Lead ferrite activated carbon magnetic composite for efcient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies

A novel lead ferrite-magnetic activated carbon (lead ferrite-MAC) composite was developed using the chemical co-precipitation method. Instrumental analyses such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller...

Full description

Autores:
Allahkarami, Esmaeil
Dehghan Monfared, Abolfazl
Silva, Luis
Dotto, Guilherme Luiz
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/14215
Acceso en línea:
https://hdl.handle.net/11323/14215
https://repositorio.cuc.edu.co/
Palabra clave:
Ferrite-magnetic carbon
Phenol
Adsorption
Ferrite‑MAC
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_846e92d5bbbe3127bcf3dfaa3f420994
oai_identifier_str oai:repositorio.cuc.edu.co:11323/14215
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Lead ferrite activated carbon magnetic composite for efcient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies
title Lead ferrite activated carbon magnetic composite for efcient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies
spellingShingle Lead ferrite activated carbon magnetic composite for efcient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies
Ferrite-magnetic carbon
Phenol
Adsorption
Ferrite‑MAC
title_short Lead ferrite activated carbon magnetic composite for efcient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies
title_full Lead ferrite activated carbon magnetic composite for efcient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies
title_fullStr Lead ferrite activated carbon magnetic composite for efcient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies
title_full_unstemmed Lead ferrite activated carbon magnetic composite for efcient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies
title_sort Lead ferrite activated carbon magnetic composite for efcient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies
dc.creator.fl_str_mv Allahkarami, Esmaeil
Dehghan Monfared, Abolfazl
Silva, Luis
Dotto, Guilherme Luiz
dc.contributor.author.none.fl_str_mv Allahkarami, Esmaeil
Dehghan Monfared, Abolfazl
Silva, Luis
Dotto, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Ferrite-magnetic carbon
Phenol
Adsorption
Ferrite‑MAC
topic Ferrite-magnetic carbon
Phenol
Adsorption
Ferrite‑MAC
description A novel lead ferrite-magnetic activated carbon (lead ferrite-MAC) composite was developed using the chemical co-precipitation method. Instrumental analyses such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analysis were performed to characterize adsorbent. The uptake of phenol from aqueous solutions using the developed adsorbent was compared to that of pristine activated carbon. The maximum adsorption capacity of lead ferrite-MAC composite (145.708 mg/g) was more than that of pristine activated carbon (116.606 mg/g) due to the metal hydroxides coated on activated carbon since they improve the retention of phenol on the available active sites of adsorbent and create an additional electrostatic interaction with the phenol adsorbate. Regarding the high value of the coefficient of determination (R2) and adjusted determination coefficient (R2adj), coupled with the lower values of average relative error (ARE) and minimum squared error (MSE), it can be found that the isothermal data for the lead ferrite-MAC adsorbent were in agreement with the isotherm models of Redlich-Peterson and Langmuir. From the kinetic viewpoint, pseudo-second-order and linear driving force models explained the phenol adsorption data for both adsorbents. The reusability tests for lead ferrite-MAC composite revealed that after six cycles, 85% of the initial adsorption capacity was maintained. The developed adsorbent can be successfully applied to uptake phenol from aqueous solution
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-06-23
dc.date.accessioned.none.fl_str_mv 2025-05-07T22:17:03Z
dc.date.available.none.fl_str_mv 2025-05-07T22:17:03Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Allahkarami, E., Dehghan Monfared, A., Silva, L. F. O., & Dotto, G. L. (2022). Lead ferrite-activated carbon magnetic composite for efficient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies. Scientific Reports, 12(1), 10718
dc.identifier.issn.none.fl_str_mv 2045-2322
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/14215
dc.identifier.doi.none.fl_str_mv 10.1038/s41598-022-15077-x
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Allahkarami, E., Dehghan Monfared, A., Silva, L. F. O., & Dotto, G. L. (2022). Lead ferrite-activated carbon magnetic composite for efficient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies. Scientific Reports, 12(1), 10718
2045-2322
10.1038/s41598-022-15077-x
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/14215
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Scientific Reports
dc.relation.references.none.fl_str_mv El-Bery, H. M., Saleh, M., El-Gendy, R. A., Saleh, M. R. & Tabet, S. M. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci. Rep. 12, 1–17 (2022)
Song, M. et al. Incorporation of humic acid into biomass derived carbon for enhanced adsorption of phenol. Sci. Rep. 9, 1–8 (2019)
Yahia, M. B. et al. Modeling and interpretations by the statistical physics formalism of hydrogen adsorption isotherm on LaNi4.75Fe0.25. Int. J. Hydrog. Energy 38, 11536–11542 (2013)
Kumar, A. et al. Phenolic compounds degradation: Insight into the role and evidence of oxygen vacancy defects engineering on nanomaterials. Sci. Total Environ. 800, 149410. https://doi.org/10.1016/j.scitotenv.2021.149410 (2021)
Bhadra, B. N., Lee, J. K., Cho, C.-W. & Jhung, S. H. Remarkably efcient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon. Chem. Eng. J. 343, 225–234. https://doi.org/10.1016/j.cej.2018.03.004 (2018)
Al Bsoul, A. et al. Efcient removal of phenol compounds from water environment using Ziziphus leaves adsorbent. Sci. Total Environ. 761, 143229. https://doi.org/10.1016/j.scitotenv.2020.143229 (2021)
Aksu, Z. & Gönen, F. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of break through curves. Process Biochem. 39, 599–613 (2004
Liu, Y. et al. Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Appl. Micro biol. Biotechnol. 104, 427–437 (2020
Rosly, M. B. et al. Stability of emulsion liquid membrane using bifunctional diluent and blended nonionic surfactant for phenol removal. Chem. Eng. Process. Process Intensifcation 148, 107790 (2020)
Cañadas, R., González-Miquel, M., González, E. J., Díaz, I. & Rodríguez, M. Hydrophobic eutectic solvents for extraction of natural phenolic antioxidants from winery wastewater. Sep. Purif. Technol. 254, 117590 (2021)
Mishra, S., Yadav, S. S., Rawat, S., Singh, J. & Koduru, J. R. Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: Interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties. J. Environ. Manage. 246, 362–373. https://doi.org/10.1016/j.jenvman.2019.06.013 (2019). 12. Rezai, B. & Allahkarami, E. In Sof Computing Techniques in Solid Waste and Wastewater Management (eds Rama, R. K. et al.) 75–93 (Elsevier, 2021
Allahkarami, E. & Rezai, B. Removal of cerium from diferent aqueous solutions using diferent adsorbents: A review. Process Saf. Environ. Prot. 124, 345–362. https://doi.org/10.1016/j.psep.2019.03.002 (2019). 14. Dehmani, Y. et al. Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. J. Mol. Liq. 312, 113383 (2020)
Dong, R. et al. Removal of phenol from aqueous solution using acid-modifed Pseudomonas putida-sepiolite/ZIF-8 bio-nanocom posites. Chemosphere 239, 124708
Qu, Y., Qin, L., Liu, X. & Yang, Y. Reasonable design and sifing of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere 251, 126376 (2020)
Sellaoui, L. et al. Adsorption of phenol on microwave-assisted activated carbons: Modelling and interpretation. J. Mol. Liq. 274, 309–314. https://doi.org/10.1016/j.molliq.2018.10.098 (2019)
Koduru, J. R., Lingamdinne, L. P., Singh, J. & Choo, K.-H. Efective removal of bisphenol A (BPA) from water using a goethite/ activated carbon composite. Process Saf. Environ. Prot. 103, 87–96 (2016)
Park, H.-S., Koduru, J. R., Choo, K.-H. & Lee, B. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J. Hazard. Mater. 286, 315–324 (2015)
Lingamdinne, L. P., Koduru, J. R. & Karri, R. R. A comprehensive review of applications of magnetic graphene oxide based nano composites for sustainable water purifcation. J. Environ. Manage. 231, 622–634. https://doi.org/10.1016/j.jenvman.2018.10.063 (2019)
Lingamdinne, L. P. et al. Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J. 307, 74–84. https://doi.org/10.1016/j.cej.2016.08.067 (2017)
Din, A. T. M., Hameed, B. H. & Ahmad, A. L. Batch adsorption of phenol onto physiochemical-activated coconut shell. J. Hazard. Mater. 161, 1522–1529 (2009)
Fröhlich, A. C., Foletto, E. L. & Dotto, G. L. Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J. Clean. Prod. 229, 828–837. https://doi.org/10.1016/j.jclepro.2019.05.037 (2019)
Ianoş, R. et al. Combustion synthesis of iron oxide/carbon nanocomposites, efcient adsorbents for anionic and cationic dyes removal from wastewaters. J. Alloy. Compd. 741, 1235–1246. https://doi.org/10.1016/j.jallcom.2018.01.240 (2018). 25. Heo, J. et al. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Biores. Technol. 281, 179–187 (2019)
Karthikeyan, P., Vigneshwaran, S., Preethi, J. & Meenakshi, S. Preparation of novel cobalt ferrite coated-porous carbon composite by simple chemical co-precipitation method and their mechanistic performance. Diam. Relat. Mater. 108, 107922 (2020)
Yang, N., Zhu, S., Zhang, D. & Xu, S. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater. Lett. 62, 645–647. https://doi.org/10.1016/j.matlet.2007.06.049 (2008)
Zhang, G., Qu, J., Liu, H., Liu, R. & Wu, R. Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for efective arsenite removal. Water Res. 41, 1921–1928. https://doi.org/10.1016/j.watres.2007.02.009 (2007)
Feng, L. Bifurcations of limit cycles in a quintic Lyapunov system with eleven parameters. Chaos Solitons Fractals 45, 1417–1422. https://doi.org/10.1016/j.chaos.2012.07.012 (2012)
Dąbrowski, A., Podkościelny, P., Hubicki, Z. & Barczak, M. Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58, 1049–1070 (2005)
Tengku-Mazuki, T. A. et al. Optimization of phenol degradation by Antarctic bacterium Rhodococcus sp.. Antarct. Sci. 32, 486–495 (2020)
Barros, F., Dykes, L., Awika, J. M. & Rooney, L. W. Accelerated solvent extraction of phenolic compounds from sorghum brans. J. Cereal Sci. 58, 305–312 (2013)
Lazarova, Z. & Boyadzhieva, S. Treatment of phenol-containing aqueous solutions by membrane-based solvent extraction in coupled ultrafltration modules. Chem. Eng. J. 100, 129–138 (2004)
Li, D. et al. Preparation and characterization of PFTS grafed alumina supported zirconia (ASZ) membrane for removal of phenol from aqueous solution. Appl. Surf. Sci. 505, 144608 (2020)
Lin, S.-H. & Juang, R.-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environ. Manage. 90, 1336–1349 (2009)
Maaz, K., Mumtaz, A., Hasanain, S. K. & Ceylan, A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 289–295 (2007)
Dehghan Monfared, A. & Ghazanfari, M. H. Wettability alteration of oil-wet carbonate porous media using silica nanoparticles: Electrokinetic characterization. Ind. Eng. Chem. Res. 58, 18601–18612. https://doi.org/10.1021/acs.iecr.9b03060 (2019)
Jung, C. et al. Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep. Purif. Technol. 106, 63–71 (2013)
Hao, Z., Wang, C., Yan, Z., Jiang, H. & Xu, H. Magnetic particles modifcation of coconut shell-derived activated carbon and biochar for efective removal of phenol from water. Chemosphere 211, 962–969 (2018)
Allahkarami, E., Igder, A., Fazlavi, A. & Rezai, B. Prediction of Co (II) and Ni (II) ions removal from wastewater using artifcial neural network and multiple regression models. Physicochem. Probl. Miner. Process. 53, 25 (2017)
Igder, A., Fazlavi, A., Allahkarami, E. & Dehghanipour, A. Optimization of Ni(II) & Co(II) removal from wastewater and statistical studies on the results of experimental designs. Geosyst. Eng. 22, 91–100. https://doi.org/10.1080/12269328.2018.1477072 (2019)
Paledi, U., Allahkarami, E., Rezai, B. & Aslani, M. R. Selectivity index and separation efciency prediction in industrial magnetic separation process using a hybrid neural genetic algorithm. SN Appl. Sci. 3, 351. https://doi.org/10.1007/s42452-021-04361-6 (2021)
Karri, R. R., Tanzif, M., Yaraki, M. T. & Sahu, J. N. Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and diferential evolution embedded neural network. J. Environ. Manage. 223, 517–529 (2018)
Smitha, P., Pandey, P. K., Kurian, S. & Gajbhiye, N. S. ICAME 2007 543–548 (Springer, 2008)
Zhou, Y. et al. New insight into the mechanism of peroxymonosulfate activation by nanoscaled lead-based spinel for organic mat ters degradation: A singlet oxygen-dominated oxidation process. J. Colloid Interface Sci. 572, 318–327. https://doi.org/10.1016/j. jcis.2020.03.116 (2020)
Li, H. et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. Chem. Eng. J. 390, 124513. https://doi.org/10.1016/j.cej.2020.124513 (2020)
Luo, J. et al. Preparation and characterization of benzoic acid-modifed activated carbon for removal of gaseous mercury chloride. Fuel 160, 440–445. https://doi.org/10.1016/j.fuel.2015.08.002 (2015)
Zhang, Z., Wang, T., Zhang, H., Liu, Y. & Xing, B. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci. Total Environ. 757, 143910. https://doi.org/10.1016/j.scitotenv.2020.143910 (2021)
Zhang, Y. et al. Utilization of wheat bran for producing activated carbon with high specifc surface area via NaOH activation using industrial furnace. J. Clean. Prod. 210, 366–375 (2019)
Allahkarami, E. & Rezai, B. A literature review of cerium recovery from diferent aqueous solutions. J. Environ. Chem. Eng. 9, 104956. https://doi.org/10.1016/j.jece.2020.104956 (2021)
Dehghan Monfared, A., Ghazanfari, M. H., Jamialahmadi, M. & Helalizadeh, A. Adsorption of silica nanoparticles onto calcite: Equilibrium, kinetic, thermodynamic and DLVO analysis. Chem. Eng. J. 281, 334–344. https://doi.org/10.1016/j.cej.2015.06.104 (2015)
Langmuir, I. Te constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38, 2221–2295 (1916)
Freundlich, H. M. F. Over the adsorption in solution. J. Phys. Chem 57, 1100–1107 (1906)
Tempkin, M. I. & Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR 12, 327 (1940)
Rezai, B. & Allahkarami, E. In Sof Computing Techniques in Solid Waste and Wastewater Management (eds Rama, R. K. et al.) 35–53 (Elsevier, 2021)
Allahkarami, E., Soleimanpour Moghadam, N., Jamrotbe, B. & Azadmehr, A. Competitive adsorption of Ni (II) and Cu (II) ions from aqueous solution by vermiculite-alginate composite: Batch and fxed-bed column studies. J. Dispersion Sci. Technol. 20, 1–11 (2021)
Allahkarami, E., Azadmehr, A., Noroozi, F., Farrokhi, S. & Sillanpää, M. Nitrate adsorption onto surface-modifed red mud in batch and fxed-bed column systems: Equilibrium, kinetic, and thermodynamic studies. Environ. Sci. Pollut. Res. https://doi.org/ 10.1007/s11356-022-19311-x (2022)
Georgin, J. et al. Efcient removal of naproxen from aqueous solution by highly porous activated carbon produced from Grapetree (Plinia caulifora) fruit peels. J. Environ. Chem. Eng. 9, 106820. https://doi.org/10.1016/j.jece.2021.106820 (2021)
Franco, D. S. et al. Highly efective adsorption of synthetic phenol efuent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species. J. Environ. Chem. Eng. 9, 105927. https://doi.org/10.1016/j.jece.2021.105927 (2021)
Ocampo-Pérez, R., Leyva-Ramos, R., Sanchez-Polo, M. & Rivera-Utrilla, J. Role of pore volume and surface difusion in the adsorption of aromatic compounds on activated carbon. Adsorption 19, 945–957 (2013)
Mohan, D., Sarswat, A., Singh, V. K., Alexandre-Franco, M. & Pittman, C. U. Jr. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem. Eng. J. 172, 1111–1125 (2011)
Bandosz, T. J. Activated Carbon Surfaces in Environmental Remediation (Elsevier, 2006)
Mirbagheri, N. S. & Sabbaghi, S. A natural kaolin/γ-Fe2O3 composite as an efcient nano-adsorbent for removal of phenol from aqueous solutions. Microporous Mesoporous Mater. 259, 134–141 (2018)
Mohammadi, S. Z., Darijani, Z. & Karimi, M. A. Fast and efcient removal of phenol by magnetic activated carbon-cobalt nano particles. J. Alloy. Compd. 832, 154942 (2020)
Singh, D. K. & Srivastava, B. Removal of phenol pollutants from aqueous solutions using various adsorbents. (2002)
Gaber, D., Haija, M. A., Eskhan, A. & Banat, F. Graphene as an efcient and reusable adsorbent compared to activated carbons for the removal of phenol from aqueous solutions. Water Air Soil Pollut. 228, 1–14 (2017)
Sharma, G. & Naushad, M. Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: Isotherm and kinetic modelling. J. Mol. Liq. 310, 113025 (2020)
Supong, A. et al. Experimental and theoretical insight into the adsorption of phenol and 2, 4-dinitrophenol onto Tithonia diver sifolia activated carbon. Appl. Surf. Sci. 529, 147046 (2020)
Lawal, A. A. et al. Adsorption mechanism and efectiveness of phenol and tannic acid removal by biochar produced from oil palm frond using steam pyrolysis. Environ. Pollut. 269, 116197 (2021)
Saleh, T. A., Adio, S. O., Asif, M. & Dafalla, H. Statistical analysis of phenols adsorption on diethylenetriamine-modifed activated carbon. J. Clean. Prod. 182, 960–968 (2018)
Lütke, S. F. et al. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J. Environ. Chem. Eng. 7, 103396 (2019)
Changmai, M. & Purkait, M. K. Kinetics, equilibrium and thermodynamic study of phenol adsorption using NiFe2O4 nanoparticles aggregated on PAC. J. Water Process Eng. 16, 90–97 (2017)
Mohammed, N. A. S., Abu-Zurayk, R. A., Hamadneh, I. & Al-Dujaili, A. H. Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies. J. Environ. Manage. 226, 377–385 (2018)
dc.relation.citationendpage.none.fl_str_mv 16
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationissue.none.fl_str_mv 10718
dc.relation.citationvolume.none.fl_str_mv 12
dc.rights.eng.fl_str_mv © The Author(s) 2022
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© The Author(s) 2022
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 16 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
dc.publisher.place.none.fl_str_mv United Kingdom
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv https://www.nature.com/articles/s41598-022-15077-x#citeas
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/395ef56d-b4e9-4810-8943-a60f16f9eb94/download
https://repositorio.cuc.edu.co/bitstreams/862072a2-9b42-4e0f-9ace-557a71f78121/download
https://repositorio.cuc.edu.co/bitstreams/475b4a74-4501-486a-9ae7-401befcb4409/download
https://repositorio.cuc.edu.co/bitstreams/cc2a8ec8-19c1-4b15-ab67-e3153dc7b5c3/download
bitstream.checksum.fl_str_mv 7c62c0404c9a89a1f4684e6e8fa62092
73a5432e0b76442b22b026844140d683
f26d999ab9655f5fcd184469237d2677
50da058b33de7b9d040f0557b65fbc0d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1834108547854499840
spelling Atribución 4.0 Internacional (CC BY 4.0)© The Author(s) 2022https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Allahkarami, EsmaeilDehghan Monfared, AbolfazlSilva, Luisvirtual::1164-1Dotto, Guilherme Luiz2025-05-07T22:17:03Z2025-05-07T22:17:03Z2022-06-23Allahkarami, E., Dehghan Monfared, A., Silva, L. F. O., & Dotto, G. L. (2022). Lead ferrite-activated carbon magnetic composite for efficient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studies. Scientific Reports, 12(1), 107182045-2322https://hdl.handle.net/11323/1421510.1038/s41598-022-15077-xCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A novel lead ferrite-magnetic activated carbon (lead ferrite-MAC) composite was developed using the chemical co-precipitation method. Instrumental analyses such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analysis were performed to characterize adsorbent. The uptake of phenol from aqueous solutions using the developed adsorbent was compared to that of pristine activated carbon. The maximum adsorption capacity of lead ferrite-MAC composite (145.708 mg/g) was more than that of pristine activated carbon (116.606 mg/g) due to the metal hydroxides coated on activated carbon since they improve the retention of phenol on the available active sites of adsorbent and create an additional electrostatic interaction with the phenol adsorbate. Regarding the high value of the coefficient of determination (R2) and adjusted determination coefficient (R2adj), coupled with the lower values of average relative error (ARE) and minimum squared error (MSE), it can be found that the isothermal data for the lead ferrite-MAC adsorbent were in agreement with the isotherm models of Redlich-Peterson and Langmuir. From the kinetic viewpoint, pseudo-second-order and linear driving force models explained the phenol adsorption data for both adsorbents. The reusability tests for lead ferrite-MAC composite revealed that after six cycles, 85% of the initial adsorption capacity was maintained. The developed adsorbent can be successfully applied to uptake phenol from aqueous solution16 páginasapplication/pdfengNature Publishing GroupUnited Kingdomhttps://www.nature.com/articles/s41598-022-15077-x#citeasLead ferrite activated carbon magnetic composite for efcient removal of phenol from aqueous solutions: synthesis, characterization, and adsorption studiesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Scientific ReportsEl-Bery, H. M., Saleh, M., El-Gendy, R. A., Saleh, M. R. & Tabet, S. M. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci. Rep. 12, 1–17 (2022)Song, M. et al. Incorporation of humic acid into biomass derived carbon for enhanced adsorption of phenol. Sci. Rep. 9, 1–8 (2019)Yahia, M. B. et al. Modeling and interpretations by the statistical physics formalism of hydrogen adsorption isotherm on LaNi4.75Fe0.25. Int. J. Hydrog. Energy 38, 11536–11542 (2013)Kumar, A. et al. Phenolic compounds degradation: Insight into the role and evidence of oxygen vacancy defects engineering on nanomaterials. Sci. Total Environ. 800, 149410. https://doi.org/10.1016/j.scitotenv.2021.149410 (2021)Bhadra, B. N., Lee, J. K., Cho, C.-W. & Jhung, S. H. Remarkably efcient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon. Chem. Eng. J. 343, 225–234. https://doi.org/10.1016/j.cej.2018.03.004 (2018)Al Bsoul, A. et al. Efcient removal of phenol compounds from water environment using Ziziphus leaves adsorbent. Sci. Total Environ. 761, 143229. https://doi.org/10.1016/j.scitotenv.2020.143229 (2021)Aksu, Z. & Gönen, F. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of break through curves. Process Biochem. 39, 599–613 (2004Liu, Y. et al. Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Appl. Micro biol. Biotechnol. 104, 427–437 (2020Rosly, M. B. et al. Stability of emulsion liquid membrane using bifunctional diluent and blended nonionic surfactant for phenol removal. Chem. Eng. Process. Process Intensifcation 148, 107790 (2020)Cañadas, R., González-Miquel, M., González, E. J., Díaz, I. & Rodríguez, M. Hydrophobic eutectic solvents for extraction of natural phenolic antioxidants from winery wastewater. Sep. Purif. Technol. 254, 117590 (2021)Mishra, S., Yadav, S. S., Rawat, S., Singh, J. & Koduru, J. R. Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: Interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties. J. Environ. Manage. 246, 362–373. https://doi.org/10.1016/j.jenvman.2019.06.013 (2019). 12. Rezai, B. & Allahkarami, E. In Sof Computing Techniques in Solid Waste and Wastewater Management (eds Rama, R. K. et al.) 75–93 (Elsevier, 2021Allahkarami, E. & Rezai, B. Removal of cerium from diferent aqueous solutions using diferent adsorbents: A review. Process Saf. Environ. Prot. 124, 345–362. https://doi.org/10.1016/j.psep.2019.03.002 (2019). 14. Dehmani, Y. et al. Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. J. Mol. Liq. 312, 113383 (2020)Dong, R. et al. Removal of phenol from aqueous solution using acid-modifed Pseudomonas putida-sepiolite/ZIF-8 bio-nanocom posites. Chemosphere 239, 124708Qu, Y., Qin, L., Liu, X. & Yang, Y. Reasonable design and sifing of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere 251, 126376 (2020)Sellaoui, L. et al. Adsorption of phenol on microwave-assisted activated carbons: Modelling and interpretation. J. Mol. Liq. 274, 309–314. https://doi.org/10.1016/j.molliq.2018.10.098 (2019)Koduru, J. R., Lingamdinne, L. P., Singh, J. & Choo, K.-H. Efective removal of bisphenol A (BPA) from water using a goethite/ activated carbon composite. Process Saf. Environ. Prot. 103, 87–96 (2016)Park, H.-S., Koduru, J. R., Choo, K.-H. & Lee, B. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J. Hazard. Mater. 286, 315–324 (2015)Lingamdinne, L. P., Koduru, J. R. & Karri, R. R. A comprehensive review of applications of magnetic graphene oxide based nano composites for sustainable water purifcation. J. Environ. Manage. 231, 622–634. https://doi.org/10.1016/j.jenvman.2018.10.063 (2019)Lingamdinne, L. P. et al. Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J. 307, 74–84. https://doi.org/10.1016/j.cej.2016.08.067 (2017)Din, A. T. M., Hameed, B. H. & Ahmad, A. L. Batch adsorption of phenol onto physiochemical-activated coconut shell. J. Hazard. Mater. 161, 1522–1529 (2009)Fröhlich, A. C., Foletto, E. L. & Dotto, G. L. Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J. Clean. Prod. 229, 828–837. https://doi.org/10.1016/j.jclepro.2019.05.037 (2019)Ianoş, R. et al. Combustion synthesis of iron oxide/carbon nanocomposites, efcient adsorbents for anionic and cationic dyes removal from wastewaters. J. Alloy. Compd. 741, 1235–1246. https://doi.org/10.1016/j.jallcom.2018.01.240 (2018). 25. Heo, J. et al. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Biores. Technol. 281, 179–187 (2019)Karthikeyan, P., Vigneshwaran, S., Preethi, J. & Meenakshi, S. Preparation of novel cobalt ferrite coated-porous carbon composite by simple chemical co-precipitation method and their mechanistic performance. Diam. Relat. Mater. 108, 107922 (2020)Yang, N., Zhu, S., Zhang, D. & Xu, S. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater. Lett. 62, 645–647. https://doi.org/10.1016/j.matlet.2007.06.049 (2008)Zhang, G., Qu, J., Liu, H., Liu, R. & Wu, R. Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for efective arsenite removal. Water Res. 41, 1921–1928. https://doi.org/10.1016/j.watres.2007.02.009 (2007)Feng, L. Bifurcations of limit cycles in a quintic Lyapunov system with eleven parameters. Chaos Solitons Fractals 45, 1417–1422. https://doi.org/10.1016/j.chaos.2012.07.012 (2012)Dąbrowski, A., Podkościelny, P., Hubicki, Z. & Barczak, M. Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58, 1049–1070 (2005)Tengku-Mazuki, T. A. et al. Optimization of phenol degradation by Antarctic bacterium Rhodococcus sp.. Antarct. Sci. 32, 486–495 (2020)Barros, F., Dykes, L., Awika, J. M. & Rooney, L. W. Accelerated solvent extraction of phenolic compounds from sorghum brans. J. Cereal Sci. 58, 305–312 (2013)Lazarova, Z. & Boyadzhieva, S. Treatment of phenol-containing aqueous solutions by membrane-based solvent extraction in coupled ultrafltration modules. Chem. Eng. J. 100, 129–138 (2004)Li, D. et al. Preparation and characterization of PFTS grafed alumina supported zirconia (ASZ) membrane for removal of phenol from aqueous solution. Appl. Surf. Sci. 505, 144608 (2020)Lin, S.-H. & Juang, R.-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environ. Manage. 90, 1336–1349 (2009)Maaz, K., Mumtaz, A., Hasanain, S. K. & Ceylan, A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 289–295 (2007)Dehghan Monfared, A. & Ghazanfari, M. H. Wettability alteration of oil-wet carbonate porous media using silica nanoparticles: Electrokinetic characterization. Ind. Eng. Chem. Res. 58, 18601–18612. https://doi.org/10.1021/acs.iecr.9b03060 (2019)Jung, C. et al. Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep. Purif. Technol. 106, 63–71 (2013)Hao, Z., Wang, C., Yan, Z., Jiang, H. & Xu, H. Magnetic particles modifcation of coconut shell-derived activated carbon and biochar for efective removal of phenol from water. Chemosphere 211, 962–969 (2018)Allahkarami, E., Igder, A., Fazlavi, A. & Rezai, B. Prediction of Co (II) and Ni (II) ions removal from wastewater using artifcial neural network and multiple regression models. Physicochem. Probl. Miner. Process. 53, 25 (2017)Igder, A., Fazlavi, A., Allahkarami, E. & Dehghanipour, A. Optimization of Ni(II) & Co(II) removal from wastewater and statistical studies on the results of experimental designs. Geosyst. Eng. 22, 91–100. https://doi.org/10.1080/12269328.2018.1477072 (2019)Paledi, U., Allahkarami, E., Rezai, B. & Aslani, M. R. Selectivity index and separation efciency prediction in industrial magnetic separation process using a hybrid neural genetic algorithm. SN Appl. Sci. 3, 351. https://doi.org/10.1007/s42452-021-04361-6 (2021)Karri, R. R., Tanzif, M., Yaraki, M. T. & Sahu, J. N. Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and diferential evolution embedded neural network. J. Environ. Manage. 223, 517–529 (2018)Smitha, P., Pandey, P. K., Kurian, S. & Gajbhiye, N. S. ICAME 2007 543–548 (Springer, 2008)Zhou, Y. et al. New insight into the mechanism of peroxymonosulfate activation by nanoscaled lead-based spinel for organic mat ters degradation: A singlet oxygen-dominated oxidation process. J. Colloid Interface Sci. 572, 318–327. https://doi.org/10.1016/j. jcis.2020.03.116 (2020)Li, H. et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. Chem. Eng. J. 390, 124513. https://doi.org/10.1016/j.cej.2020.124513 (2020)Luo, J. et al. Preparation and characterization of benzoic acid-modifed activated carbon for removal of gaseous mercury chloride. Fuel 160, 440–445. https://doi.org/10.1016/j.fuel.2015.08.002 (2015)Zhang, Z., Wang, T., Zhang, H., Liu, Y. & Xing, B. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci. Total Environ. 757, 143910. https://doi.org/10.1016/j.scitotenv.2020.143910 (2021)Zhang, Y. et al. Utilization of wheat bran for producing activated carbon with high specifc surface area via NaOH activation using industrial furnace. J. Clean. Prod. 210, 366–375 (2019)Allahkarami, E. & Rezai, B. A literature review of cerium recovery from diferent aqueous solutions. J. Environ. Chem. Eng. 9, 104956. https://doi.org/10.1016/j.jece.2020.104956 (2021)Dehghan Monfared, A., Ghazanfari, M. H., Jamialahmadi, M. & Helalizadeh, A. Adsorption of silica nanoparticles onto calcite: Equilibrium, kinetic, thermodynamic and DLVO analysis. Chem. Eng. J. 281, 334–344. https://doi.org/10.1016/j.cej.2015.06.104 (2015)Langmuir, I. Te constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38, 2221–2295 (1916)Freundlich, H. M. F. Over the adsorption in solution. J. Phys. Chem 57, 1100–1107 (1906)Tempkin, M. I. & Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR 12, 327 (1940)Rezai, B. & Allahkarami, E. In Sof Computing Techniques in Solid Waste and Wastewater Management (eds Rama, R. K. et al.) 35–53 (Elsevier, 2021)Allahkarami, E., Soleimanpour Moghadam, N., Jamrotbe, B. & Azadmehr, A. Competitive adsorption of Ni (II) and Cu (II) ions from aqueous solution by vermiculite-alginate composite: Batch and fxed-bed column studies. J. Dispersion Sci. Technol. 20, 1–11 (2021)Allahkarami, E., Azadmehr, A., Noroozi, F., Farrokhi, S. & Sillanpää, M. Nitrate adsorption onto surface-modifed red mud in batch and fxed-bed column systems: Equilibrium, kinetic, and thermodynamic studies. Environ. Sci. Pollut. Res. https://doi.org/ 10.1007/s11356-022-19311-x (2022)Georgin, J. et al. Efcient removal of naproxen from aqueous solution by highly porous activated carbon produced from Grapetree (Plinia caulifora) fruit peels. J. Environ. Chem. Eng. 9, 106820. https://doi.org/10.1016/j.jece.2021.106820 (2021)Franco, D. S. et al. Highly efective adsorption of synthetic phenol efuent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species. J. Environ. Chem. Eng. 9, 105927. https://doi.org/10.1016/j.jece.2021.105927 (2021)Ocampo-Pérez, R., Leyva-Ramos, R., Sanchez-Polo, M. & Rivera-Utrilla, J. Role of pore volume and surface difusion in the adsorption of aromatic compounds on activated carbon. Adsorption 19, 945–957 (2013)Mohan, D., Sarswat, A., Singh, V. K., Alexandre-Franco, M. & Pittman, C. U. Jr. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem. Eng. J. 172, 1111–1125 (2011)Bandosz, T. J. Activated Carbon Surfaces in Environmental Remediation (Elsevier, 2006)Mirbagheri, N. S. & Sabbaghi, S. A natural kaolin/γ-Fe2O3 composite as an efcient nano-adsorbent for removal of phenol from aqueous solutions. Microporous Mesoporous Mater. 259, 134–141 (2018)Mohammadi, S. Z., Darijani, Z. & Karimi, M. A. Fast and efcient removal of phenol by magnetic activated carbon-cobalt nano particles. J. Alloy. Compd. 832, 154942 (2020)Singh, D. K. & Srivastava, B. Removal of phenol pollutants from aqueous solutions using various adsorbents. (2002)Gaber, D., Haija, M. A., Eskhan, A. & Banat, F. Graphene as an efcient and reusable adsorbent compared to activated carbons for the removal of phenol from aqueous solutions. Water Air Soil Pollut. 228, 1–14 (2017)Sharma, G. & Naushad, M. Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: Isotherm and kinetic modelling. J. Mol. Liq. 310, 113025 (2020)Supong, A. et al. Experimental and theoretical insight into the adsorption of phenol and 2, 4-dinitrophenol onto Tithonia diver sifolia activated carbon. Appl. Surf. Sci. 529, 147046 (2020)Lawal, A. A. et al. Adsorption mechanism and efectiveness of phenol and tannic acid removal by biochar produced from oil palm frond using steam pyrolysis. Environ. Pollut. 269, 116197 (2021)Saleh, T. A., Adio, S. O., Asif, M. & Dafalla, H. Statistical analysis of phenols adsorption on diethylenetriamine-modifed activated carbon. J. Clean. Prod. 182, 960–968 (2018)Lütke, S. F. et al. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J. Environ. Chem. Eng. 7, 103396 (2019)Changmai, M. & Purkait, M. K. Kinetics, equilibrium and thermodynamic study of phenol adsorption using NiFe2O4 nanoparticles aggregated on PAC. J. Water Process Eng. 16, 90–97 (2017)Mohammed, N. A. S., Abu-Zurayk, R. A., Hamadneh, I. & Al-Dujaili, A. H. Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies. J. Environ. Manage. 226, 377–385 (2018)1611071812Ferrite-magnetic carbonPhenolAdsorptionFerrite‑MACPublicationf2872e80-7316-4a56-b020-995de6547b54virtual::1164-1f2872e80-7316-4a56-b020-995de6547b54virtual::1164-10000-0001-7678-9130virtual::1164-1ORIGINALs41598-022-15077-x.pdfs41598-022-15077-x.pdfapplication/pdf2301828https://repositorio.cuc.edu.co/bitstreams/395ef56d-b4e9-4810-8943-a60f16f9eb94/download7c62c0404c9a89a1f4684e6e8fa62092MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/862072a2-9b42-4e0f-9ace-557a71f78121/download73a5432e0b76442b22b026844140d683MD52TEXTs41598-022-15077-x.pdf.txts41598-022-15077-x.pdf.txtExtracted texttext/plain69118https://repositorio.cuc.edu.co/bitstreams/475b4a74-4501-486a-9ae7-401befcb4409/downloadf26d999ab9655f5fcd184469237d2677MD53THUMBNAILs41598-022-15077-x.pdf.jpgs41598-022-15077-x.pdf.jpgGenerated Thumbnailimage/jpeg16839https://repositorio.cuc.edu.co/bitstreams/cc2a8ec8-19c1-4b15-ab67-e3153dc7b5c3/download50da058b33de7b9d040f0557b65fbc0dMD5411323/14215oai:repositorio.cuc.edu.co:11323/142152025-05-08 04:01:51.41https://creativecommons.org/licenses/by/4.0/© The Author(s) 2022open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K