field heating are still in the early stages of development or are limited to specific pilot or laboratory-scale processes. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-09-29 |
dc.date.accessioned.none.fl_str_mv |
2024-10-30T15:49:54Z |
dc.date.available.none.fl_str_mv |
2024-10-30T15:49:54Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Muñoz-Maldonado, Y.; Correa-Quintana, E.; Ospino-Castro, A. Electrification of Industrial Processes as an Alternative to Replace Conventional Thermal Power Sources. Energies 2023, 16, 6894. https://doi.org/10.3390/en16196894. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13608 |
dc.identifier.doi.none.fl_str_mv |
10.3390/en16196894 |
dc.identifier.eissn.none.fl_str_mv |
1996-1073 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Muñoz-Maldonado, Y.; Correa-Quintana, E.; Ospino-Castro, A. Electrification of Industrial Processes as an Alternative to Replace Conventional Thermal Power Sources. Energies 2023, 16, 6894. https://doi.org/10.3390/en16196894. 10.3390/en16196894 1996-1073 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13608 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Energies |
dc.relation.references.none.fl_str_mv |
Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R.; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [CrossRef] Kleidon, A. Energy Balance. In Encyclopedia of Ecology, 2nd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 50–63. [CrossRef] Energy Transition Commission. Reaching Net-Zero Carbon Emissions from Harder-to-Abate Sectors by Mid-Century; Energy Transition Commission: London, UK, 2018. U.S. DOE; EERE Advanced Manufacturing Office. Manufacturing Energy and Carbon Footprints (2014 MECS). 2018. Available online: https://www.energy.gov/eere/amo/%0Amanufacturing-energy-and-carbon-footprints-2014-mecs (accessed on 18 October 2020) U.S. Department. of Energy. Quadrennial Technology Review: Process Heating Technology Assessment; U.S. Department of Energy: Washington, DC, USA, 2019. Available online: https://energy.gov/sites/prod/files/2016/06/f32/%0AQTR2015-6I-Process-Hea ting.pdf (accessed on 10 August 2019). Van Kranenburg, K.; Schols, E.; Gelevert, H.; De Kler, R.; Van Delft, Y.; Weeda, M. Empowering the Chemical Industry. Opportunities for Electrification; Tno-Ecn. 2016, p. 32. Available online: https://www.tno.nl/media/7514/voltachem_electrificat ion_whitepaper_2016.pdf (accessed on 5 July 2023) Gerres, T.; Ávila, J.P.C.; Llamas, P.L.; Román, T.G.S. A review of cross-sector decarbonisation potentials in the European energy intensive industry. J. Clean. Prod. 2019, 210, 585–601. [CrossRef] Rajabloo, T.; De Ceuninck, W.; Van Wortswinkel, L.; Rezakazemi, M.; Aminabhavi, T. Environmental management of industrial decarbonization with focus on chemical sectors: A review. J. Environ. Manag. 2022, 302, 114055. [CrossRef] Wei, M.; McMillan, C.A.; Can, S.D.L.R.D. Electrification of industry: Potential, challenges and outlook. Curr. Sustain. Energy Rep. 2019, 6, 140–148. [CrossRef] Van Geem, K.M.; Weckhuysen, B.M. Toward an e-chemistree: Materials for electrification of the chemical industry. MRS Bull. 2021, 46, 1187–1196. [CrossRef] Hassan, A.; Patel, M.K.; Parra, D. An assessment of the impacts of renewable and conventional electricity supply on the cost and value of power-to-gas. Int. J. Hydrogen Energy 2019, 44, 9577–9593. [CrossRef] Arpagaus, C.; Bless, F.; Uhlmann, M.; Schiffmann, J.; Bertsch, S.S. High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy 2018, 152, 985–1010. [CrossRef] van de Bor, D.; Ferreira, C.I. Quick selection of industrial heat pump types including the impact of thermodynamic losses. Energy 2013, 53, 312–322. [CrossRef] Waite, M.; Modi, V. Electricity Load Implications of Space Heating Decarbonization Pathways. Joule 2020, 4, 376–394. [CrossRef] Nellissen, P.; Wolf, S. Heat Pumps in Non-Domestic Applications in Europe: Potential for an Energy Revolution. 8th EHPA Eur. Heat Pump Forum, 28 May 2015, Brussels, no. 2015. 2015, pp. 1–17. Available online: https://docplayer.net/41987374-Heat-pu mps-in-non-domestic-applications-in-europe-potential-for-an-energy-revolution.html (accessed on 5 July 2023) Kosmadakis, G. Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries. Appl. Therm. Eng. 2019, 156, 287–298. [CrossRef] Motasemi, F.; Afzal, M.T. A review on the microwave-assisted pyrolysis technique. Renew. Sustain. Energy Rev. 2013, 28, 317–330. [CrossRef] Wang, Z.; Gao, D.; Diao, B.; Tan, L.; Zhang, W.; Liu, K. Comparative performance of electric heater vs. RF heating for heavy oil recovery. Appl. Therm. Eng. 2019, 160, 114105. [CrossRef] Siesing, L.; Lundström, F.; Frogner, K.; Cedell, T.; Andersson, M. Towards energy efficient heating in industrial processes—Three steps to achieve maximized efficiency in an induction heating system. Procedia Manuf. 2018, 25, 404–411. [CrossRef] Bendixen, F.B.; Eriksen, W.L.; Aasberg-petersen, K.; Frandsen, C.; Chorkendorff, I.; Mortensen, P.M. Industrial Hydrogen Production. Science 2019, 759, 756–759 Pacheco, J.; Valdivia, R.; Pacheco, M.; Clemente, A. H2 yielding rate comparison in a warm plasma reactor and thermal cracking furnace. Int. J. Hydrogen Energy 2020, 45, 31243–31254. [CrossRef] Chen, F. Introduction to Plasma Physics; Springer Science & Business Media: New York, NY, USA, 2012. Sikarwar, V.S.; Hrabovský, M.; Van Oost, G.; Pohoˇrelý, M.; Jeremiáš, M. Progress in waste utilization via thermal plasma. Prog. Energy Combust. Sci. 2020, 81, 100873. [CrossRef] Robinson, J.; Kingman, S.; Snape, C.; Barranco, R.; Shang, H.; Bradley, M.; Bradshaw, S. Remediation of oil-contaminated drill cuttings using continuous microwave heating. Chem. Eng. J. 2009, 152, 458–463. [CrossRef] Hou, Y.; Qi, S.; You, H.; Huang, Z.; Niu, Q. The study on pyrolysis of oil-based drilling cuttings by microwave and electric heating. J. Environ. Manag. 2018, 228, 312–318. [CrossRef] Li, Z.; Khaled, U.; Al-Rashed, A.A.; Goodarzi, M.; Sarafraz, M.; Meer, R. Heat transfer evaluation of a micro heat exchanger cooling with spherical carbon-acetone nanofluid. Int. J. Heat Mass Transf. 2020, 149, 119124. [CrossRef] Safaei, A.; Nezhad, A.H.; Rashidi, A. High temperature nanofluids based on therminol 66 for improving the heat exchangers power in gas refineries. Appl. Therm. Eng. 2020, 170, 114991. [CrossRef] Shakiba, A.; Vahedi, K. Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger. J. Magn. Magn. Mater. 2016, 402, 131–142. [CrossRef] Creswell, J.W.; Creswell, J.D. Research Design,Qualitative,Quantitative,and Mixed Methods Approaches, 5th ed.; SAGE: Newcastle upon Tyne, UK, 2018. Sugiyama, M. Climate change mitigation and electrification. Energy Policy 2012, 44, 464–468. [CrossRef] Kafandaris, S.; Manne, A.S.; Richels, R.G. Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits; MIT Press: Cambridge, MA, USA, 1992. Lechtenböhmer, S.; Nilsson, L.J.; Åhman, M.; Schneider, C. Decarbonising the energy intensive basic materials industry through electrification—Implications for future EU electricity demand. Energy 2016, 115, 1623–1631. [CrossRef] Timmerberg, S.; Kaltschmitt, M.; Finkbeiner, M. Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas—GHG emissions and costs. Energy Convers. Manag. X 2020, 7, 100043. [CrossRef] Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [CrossRef] Leonelli, C.; Mason, T.J. Microwave and ultrasonic processing: Now a realistic option for industry. Chem. Eng. Process.—Process. Intensif. 2010, 49, 885–900. [CrossRef] U.S Department of Energy. Innovating Clean Energy Technologies in Advanced Manufacturing; U.S Department of Energy: Washington, DC, USA, 2015 Liang, C.-H.; Zhang, X.-S.; Li, X.-W.; Zhu, X. Study on the performance of a solar assisted air source heat pump system for building heating. Energy Build. 2011, 43, 2188–2196. [CrossRef] IEA Launches Industrial Heat Pump Project. 2010. Available online: http://www.ammonia21.com/news/view/1870 (accessed on 5 July 2023). Zhang, J.; Zhang, H.-H.; He, Y.-L.; Tao, W.-Q. A comprehensive review on advances and applications of industrial heat pumps based on the practices in China. Appl. Energy 2016, 178, 800–825. [CrossRef] Wu, X.; Xing, Z.; He, Z.; Wang, X.; Chen, W. Performance evaluation of a capacity-regulated high temperature heat pump for waste heat recovery in dyeing industry. Appl. Therm. Eng. 2016, 93, 1193–1201. [CrossRef] Xie, Y.; Song, L.; Liu, C. Analysis of a solar assisted heat pump dryer with a storage tank. In Proceedings of the 2006 ASME International of Solar Energy Conference, Denver, CO, USA, 8–13 July 2006. Rubin, I. Materiales Plásticos,Propiedades y Aplicaciones. Mexico. 2004. Available online: https://buscaenbuja.ujaen.es/discove ry/fulldisplay?docid=alma991003081879704994&context=L&vid=34CBUA_UJA:VU1&lang=es&search_scope=CATALOGO& adaptor=Local%20Search%20Engine&tab=Jaen&offset=0 (accessed on 5 July 2023). Mohai, I.; Szépvölgyi, J. Treatment of particulate metallurgical wastes in thermal plasmas. Chem. Eng. Process.—Process. Intensif. 2005, 44, 225–229. [CrossRef] Tzeng, C.-C.; Kuo, Y.-Y.; Huang, T.-F.; Lin, D.-L.; Yu, Y.-J. Treatment of radioactive wastes by plasma incineration and vitrification for final disposal. J. Hazard. Mater. 1998, 58, 207–220. [CrossRef] Boulos, M.; Fauchais, P.; Pfender, E. Thermal Plasmas: Fundamentals and Applications; Springer Science & Business Media: New York, NY, USA, 2013. Aminian, J.; Arshad, A.K. Performance analysis of syngas production in a water thermal plasma reactor. Int. J. Hydrogen Energy 2020, 45, 30017–30028. [CrossRef] Tamošiunas, A.; Grigaitien ¯ e, V.; Valatkeviˇcius, P.; Valinˇcius, V. Syngas production from hydrocarbon-containing gas in ambient of ˙ water vapor plasma. Catal. Today 2012, 196, 81–85. [CrossRef] Cai, X.; Wei, X.; Wu, J.; Ding, J.; Du, C. Plasma pyrolysis and gasification of carambola leaves using non-thermal arc plasma. Waste Dispos. Sustain. Energy 2020, 2, 193–207. [CrossRef] Shie, J.-L.; Chen, L.-X.; Lin, K.-L.; Chang, C.-Y. Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste. Energy 2014, 66, 82–89. [CrossRef] Rong, F.; Victor, D.G. Coal liquefaction policy in China: Explaining the policy reversal since 2006. Energy Policy 2011, 39, 8175–8184. [CrossRef] Andersen, J.; Christensen, J.; Østberg, M.; Bogaerts, A.; Jensen, A. Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor. Chem. Eng. J. 2020, 397, 125519. [CrossRef] Jamróz, P.; Kordylewski, W.; Wnukowski, M. Microwave plasma application in decomposition and steam reforming of model tar compounds. Fuel Process. Technol. 2018, 169, 1–14. [CrossRef] Pozar, D. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1998 Metaxas, A. Foundations of Electroheat: A Unified Approach; John Wiley & Sons: Hoboken, NJ, USA, 1996. Hong, Y.C.; Lee, S.J.; Shin, D.H.; Kim, Y.J.; Lee, B.J.; Cho, S.Y.; Chang, H.S. Syngas production from gasification of brown coal in a microwave torch plasma. Energy 2012, 47, 36–40. [CrossRef] Arshad, R.N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M.H.; Jusoh, Y.M.; Bekhit, A.E.-D.; Roobab, U.; Manzoor, M.F.; Aadil, R.M. Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends Food Sci. Technol. 2020, 104, 1–13. [CrossRef] Shahriari, A.; Birbarah, P.; Oh, J.; Miljkovic, N.; Bahadur, V. Electric Field–Based Control and Enhancement of Boiling and Condensation. Nanoscale Microscale Thermophys. Eng. 2016, 21, 102–121. [CrossRef] Di Marco, P. Influence of force fields and flow patterns on boiling heat transfer performance: A review. J. Heat Transf. 2012, 134, 030801. [CrossRef] Zonouzi, S.A.; Aminfar, H.; Mohammadpourfard, M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF. Appl. Therm. Eng. 2019, 151, 11–25. [CrossRef] Takise, K.; Sato, A.; Muraguchi, K.; Ogo, S.; Sekine, Y. Steam reforming of aromatic hydrocarbon at low temperature in electric field. Appl. Catal. A: Gen. 2019, 573, 56–63. [CrossRef] Kucherov, A.V.; Finashina, E.D.; Kustov, L.M.; Simanzhenkov, V. Electric heating of the Mo–V–Fe–Nb–O catalyst bed in oxidative dehydrogenation of ethane. Mendeleev Commun. 2020, 30, 657–659. [CrossRef] Yongphet, P.; Wang, J.; Kiatsiriroat, T.; Wang, D.; Deethayat, T.; Quaye, E.K.; Zhang, W.; Yang, S. Enhancement of biodiesel production from soybean oil by electric field and its chemical kinetics. Chem. Eng. Process.—Process. Intensif. 2020, 153, 107997. [CrossRef] Choi, S.U.; Siginer, D.; Wang, H. Enhancing Thermal Conductivity of Fluids with Nanoparticles Developments and Applications of Non-Newtonian Flows; ASME: New York, NY, USA, 1995 Quan, X.; Gao, M.; Cheng, P.; Li, J. An experimental investigation of pool boiling heat transfer on smooth/rib surfaces under an electric field. Int. J. Heat Mass Transf. 2015, 85, 595–608. [CrossRef] Gavahian, M.; Tiwari, B.K. Moderate electric fields and ohmic heating as promising fermentation tools. Innov. Food Sci. Emerg. Technol. 2020, 64, 102422. [CrossRef] Dou, L.; Fu, M.; Gao, Y.; Wang, L.; Yan, C.; Ma, T.; Zhang, Q.; Li, X. Efficient sulfur resistance of Fe, La and Ce doped hierarchically structured catalysts for low-temperature methanation integrated with electric internal heating. Fuel 2021, 283, 118984. [CrossRef] Primo, A.; He, J.; Jurca, B.; Cojocaru, B.; Bucur, C.; Parvulescu, V.I.; Garcia, H. CO2 methanation catalyzed by oriented MoS2 nanoplatelets supported on few layers graphene. Appl. Catal. B Environ. 2019, 245, 351–359. [CrossRef] Wang, Y.; Liao, B.; Qiu, L.; Wang, D.; Xue, Q. Numerical simulation of enhancing shale gas recovery using electrical resistance heating method. Int. J. Heat Mass Transf. 2019, 128, 1218–1228. [CrossRef] Wismann, S.T.; Engbæk, J.S.; Vendelbo, S.B.; Bendixen, F.B.; Eriksen, W.L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendorff, I.B.; Mortensen, P.M. Electrified methane reforming: A compact approach to greener industrial hydrogen production Science. Science 2019, 364, 756–759. [CrossRef] [PubMed] Qin, P.; Xu, H.; Liu, M.; Xiao, C.; Forrest, K.E.; Samuelsen, S.; Tarroja, B. Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China. Appl. Energy 2020, 279, 115694. [CrossRef] Grasso, M. Towards a broader climate ethics: Confronting the oil industry with morally relevant facts. Energy Res. Soc. Sci. 2020, 62, 101383. [CrossRef] Navas-Anguita, Z.; García-Gusano, D.; Dufour, J.; Iribarren, D. Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. Appl. Energy 2020, 259, 114121. [CrossRef] Goeppert, A.; Olah, G.A.; Prakash, G.K.S. Chapter 3.26—Toward a Sustainable Carbon Cycle: The Methanol Economy. In Green Chemistry; Török, B., Dransfield, T.B.T.-G.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 919–962 Wolf, S.; Blesl, M. Model-based quantification of the contribution of industrial heat pumps to the European climate change mitigation strategy. ECEEE Ind. Summer Study Proc. 2016, 477–488. Available online: https://www.eceee.org/library/conference _proceedings/eceee_Industrial_Summer_Study/2016/4-technology-products-and-systems/model-based-quantification-of-t he-contribution-of-industrial-heat-pumps-to-the-european-climate-change-mitigation-strategy/ (accessed on 5 July 2023). |
dc.relation.citationendpage.none.fl_str_mv |
20 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationissue.none.fl_str_mv |
6894 |
dc.relation.citationvolume.none.fl_str_mv |
16 |
dc.rights.eng.fl_str_mv |
© 2023 by the authors. |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
20 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.publisher.place.none.fl_str_mv |
Switzerland |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
https://www.mdpi.com/1996-1073/16/19/6894 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d0120402-f521-42d2-8b31-0a7a539884d6/download https://repositorio.cuc.edu.co/bitstreams/501a7cde-5ced-4c4d-a608-8be5b79cc263/download https://repositorio.cuc.edu.co/bitstreams/37874f17-6039-4dd1-9b57-be57765f004b/download https://repositorio.cuc.edu.co/bitstreams/49c169a2-848e-4d80-88db-f1972a2b1169/download |
bitstream.checksum.fl_str_mv |
88e3bf220d855f229a0284b35f292a0e 73a5432e0b76442b22b026844140d683 bcf6d5ae21776a78d625b2680bc8e92d 3e21c938461a2e38e182aded01502a76 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166785812135936 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2023 by the authors.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Muñoz Maldonado, YecidCorrea Quintana, EdgarOspino Castro, AdalbertoOspino C., Adalbertovirtual::910-12024-10-30T15:49:54Z2024-10-30T15:49:54Z2023-09-29Muñoz-Maldonado, Y.; Correa-Quintana, E.; Ospino-Castro, A. Electrification of Industrial Processes as an Alternative to Replace Conventional Thermal Power Sources. Energies 2023, 16, 6894. https://doi.org/10.3390/en16196894.https://hdl.handle.net/11323/1360810.3390/en161968941996-1073Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The electrification of industrial processes offers sustainable opportunities for reducing carbon footprints and enhancing energy efficiency in the chemical industry. This paper presents an overview of recent research developments in incorporating electrical energy as a replacement for conventional thermal sources like gas and coal in industrial sectors. A literature review was conducted, identifying 70 relevant articles published until September 2020. The topics cover applications for industrial hydrogen generation processes and others, heat pumps, heat pumps, vapor re-compression systems, electric and magnetic fields as heat sources, nanoparticles for improved heat exchange, and ionized gases (plasma) in heating systems. While the application of industrial electrification shows promise globally, its sustainability depends on the efficiency and cost of electrical energy production and transportation at the regional and national levels. Among the various technologies, heat pumps integrated with vapor re-compression systems (VCR) for chemical processes, particularly in industrial distillation product separation columns, appear to be the most viable and widely applicable for waste heat recovery in the near future. Other technologies like electrochemical, plasma, microwave, magnetic, and electric field heating are still in the early stages of development or are limited to specific pilot or laboratory-scale processes.20 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Switzerlandhttps://www.mdpi.com/1996-1073/16/19/6894Electrification of industrial processes as an alternative to replace conventional thermal power sources.Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85EnergiesRissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R.; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [CrossRef]Kleidon, A. Energy Balance. In Encyclopedia of Ecology, 2nd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 50–63. [CrossRef]Energy Transition Commission. Reaching Net-Zero Carbon Emissions from Harder-to-Abate Sectors by Mid-Century; Energy Transition Commission: London, UK, 2018.U.S. DOE; EERE Advanced Manufacturing Office. Manufacturing Energy and Carbon Footprints (2014 MECS). 2018. Available online: https://www.energy.gov/eere/amo/%0Amanufacturing-energy-and-carbon-footprints-2014-mecs (accessed on 18 October 2020)U.S. Department. of Energy. Quadrennial Technology Review: Process Heating Technology Assessment; U.S. Department of Energy: Washington, DC, USA, 2019. Available online: https://energy.gov/sites/prod/files/2016/06/f32/%0AQTR2015-6I-Process-Hea ting.pdf (accessed on 10 August 2019).Van Kranenburg, K.; Schols, E.; Gelevert, H.; De Kler, R.; Van Delft, Y.; Weeda, M. Empowering the Chemical Industry. Opportunities for Electrification; Tno-Ecn. 2016, p. 32. Available online: https://www.tno.nl/media/7514/voltachem_electrificat ion_whitepaper_2016.pdf (accessed on 5 July 2023)Gerres, T.; Ávila, J.P.C.; Llamas, P.L.; Román, T.G.S. A review of cross-sector decarbonisation potentials in the European energy intensive industry. J. Clean. Prod. 2019, 210, 585–601. [CrossRef]Rajabloo, T.; De Ceuninck, W.; Van Wortswinkel, L.; Rezakazemi, M.; Aminabhavi, T. Environmental management of industrial decarbonization with focus on chemical sectors: A review. J. Environ. Manag. 2022, 302, 114055. [CrossRef]Wei, M.; McMillan, C.A.; Can, S.D.L.R.D. Electrification of industry: Potential, challenges and outlook. Curr. Sustain. Energy Rep. 2019, 6, 140–148. [CrossRef]Van Geem, K.M.; Weckhuysen, B.M. Toward an e-chemistree: Materials for electrification of the chemical industry. MRS Bull. 2021, 46, 1187–1196. [CrossRef]Hassan, A.; Patel, M.K.; Parra, D. An assessment of the impacts of renewable and conventional electricity supply on the cost and value of power-to-gas. Int. J. Hydrogen Energy 2019, 44, 9577–9593. [CrossRef]Arpagaus, C.; Bless, F.; Uhlmann, M.; Schiffmann, J.; Bertsch, S.S. High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy 2018, 152, 985–1010. [CrossRef]van de Bor, D.; Ferreira, C.I. Quick selection of industrial heat pump types including the impact of thermodynamic losses. Energy 2013, 53, 312–322. [CrossRef]Waite, M.; Modi, V. Electricity Load Implications of Space Heating Decarbonization Pathways. Joule 2020, 4, 376–394. [CrossRef]Nellissen, P.; Wolf, S. Heat Pumps in Non-Domestic Applications in Europe: Potential for an Energy Revolution. 8th EHPA Eur. Heat Pump Forum, 28 May 2015, Brussels, no. 2015. 2015, pp. 1–17. Available online: https://docplayer.net/41987374-Heat-pu mps-in-non-domestic-applications-in-europe-potential-for-an-energy-revolution.html (accessed on 5 July 2023)Kosmadakis, G. Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries. Appl. Therm. Eng. 2019, 156, 287–298. [CrossRef]Motasemi, F.; Afzal, M.T. A review on the microwave-assisted pyrolysis technique. Renew. Sustain. Energy Rev. 2013, 28, 317–330. [CrossRef]Wang, Z.; Gao, D.; Diao, B.; Tan, L.; Zhang, W.; Liu, K. Comparative performance of electric heater vs. RF heating for heavy oil recovery. Appl. Therm. Eng. 2019, 160, 114105. [CrossRef]Siesing, L.; Lundström, F.; Frogner, K.; Cedell, T.; Andersson, M. Towards energy efficient heating in industrial processes—Three steps to achieve maximized efficiency in an induction heating system. Procedia Manuf. 2018, 25, 404–411. [CrossRef]Bendixen, F.B.; Eriksen, W.L.; Aasberg-petersen, K.; Frandsen, C.; Chorkendorff, I.; Mortensen, P.M. Industrial Hydrogen Production. Science 2019, 759, 756–759Pacheco, J.; Valdivia, R.; Pacheco, M.; Clemente, A. H2 yielding rate comparison in a warm plasma reactor and thermal cracking furnace. Int. J. Hydrogen Energy 2020, 45, 31243–31254. [CrossRef]Chen, F. Introduction to Plasma Physics; Springer Science & Business Media: New York, NY, USA, 2012.Sikarwar, V.S.; Hrabovský, M.; Van Oost, G.; Pohoˇrelý, M.; Jeremiáš, M. Progress in waste utilization via thermal plasma. Prog. Energy Combust. Sci. 2020, 81, 100873. [CrossRef]Robinson, J.; Kingman, S.; Snape, C.; Barranco, R.; Shang, H.; Bradley, M.; Bradshaw, S. Remediation of oil-contaminated drill cuttings using continuous microwave heating. Chem. Eng. J. 2009, 152, 458–463. [CrossRef]Hou, Y.; Qi, S.; You, H.; Huang, Z.; Niu, Q. The study on pyrolysis of oil-based drilling cuttings by microwave and electric heating. J. Environ. Manag. 2018, 228, 312–318. [CrossRef]Li, Z.; Khaled, U.; Al-Rashed, A.A.; Goodarzi, M.; Sarafraz, M.; Meer, R. Heat transfer evaluation of a micro heat exchanger cooling with spherical carbon-acetone nanofluid. Int. J. Heat Mass Transf. 2020, 149, 119124. [CrossRef]Safaei, A.; Nezhad, A.H.; Rashidi, A. High temperature nanofluids based on therminol 66 for improving the heat exchangers power in gas refineries. Appl. Therm. Eng. 2020, 170, 114991. [CrossRef]Shakiba, A.; Vahedi, K. Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger. J. Magn. Magn. Mater. 2016, 402, 131–142. [CrossRef]Creswell, J.W.; Creswell, J.D. Research Design,Qualitative,Quantitative,and Mixed Methods Approaches, 5th ed.; SAGE: Newcastle upon Tyne, UK, 2018.Sugiyama, M. Climate change mitigation and electrification. Energy Policy 2012, 44, 464–468. [CrossRef]Kafandaris, S.; Manne, A.S.; Richels, R.G. Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits; MIT Press: Cambridge, MA, USA, 1992.Lechtenböhmer, S.; Nilsson, L.J.; Åhman, M.; Schneider, C. Decarbonising the energy intensive basic materials industry through electrification—Implications for future EU electricity demand. Energy 2016, 115, 1623–1631. [CrossRef]Timmerberg, S.; Kaltschmitt, M.; Finkbeiner, M. Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas—GHG emissions and costs. Energy Convers. Manag. X 2020, 7, 100043. [CrossRef]Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [CrossRef]Leonelli, C.; Mason, T.J. Microwave and ultrasonic processing: Now a realistic option for industry. Chem. Eng. Process.—Process. Intensif. 2010, 49, 885–900. [CrossRef]U.S Department of Energy. Innovating Clean Energy Technologies in Advanced Manufacturing; U.S Department of Energy: Washington, DC, USA, 2015Liang, C.-H.; Zhang, X.-S.; Li, X.-W.; Zhu, X. Study on the performance of a solar assisted air source heat pump system for building heating. Energy Build. 2011, 43, 2188–2196. [CrossRef]IEA Launches Industrial Heat Pump Project. 2010. Available online: http://www.ammonia21.com/news/view/1870 (accessed on 5 July 2023).Zhang, J.; Zhang, H.-H.; He, Y.-L.; Tao, W.-Q. A comprehensive review on advances and applications of industrial heat pumps based on the practices in China. Appl. Energy 2016, 178, 800–825. [CrossRef]Wu, X.; Xing, Z.; He, Z.; Wang, X.; Chen, W. Performance evaluation of a capacity-regulated high temperature heat pump for waste heat recovery in dyeing industry. Appl. Therm. Eng. 2016, 93, 1193–1201. [CrossRef]Xie, Y.; Song, L.; Liu, C. Analysis of a solar assisted heat pump dryer with a storage tank. In Proceedings of the 2006 ASME International of Solar Energy Conference, Denver, CO, USA, 8–13 July 2006.Rubin, I. Materiales Plásticos,Propiedades y Aplicaciones. Mexico. 2004. Available online: https://buscaenbuja.ujaen.es/discove ry/fulldisplay?docid=alma991003081879704994&context=L&vid=34CBUA_UJA:VU1&lang=es&search_scope=CATALOGO& adaptor=Local%20Search%20Engine&tab=Jaen&offset=0 (accessed on 5 July 2023).Mohai, I.; Szépvölgyi, J. Treatment of particulate metallurgical wastes in thermal plasmas. Chem. Eng. Process.—Process. Intensif. 2005, 44, 225–229. [CrossRef]Tzeng, C.-C.; Kuo, Y.-Y.; Huang, T.-F.; Lin, D.-L.; Yu, Y.-J. Treatment of radioactive wastes by plasma incineration and vitrification for final disposal. J. Hazard. Mater. 1998, 58, 207–220. [CrossRef]Boulos, M.; Fauchais, P.; Pfender, E. Thermal Plasmas: Fundamentals and Applications; Springer Science & Business Media: New York, NY, USA, 2013.Aminian, J.; Arshad, A.K. Performance analysis of syngas production in a water thermal plasma reactor. Int. J. Hydrogen Energy 2020, 45, 30017–30028. [CrossRef]Tamošiunas, A.; Grigaitien ¯ e, V.; Valatkeviˇcius, P.; Valinˇcius, V. Syngas production from hydrocarbon-containing gas in ambient of ˙ water vapor plasma. Catal. Today 2012, 196, 81–85. [CrossRef]Cai, X.; Wei, X.; Wu, J.; Ding, J.; Du, C. Plasma pyrolysis and gasification of carambola leaves using non-thermal arc plasma. Waste Dispos. Sustain. Energy 2020, 2, 193–207. [CrossRef]Shie, J.-L.; Chen, L.-X.; Lin, K.-L.; Chang, C.-Y. Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste. Energy 2014, 66, 82–89. [CrossRef]Rong, F.; Victor, D.G. Coal liquefaction policy in China: Explaining the policy reversal since 2006. Energy Policy 2011, 39, 8175–8184. [CrossRef]Andersen, J.; Christensen, J.; Østberg, M.; Bogaerts, A.; Jensen, A. Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor. Chem. Eng. J. 2020, 397, 125519. [CrossRef]Jamróz, P.; Kordylewski, W.; Wnukowski, M. Microwave plasma application in decomposition and steam reforming of model tar compounds. Fuel Process. Technol. 2018, 169, 1–14. [CrossRef]Pozar, D. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1998Metaxas, A. Foundations of Electroheat: A Unified Approach; John Wiley & Sons: Hoboken, NJ, USA, 1996.Hong, Y.C.; Lee, S.J.; Shin, D.H.; Kim, Y.J.; Lee, B.J.; Cho, S.Y.; Chang, H.S. Syngas production from gasification of brown coal in a microwave torch plasma. Energy 2012, 47, 36–40. [CrossRef]Arshad, R.N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M.H.; Jusoh, Y.M.; Bekhit, A.E.-D.; Roobab, U.; Manzoor, M.F.; Aadil, R.M. Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends Food Sci. Technol. 2020, 104, 1–13. [CrossRef]Shahriari, A.; Birbarah, P.; Oh, J.; Miljkovic, N.; Bahadur, V. Electric Field–Based Control and Enhancement of Boiling and Condensation. Nanoscale Microscale Thermophys. Eng. 2016, 21, 102–121. [CrossRef]Di Marco, P. Influence of force fields and flow patterns on boiling heat transfer performance: A review. J. Heat Transf. 2012, 134, 030801. [CrossRef]Zonouzi, S.A.; Aminfar, H.; Mohammadpourfard, M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF. Appl. Therm. Eng. 2019, 151, 11–25. [CrossRef]Takise, K.; Sato, A.; Muraguchi, K.; Ogo, S.; Sekine, Y. Steam reforming of aromatic hydrocarbon at low temperature in electric field. Appl. Catal. A: Gen. 2019, 573, 56–63. [CrossRef]Kucherov, A.V.; Finashina, E.D.; Kustov, L.M.; Simanzhenkov, V. Electric heating of the Mo–V–Fe–Nb–O catalyst bed in oxidative dehydrogenation of ethane. Mendeleev Commun. 2020, 30, 657–659. [CrossRef]Yongphet, P.; Wang, J.; Kiatsiriroat, T.; Wang, D.; Deethayat, T.; Quaye, E.K.; Zhang, W.; Yang, S. Enhancement of biodiesel production from soybean oil by electric field and its chemical kinetics. Chem. Eng. Process.—Process. Intensif. 2020, 153, 107997. [CrossRef]Choi, S.U.; Siginer, D.; Wang, H. Enhancing Thermal Conductivity of Fluids with Nanoparticles Developments and Applications of Non-Newtonian Flows; ASME: New York, NY, USA, 1995Quan, X.; Gao, M.; Cheng, P.; Li, J. An experimental investigation of pool boiling heat transfer on smooth/rib surfaces under an electric field. Int. J. Heat Mass Transf. 2015, 85, 595–608. [CrossRef]Gavahian, M.; Tiwari, B.K. Moderate electric fields and ohmic heating as promising fermentation tools. Innov. Food Sci. Emerg. Technol. 2020, 64, 102422. [CrossRef]Dou, L.; Fu, M.; Gao, Y.; Wang, L.; Yan, C.; Ma, T.; Zhang, Q.; Li, X. Efficient sulfur resistance of Fe, La and Ce doped hierarchically structured catalysts for low-temperature methanation integrated with electric internal heating. Fuel 2021, 283, 118984. [CrossRef]Primo, A.; He, J.; Jurca, B.; Cojocaru, B.; Bucur, C.; Parvulescu, V.I.; Garcia, H. CO2 methanation catalyzed by oriented MoS2 nanoplatelets supported on few layers graphene. Appl. Catal. B Environ. 2019, 245, 351–359. [CrossRef]Wang, Y.; Liao, B.; Qiu, L.; Wang, D.; Xue, Q. Numerical simulation of enhancing shale gas recovery using electrical resistance heating method. Int. J. Heat Mass Transf. 2019, 128, 1218–1228. [CrossRef]Wismann, S.T.; Engbæk, J.S.; Vendelbo, S.B.; Bendixen, F.B.; Eriksen, W.L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendorff, I.B.; Mortensen, P.M. Electrified methane reforming: A compact approach to greener industrial hydrogen production Science. Science 2019, 364, 756–759. [CrossRef] [PubMed]Qin, P.; Xu, H.; Liu, M.; Xiao, C.; Forrest, K.E.; Samuelsen, S.; Tarroja, B. Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China. Appl. Energy 2020, 279, 115694. [CrossRef]Grasso, M. Towards a broader climate ethics: Confronting the oil industry with morally relevant facts. Energy Res. Soc. Sci. 2020, 62, 101383. [CrossRef]Navas-Anguita, Z.; García-Gusano, D.; Dufour, J.; Iribarren, D. Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. Appl. Energy 2020, 259, 114121. [CrossRef]Goeppert, A.; Olah, G.A.; Prakash, G.K.S. Chapter 3.26—Toward a Sustainable Carbon Cycle: The Methanol Economy. In Green Chemistry; Török, B., Dransfield, T.B.T.-G.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 919–962Wolf, S.; Blesl, M. Model-based quantification of the contribution of industrial heat pumps to the European climate change mitigation strategy. ECEEE Ind. Summer Study Proc. 2016, 477–488. Available online: https://www.eceee.org/library/conference _proceedings/eceee_Industrial_Summer_Study/2016/4-technology-products-and-systems/model-based-quantification-of-t he-contribution-of-industrial-heat-pumps-to-the-european-climate-change-mitigation-strategy/ (accessed on 5 July 2023).201689416Chemical process electrificationElectric–magnetic fieldsHeat pumpsMicrowavesPlasmaPublicationaf89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::910-1af89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::910-1https://scholar.google.es/citations?user=ODmDjToAAAAJ&hl=esvirtual::910-10000-0003-1466-0424virtual::910-1ORIGINALElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdfElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdfapplication/pdf3104151https://repositorio.cuc.edu.co/bitstreams/d0120402-f521-42d2-8b31-0a7a539884d6/download88e3bf220d855f229a0284b35f292a0eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/501a7cde-5ced-4c4d-a608-8be5b79cc263/download73a5432e0b76442b22b026844140d683MD52TEXTElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdf.txtElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdf.txtExtracted texttext/plain95777https://repositorio.cuc.edu.co/bitstreams/37874f17-6039-4dd1-9b57-be57765f004b/downloadbcf6d5ae21776a78d625b2680bc8e92dMD53THUMBNAILElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdf.jpgElectrification of industrial processes as an alternative to replace conventional thermal power sources..pdf.jpgGenerated Thumbnailimage/jpeg15744https://repositorio.cuc.edu.co/bitstreams/49c169a2-848e-4d80-88db-f1972a2b1169/download3e21c938461a2e38e182aded01502a76MD5411323/13608oai:repositorio.cuc.edu.co:11323/136082025-02-25 11:44:57.694https://creativecommons.org/licenses/by/4.0/© 2023 by the authors.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |