Estrategia predictiva de despacho económico para la operación de microrredes con fuentes de energía renovables
Esta investigación se centra en mejorar la operación del Sistema Eléctrico de Potencia (SEP) mediante la integración de Fuentes de Energía Renovable (FER) con Microrredes (MR). Se propone una estrategia de despacho económico (DE) para las MR que aborda la anticipación de contingencias y garantiza un...
- Autores:
-
Cabana Jiménez, Katherine
Ospino C., Adalberto
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10637
- Acceso en línea:
- https://hdl.handle.net/11323/10637
https://repositorio.cuc.edu.co
- Palabra clave:
- Microrredes
Topologías
Energía renovable
Despacho económico
Estrategia predictiva
Sistema eléctrico
Microgrids
Topologies
Renewable energy
Economic dispatch
Predictive strategy
Electrical system
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_7c23ef9a8e5d1046b9797c71c664ddf0 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10637 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estrategia predictiva de despacho económico para la operación de microrredes con fuentes de energía renovables |
title |
Estrategia predictiva de despacho económico para la operación de microrredes con fuentes de energía renovables |
spellingShingle |
Estrategia predictiva de despacho económico para la operación de microrredes con fuentes de energía renovables Microrredes Topologías Energía renovable Despacho económico Estrategia predictiva Sistema eléctrico Microgrids Topologies Renewable energy Economic dispatch Predictive strategy Electrical system |
title_short |
Estrategia predictiva de despacho económico para la operación de microrredes con fuentes de energía renovables |
title_full |
Estrategia predictiva de despacho económico para la operación de microrredes con fuentes de energía renovables |
title_fullStr |
Estrategia predictiva de despacho económico para la operación de microrredes con fuentes de energía renovables |
title_full_unstemmed |
Estrategia predictiva de despacho económico para la operación de microrredes con fuentes de energía renovables |
title_sort |
Estrategia predictiva de despacho económico para la operación de microrredes con fuentes de energía renovables |
dc.creator.fl_str_mv |
Cabana Jiménez, Katherine Ospino C., Adalberto |
dc.contributor.advisor.none.fl_str_mv |
Sousa Santos, Vladimir Candelo Becerra, John Edwin |
dc.contributor.author.none.fl_str_mv |
Cabana Jiménez, Katherine Ospino C., Adalberto |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad de la Costa |
dc.contributor.jury.none.fl_str_mv |
Ospino Castro, Adalberto Posada Contreras, Jhony Marín, Juan Guillermo |
dc.subject.proposal.spa.fl_str_mv |
Microrredes Topologías Energía renovable Despacho económico Estrategia predictiva Sistema eléctrico |
topic |
Microrredes Topologías Energía renovable Despacho económico Estrategia predictiva Sistema eléctrico Microgrids Topologies Renewable energy Economic dispatch Predictive strategy Electrical system |
dc.subject.proposal.eng.fl_str_mv |
Microgrids Topologies Renewable energy Economic dispatch Predictive strategy Electrical system |
description |
Esta investigación se centra en mejorar la operación del Sistema Eléctrico de Potencia (SEP) mediante la integración de Fuentes de Energía Renovable (FER) con Microrredes (MR). Se propone una estrategia de despacho económico (DE) para las MR que aborda la anticipación de contingencias y garantiza un despacho eficiente. La falta de predicción en la generación con FER provoca fluctuaciones en la potencia, lo que requiere costosas reservas de energía para adaptarse. La estrategia busca reducir el tiempo de respuesta en emergencias al anticipar contingencias sin comprometer la viabilidad económica. La estrategia considera aspectos críticos como el cálculo de reserva rodante, la transferencia de energía entre la red principal y las MR, la generación máxima en las MR y el uso exclusivo de energía renovable. Reduce la incertidumbre generada por las FER y optimiza los costos de generación, mejorando la continuidad del suministro eléctrico. Los SEP enfrentan desafíos debido a la obsolescencia de componentes y la necesidad de migrar hacia FER. Las MR, con su flexibilidad y eficiencia, se presentan como una solución prometedora. La investigación se enfoca en esta área, proponiendo soluciones para la integración efectiva de FER en el SEP a través del software PowerFactory 15.1. Se analiza una MR real acoplada a dos sistemas de prueba (IEEE-14 e IEEE-39) en tres escenarios de carga. Los resultados de la estrategia muestran una reducción de pérdidas de potencia en el sistema superior al 6.43%. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-12-14T14:09:35Z |
dc.date.available.none.fl_str_mv |
2023-12-14T14:09:35Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10637 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co |
url |
https://hdl.handle.net/11323/10637 https://repositorio.cuc.edu.co |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
2030.8-2018 - IEEE Standard for the Testing of Microgrid Controllers | IEEE Standard | IEEE Xplore. (n.d.). https://doi.org/10.1109/IEEESTD.2018.8444947 Abu-Elzait, S., & Parkin, R. (2019). The Effect of Dispatch Strategy on Maintaining the Economic Viability of PV-based Microgrids. Conference Record of the IEEE Photovoltaic Specialists Conference, 1203–1205. https://doi.org/10.1109/PVSC40753.2019.8980548 Ajoulabadi, A., Ravadanegh, S. N., & Behnam Mohammadi-Ivatloo. (2020). Flexible scheduling of reconfigurable microgrid-based distribution networks considering demand response program. Energy. https://doi.org/10.1016/j.energy.2020.117024 Alex Navas, F., Gomez, J. S., Llanos, J., Rute, E., Saez, D., & Sumner, M. (2021). Distributed Predictive Control Strategy for Frequency Restoration of Microgrids Considering Optimal Dispatch. IEEE Transactions on Smart Grid, 12(4), 2748–2759. https://doi.org/10.1109/TSG.2021.3053092 Alomoush, M. I. (2019). Microgrid combined power-heat economic-emission dispatch considering stochastic renewable energy resources, power purchase and emission tax. Energy Conversion and Management, 200. https://doi.org/10.1016/j.enconman.2019.112090 Al-Sakkaf, S., Kassas, M., Khalid, M., & Abido, M. A. (2019). An Energy Management System for Residential Autonomous DC Microgrid Using Optimized Fuzzy Logic Controller Considering Economic Dispatch. Energies. https://doi.org/10.3390/en12081457 Alvarez, J. M. G., & Targarona, J. C. G. (2011). Generación eólica empleando distintos tipos de generadores considerando su impacto en el sistema de potencia. DYNA (Colombia), 78(169), 95–104 Álvaro, R., & Menéndez, J. (2020). Casos de microrredes. In Cuadernos Orkestra, núm. 73/2019 (73/2020, Vol. 73). Cuadernos Orkestra Andishgar, M. H., Gholipour, E., & Hooshmand, R. (2017). An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renewable and Sustainable Energy Reviews, 80, 1043–1060. https://doi.org/10.1016/j.rser.2017.05.267 Arce Zapata, G., Humberto Ramirez Director General UPME, R., Públicas de Medellín ESP Codensa ESP ISAGEN SA ESP Electricaribe SA ESP TERMOBARRANQUILLA SA ESP, E. S., Esp Generación, S., Henao Ramírez, W. J., Zapata Lesmes, H. J., Aponte Gutiérrez, J. C., Hernández Beleño, L. A., Castaño Ramirez, D. L., Zárate Herrera, J. S., Jiménez Rivera TRANSMISIÓN, B. A., Jiménez Rivera, B. A., Gil Naranjo, R., Viasús Figueredo, C. C., Achury Beltrán, N., Ospina Sierra, A. M., Moreno Garzón, A., Fonseca Consuegra, S. P., Reyes Martínez, L. A., … Rodríguez Hernández, R. (2018). Con la asesoría del Comité Asesor de Planeamiento de la Transmisión-CAPT, conformado por. Arcia, M. G., Sánchez, Z. G., Herrera, H. H., Cruz, J. A. G. C., Silva-Ortega, J. I., & Sánchez, G. C. (2022). Frequency response analysis under faults in weak power systems. International Journal of Electrical and Computer Engineering, 12(2), 1077–1088. https://doi.org/10.11591/ijece.v12i2.pp1077-1088 Arenas-Crespo, O., & Candelo, J. E. (2018). A power constraint index to rank and group critical contingencies based on sensitivity factors. Archives of Electrical Engineering, 67(2). https://doi.org/10.24425/119638 Arenas-Crespo, O., Candelo-Becerra, J. E., & Velasco, F. E. H. (2019). Online economic redispatch to mitigate line overloads after line and generation contingencies. Energies. https://doi.org/10.3390/en12060966 Arslan Iqbal Awan, M., Raza, A., Riaz, M., Khalil, L., & Liaquat Bhatti, K. (2020). Integration of sub-gradient based coordinate for multiple renewable generators in microgrid. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.05.146 Basak, P., Chowdhury, S., Halder nee Dey, S., & Chowdhury, S. P. (2012). A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid. Renewable and Sustainable Energy Reviews, 16(8), 5545–5556. https://doi.org/10.1016/j.rser.2012.05.043 Benahmed, S., Riedinger, P., & Pierfederici, S. (2021). Distributed-based Integral Action for Current Sharing and Average Voltage Regulation in DC Microgrids. IFAC-PapersOnLine, 54(9), 52–59. https://doi.org/10.1016/j.ifacol.2021.06.142 Bernd, W. I. for I. S. and D. T. I., Leopold, O. I. for I. S. and D. T. I., Yunchao, H. I. for I. S. and D. T. I., & Martin, M. I. for I. S. and D. T. I. (2015). Voltage Control and Stabilization of Distributed and Centralized DC Micro Grids | VDE Conference Publication | IEEE Xplore. Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Bhag S. Guru, H. R. H. (2008). Electric Power Generation (PHI Learning, Ed.; 3rd, ilustra ed.). https://doi.org/10.1201/b12056-2 Boddapati, V., Kumar, T. S., Prakash, N., & Gunapriya, B. (2021). Current droop control of parallel inverters in an autonomous microgrid. Materials Today: Proceedings, 45, 2034– 2039. https://doi.org/10.1016/j.matpr.2020.09.496 Bordons, C., García-Torres, F., & Valverde, L. (2015). Gestión Óptima de la Energía en Microrredes con Generación Renovable. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 12(2), 117–132. https://doi.org/10.1016/j.riai.2015.03.001 Brandao, D. I., de Araújo, L. S., Caldognetto, T., & Pomilio, J. A. (2018). Coordinated control of three- and single-phase inverters coexisting in low-voltage microgrids. Applied Energy, 228, 2050–2060. https://doi.org/10.1016/j.apenergy.2018.07.082 C. Trujillo Rodriguez, J. Hernandez Mora, O. F. C. (2015). Sistemas fotovoltaicos y sistemas eólicos en microrredes. In E. UD & U. D. F. J. de Caldas (Eds.), Microrredes Electricas (Primera, pp. 61–83). Carvalho Silveira, J. P., dos Santos Neto, P. J., dos Santos Barros, T. A., Ruppert Filho, E., Chandra, A., Singh, G. K., & Pant, V. (2021). Power management of energy storage system with modified interlinking converters topology in hybrid AC/DC microgrid. International Journal of Electrical Power & Energy Systems, 130, 106880. https://doi.org/10.1016/j.epsr.2021.107036 Chamorro, H. R., Ordonez, C. A., Peng, J. C. H., Gonzalez-Longatt, F., & Sood, V. K. (2019). Coherency Estimation in Power Systems: A Koopman Operator Approach. Springer Optimization and Its Applications, 150, 201–225. https://doi.org/10.1007/978-3-030-25446- 9_9/TABLES/8 Chandra, A., Singh, G. K., & Pant, V. (2020). Protection techniques for DC microgrid- A review. In Electric Power Systems Research (Vol. 187). https://doi.org/10.1016/j.epsr.2020.106439 Chandra, A., Singh, G. K., & Pant, V. (2021a). Protection of AC microgrid integrated with renewable energy sources – A research review and future trends. Electric Power Systems Research, 193, 107036. Chang, C.-Y., & Zhang, W. (2016). Distributed control of inverter-based lossy microgrids for power sharing and frequency regulation under voltage constraints. Automatica, 66, 85–95. https://doi.org/10.1016/j.automatica.2015.12.014 Chandra, A., Singh, G. K., & Pant, V. (2021b). Protection of AC microgrid integrated with renewable energy sources – A research review and future trends. In Electric Power Systems Research (Vol. 193). Elsevier Ltd. https://doi.org/10.1016/j.epsr.2021.107036 Chang, X., Xu, Y., Sun, H., & Khan, I. (2021). A distributed robust optimization approach for the economic dispatch of flexible resources. International Journal of Electrical Power and Energy Systems, 124. https://doi.org/10.1016/j.ijepes.2020.106360 Chaurasia, R., Gairola, S., & Pal, Y. (2022a). Technical, economic, and environmental performance comparison analysis of a hybrid renewable energy system based on power dispatch strategies. Sustainable Energy Technologies and Assessments, 53, 102787. https://doi.org/10.1016/j.seta.2022.102787 Chaurasia, R., Gairola, S., & Pal, Y. (2022b). Technical, economic, and environmental performance comparison analysis of a hybrid renewable energy system based on power dispatch strategies. Sustainable Energy Technologies and Assessments, 53. https://doi.org/10.1016/j.seta.2022.102787 Che, L., Zhang, X., Shahidehpour, M., Alabdulwahab, A., & Abusorrah, A. (2017). Optimal Interconnection Planning of Community Microgrids with Renewable Energy Sources. IEEE Transactions on Smart Grid, 8(3), 1054–1063. https://doi.org/10.1109/TSG.2015.2456834 Chemwiki, U. C. D., Alike, C. C. A., & License, U. S. (2016). π Systems π Systems. IEEE Press Chen, X., Ju, Y., & Zhang, R. (2021). Land-Sea Relay Fishery Networked Microgrids under the Background of Cyber-Physical Fusion: Characteristics and Key Issues Prospect. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2021.02.002 Chen, X., Wang, Y. H., & Wang, Y. C. (2013). A novel seamless transferring control method for microgrid based on master-slave configuration. 2013 IEEE ECCE Asia Downunder, 351– 357. https://doi.org/10.1109/ECCE-Asia.2013.6579120 Chen, Z., & Li, H. (2008). Overview of different wind generator systems and their comparisons. IET Renewable Power Generation, 2(2), 123–138. https://doi.org/10.1049/iet-rpg:20070044 Cheng, Z., Li, Z., Li, S., Gao, J., Si, J., Das, H. S., & Dong, W. (2020). A novel cascaded control to improve stability and inertia of parallel buck-boost converters in DC microgrid. International Journal of Electrical Power & Energy Systems, 119, 105950. https://doi.org/10.1016/j.ijepes.2020.105950 Cole, W., Gates, N., & Mai, T. (2021). Exploring the cost implications of increased renewable energy for the U.S. power system. The Electricity Journal, 34(5), 106957. https://doi.org/10.1016/j.tej.2021.106957 David Fernando, M. B. (2015). Energy Dispatch control in distribution systems based on Microgrid model. Pontificia Universidad Javeriana De Madrid, C., De, G., Inteligentes, R., Energía, D., & Comunicación, Y. (2004). La Suma de Todos Guía de Redes Inteligentes de energía y comunicación. Dey, B., Bhattacharyya, B., & Márquez, F. P. G. (2021). A hybrid optimization-based approach to solve environment constrained economic dispatch problem on microgrid system. Journal of Cleaner Production, 307. https://doi.org/10.1016/j.jclepro.2021.127196 DIgSILENT GmbH. (2015). 39 bus New England system (pp. 1–16). www.digsilent.de Dranka, G. G., & Ferreira, P. (2019). Review and assessment of the different categories of demand response potentials. Energy, 179, 280–294. https://doi.org/10.1016/j.energy.2019.05.009 Du, Y., Pei, W., Chen, N., Ge, X., & Xiao, H. (2017). Real-time microgrid economic dispatch based on model predictive control strategy. Journal of Modern Power Systems and Clean Energy, 5(5), 787–796. https://doi.org/10.1007/s40565-017-0265-4 Dunham, H., Cutler, D., Mishra, S., & Li, X. (2020). Cost-optimal evaluation of centralized and distributed microgrid topologies considering voltage constraints. Energy for Sustainable Development, 56, 88–97. https://doi.org/10.1016/j.esd.2020.03.002 Enkhtuvshin, M., Liu, K. Z., Wei, Y., Sanabria, C., Koiwa, K., & Zanma, T. (2023). Economic dispatch of thermal and PV powers: Frequency maintenance, smoothing effect based statistic model and peak-cut operation. International Journal of Electrical Power and Energy Systems, 148, 108938. https://doi.org/10.1016/j.ijepes.2022.108938 Fuentes, A. (2017). ESTUDIO DE VIABILIDAD Y REQUISITOS TÉCNICOS NECESARIOS PARA LA IMPLANTACIÓN DE UNA MICRO-RED ELÉCTRICA. Universidad de Sevilla, 100. Fundación Naturgy. (n.d.). Integración de las tecnologías-renovables en la transición energética. Retrieved August 28, 2023, from https://www.fundacionnaturgy.org/wpcontent/uploads/2020/07/integracion-de-las-tecnologias-renovables-en-latransicionenergetica.pdf Fusheng, L., Ruisheng, L., & Fengquan, Z. (2016). Composition and classification of the microgrid. In Microgrid Technology and Engineering Application (pp. 11–27). Elsevier. https://doi.org/10.1016/B978-0-12-803598-6.00002-4 Gadanayak, D. A. (2021). Protection algorithms of microgrids with inverter interfaced distributed generation units—A review. Electric Power Systems Research, 192, 106986. https://doi.org/10.1016/j.epsr.2020.106986 Gaona, E. E., Mancera, P. A., & Trujillo, C. L. (2016). sensores inalámbricos aplicada a una Microrred en modo “ Isla ” Routing Algorithm with topology reconfiguration for Wireless Sensor Network applied to microgrid in Island mode. Revista UIS Ingenierías, 15(2), 93–104. https://doi.org/10.18273/revuin.v15n2-2016008.94 Gaona Garcia, E. E. (2017). Esquemas de trasmisión de datos en una Microrred a través de una Infraestructura de medición avanzada. Revista UIS Ingenierías. https://doi.org/10.18273/revuin.v15n2-2016007 Gaona García, E. E., Rodríguez Trujillo, C. L., & Rojas Cubides, H. E. (2014). INFRAESTRUCTURA DE COMUNICACIONES EN MICRORREDES ELECTRICAS. Redes de Ingeniería. https://doi.org/10.14483/2248762x.8044 Gaonkar, D. N. (2010). Investigation on Electromagnetic Transients of Distributed Generation Systems in the Microgrid. Electric Power Components and Systems, 38(13), 1486–1497. https://doi.org/10.1080/15325008.2010.482090 Ge, X., Han, H., Xiong, W., Su, M., Liu, Z., & Sun, Y. (2020a). Locally-distributed and globallydecentralized control for hybrid series-parallel microgrids. International Journal of Electrical Power & Energy Systems, 116, 105537. https://doi.org/10.1016/j.ijepes.2019.105537 Ge, X., Han, H., Xiong, W., Su, M., Liu, Z., & Sun, Y. (2020b). Locally-distributed and globallydecentralized control for hybrid series-parallel microgrids. International Journal of Electrical Power & Energy Systems, 116, 105537. https://doi.org/10.1016/j.ijepes.2019.105537 Ge, X., Han, H., Yuan, W., Sun, Y., Su, M., Zhang, X., & Hai, K. L. (2018). An Integrated SeriesParallel Microgrid Structure and its Unified Distributed Control. 2018 IEEE 4th Southern Power Electronics Conference (SPEC), 1–6. https://doi.org/10.1109/SPEC.2018.8635952 Gil-González, W., Montoya, O. D., Holguín, E., Garces, A., & Grisales-Noreña, L. F. (2019). Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. Journal of Energy Storage, 21, 1–8. https://doi.org/10.1016/j.est.2018.10.025 Giraldo, J. S., Murad, M. A. A., Kërçi, T., & Milano, F. (2022). Impact of decentralized microgrids optimal energy management on power system dynamics. Electric Power Systems Research, 212. https://doi.org/10.1016/j.epsr.2022.108337 Golla, M., Sankar, S., & Chandrasekaran, K. (2021). Renewable integrated UAPF fed microgrid system for power quality enhancement and effective power flow management. International Journal of Electrical Power & Energy Systems, 133, 107301. https://doi.org/10.1016/j.ijepes.2021.107301 González Estrada, T., & Valencia Marín, J. (2015). Integración de las energías renovables no convencionales en Colombia. http://www1.upme.gov.co/sgic/ Grainger, J., & Stevenson, W. Jr. (1996). Analisis de Sistemas de Potencia. In Cenace, Uanl (McGraw Hil, p. 743). https://catedras.facet.unt.edu.ar/sep/wpcontent/uploads/sites/20/2020/03/Análisis-de-Sistemas-de-Potencia-Grainger-Stevenson.pdf Grigsby, L. L. (2017). Power system stability and control. In Power System Stability and Control, Third Edition. McGraw-Hill Education. https://doi.org/10.4324/b12113 Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuna, L. G., & Castilla, M. (2011). Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. IEEE Transactions on Industrial Electronics, 58(1), 158–172. https://doi.org/10.1109/TIE.2010.2066534 Gupta, A., Doolla, S., & Chatterjee, K. (2018). Hybrid AC-DC Microgrid: Systematic Evaluation of Control Strategies. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2017.2727344 Hannan, M. A., Tan, S. Y., Al-Shetwi, A. Q., Jern, K. P., & Begum, R. A. (2020). Optimized controller for renewable energy sources integration into microgrid: Functions, constraints and suggestions. Journal of Cleaner Production, 256, 120419. https://doi.org/10.1016/j.jclepro.2020.120419 Hassan, M. H., Kamel, S., Eid, A., Nasrat, L., Jurado, F., & Elnaggar, M. F. (2023). A developed eagle-strategy supply-demand optimizer for solving economic load dispatch problems. Ain Shams Engineering Journal, 14(5), 102083. https://doi.org/10.1016/j.asej.2022.102083 Hayman, A. K. (2008). Development of a High-Efficiency Solar Micro-Inverter. Massachusetts Institute of Technology. He, L., Wei, Z., Yan, H., Xv, K. Y., Zhao, M. Y., & Cheng, S. (2019). A day-ahead scheduling optimization model of multi-microgrid considering interactive power control. 2019 4th International Conference on Intelligent Green Building and Smart Grid, IGBSG 2019, 666– 669. https://doi.org/10.1109/IGBSG.2019.8886341 Hernández Mora, J., Trujillo Rodríguez, C., & Vallejo Lozada, W. (2013). Modelo de un sistema fotovoltaico interconectado. Tecnura, 17(1), 26–34. https://doi.org/10.14483/22487638.7235 Hooshyar, A., & Iravani, R. (2017). Microgrid Protection. Proceedings of the IEEE. https://doi.org/10.1109/JPROC.2017.2669342 Hossain, M. A., Pota, H. R., Hossain, M. J., & Blaabjerg, F. (2019). Evolution of microgrids with converter-interfaced generations: Challenges and opportunities. International Journal of Electrical Power & Energy Systems, 109, 160–186. https://doi.org/10.1016/j.ijepes.2019.01.038 Hou, X., Sun, Y., Han, H., Liu, Z., Yuan, W., & Su, M. (2019). A fully decentralized control of grid-connected cascaded inverters. IEEE Transactions on Sustainable Energy, 10(1), 315– 317. https://doi.org/10.1109/TPWRD.2018.2816813 Hou, X., Sun, Y., Zhang, X., Zhang, G., Lu, J., & Blaabjerg, F. (2019). A Self-Synchronized Decentralized Control for Series-Connected H-Bridge Rectifiers. IEEE Transactions on Power Electronics, 34(8), 7136–7142. https://doi.org/10.1109/TPEL.2019.2896150 Huang, L., Li, Y., Cui, Q., Xie, N., Zeng, J., & Shu, J. (2020). Research on optimal configuration of AC/DC hybrid system integrated with multiport solid-state transforms and renewable energy based on a coordinate strategy. International Journal of Electrical Power & Energy Systems, 119, 105880. https://doi.org/10.1016/j.ijepes.2020.105880 IEC TS 62898-1:2017 | Microgrids - Part 1: Guidelines for microgrid projects planning and specification (p. 33). (2017). INTERNATIONAL ELECTROTECHNICAL COMMISSION. ISE, P. R. I. F. O. R. S. E. S. (2020). Photovoltaics Report. Issa, W. R., Khateb, A. H. E., Abusara, M. A., & Mallick, T. K. (2018). Control Strategy for Uninterrupted Microgrid Mode Transfer during Unintentional Islanding Scenarios. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2017.2772199 Jiayi, H., Chuanwen, J., & Rong, X. (2008). A review on distributed energy resources and MicroGrid. Renewable and Sustainable Energy Reviews, 12(9), 2472–2483. https://doi.org/10.1016/j.rser.2007.06.004 Jmii, H., Abbes, M., Meddeb, A., & Chebbi, S. (2020). Centralized VSM control of an AC meshed microgrid for ancillary services provision. International Journal of Electrical Power & Energy Systems, 115, 105450. https://doi.org/10.1016/j.ijepes.2019.105450 Khan, A. A., Beg, O. A., Alamaniotis, M., & Ahmed, S. (2021). Intelligent anomaly identification in cyber-physical inverter-based systems. Electric Power Systems Research, 193, 107024. https://doi.org/10.1016/j.epsr.2021.107024 Khan, H. A. U., Al Hosani, M., & Zeineldin, H. (2020). Topology planning for autonomous MMGs: an ordered binary decision diagram‐based approach. IET Smart Grid, 3(1), 60–68. https://doi.org/10.1049/iet-stg.2019.0083 Khan, O., & Xiao, W. (2017). Review and qualitative analysis of submodule-level distributed power electronic solutions in PV power systems. Renewable and Sustainable Energy Reviews, 76, 516–528. https://doi.org/10.1016/j.rser.2017.03.073 Kohler, J., Muller, M. A., Li, N., & Allgower, F. (2017). Real time economic dispatch for power networks: A distributed economic model predictive control approach. 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 6340–6345. https://doi.org/10.1109/CDC.2017.8264615 Komala, K., Kumar, K. P., & Cherukuri, S. H. C. (2021). Storage and non-Storage Methods of Power balancing to counter Uncertainty in Hybrid Microgrids - A review. Journal of Energy Storage, 36, 102348. https://doi.org/10.1016/j.est.2021.102348 Laaksonen, H. J. (2010). Protection principles for future microgrids. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2010.2066990 Lakatos, L., Hevessy, G., & Kovács, J. (2011). Advantages and Disadvantages of Solar Energy and Wind-Power Utilization. World Futures, 67(6), 395–408. https://doi.org/10.1080/02604020903021776 Li, C., De Bosio, F., Chen, F., Chaudhary, S. K., Vasquez, J. C., & Guerrero, J. M. (2017). Economic Dispatch for Operating Cost Minimization under Real-Time Pricing in DroopControlled DC Microgrid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(1), 587–595. https://doi.org/10.1109/JESTPE.2016.2634026 Li, P., Guo, T., Zhou, F., Yang, J., & Liu, Y. (2020). Nonlinear coordinated control of parallel bidirectional power converters in an AC/DC hybrid microgrid. International Journal of Electrical Power & Energy Systems, 122, 106208. https://doi.org/10.1016/j.ijepes.2020.106208 Li, X., Zeng, Y., & Lu, Z. (2022). Decomposition and coordination calculation of economic dispatch for active distribution network with multi-microgrids. International Journal of Electrical Power and Energy Systems, 135. https://doi.org/10.1016/j.ijepes.2021.107617 Li, Y., Sun, Q., Qin, D., Cheng, K., & Li, Z. (2020). Power Control of a Modular Three-Port SolidState Transformer with Three-Phase Unbalance Regulation Capabilities. IEEE Access, 8, 72859–72869. https://doi.org/10.1109/ACCESS.2020.2987075 Li, Y., Sun, Q., Qin, D., Cheng, K., Li, Z., Agrawal, A., Nalamati, C. S., & Gupta, R. (2019). Hybrid DC–AC Zonal Microgrid Enabled by Solid-State Transformer and Centralized ESD Integration. IEEE Transactions on Industrial Electronics, 66(11), 9097–9107. https://doi.org/10.1109/TIE.2019.2899559 Li, Y., Zhang, P., Althoff, M., & Yue, M. (2019). Distributed Formal Analysis for Power Networks with Deep Integration of Distributed Energy Resources. IEEE Transactions on Power Systems, 34(6), 5147–5156. https://doi.org/10.1109/TPWRS.2018.2875150 Lopez Castrillon, Y. U., & Gaviria Cataño, F. A. (2018). Metodología y evaluación de recursos energéticos renovables: implementación de microrredes aisladas. Visión Electrónica. https://doi.org/10.14483/22484728.14260 Lotfi, H., & Khodaei, A. (2017). Hybrid AC/DC microgrid planning. Energy, 118, 37–46. https://doi.org/10.1016/j.energy.2016.12.015 Mandal, S., & Mandal, K. K. (2020). Optimal energy management of microgrids under environmental constraints using chaos enhanced differential evolution. Renewable Energy Focus, 34, 129–141. https://doi.org/10.1016/j.ref.2020.05.002 Martin-Martínez, F., Sánchez-Miralles, A., & Rivier, M. (2016). A literature review of Microgrids: A functional layer based classification. In Renewable and Sustainable Energy Reviews (Vol. 62, pp. 1133–1153). https://doi.org/10.1016/j.rser.2016.05.025 Mehmood, F., Khan, B., & Ali, S. M. (2021). Renewable generation intermittence and economic dispatch control of autonomous microgrid with distributed sliding mode. International Journal of Electrical Power and Energy Systems, 130. https://doi.org/10.1016/j.ijepes.2021.106937 Mehmood, F., Khan, B., Ali, S. M., & Rossiter, J. A. (2021). Distributed MPC for economic dispatch and intermittence control of renewable based autonomous microgrid. Electric Power Systems Research, 195. https://doi.org/10.1016/j.epsr.2021.107131 Meng, L., Sanseverino, E. R., Luna, A., Dragicevic, T., Vasquez, J. C., & Guerrero, J. M. (2016). Microgrid supervisory controllers and energy management systems: A literature review. Renewable and Sustainable Energy Reviews, 60, 1263–1273. https://doi.org/10.1016/j.rser.2016.03.003 Mia, S., Kumer Podder, A., Manoj Kumar, N., Bhatt, A., & Kumar, K. (2023). Experimental verification of a dynamic programming and IoT-based simultaneous load-sharing controller for residential homes powered with grid and onsite solar photovoltaic electricity. Sustainable Energy Technologies and Assessments, 55, 102964. https://doi.org/10.1016/j.seta.2022.102964 Mishra, D. K., Ghadi, M. J., Li, L., Hossain, Md. J., Zhang, J., Ray, P. K., & Mohanty, A. (2021). A review on solid-state transformer: A breakthrough technology for future smart distribution grids. International Journal of Electrical Power & Energy Systems, 133, 107255. https://doi.org/10.1016/j.ijepes.2021.107255 Mohammadi, S., Ojaghi, M., Jalilvand, A., & Shafiee, Q. (2021). A pilot-based unit protection scheme for meshed microgrids using apparent resistance estimation. International Journal of Electrical Power & Energy Systems, 126, 106564. https://doi.org/10.1016/j.ijepes.2020.106564 Mongrain, R. S., & Ayyanar, R. (2020a). Control of nonideal grid-forming inverter in islanded microgrid with hierarchical control structure under unbalanced conditions. International Journal of Electrical Power & Energy Systems, 119, 105890. https://doi.org/10.1016/j.ijepes.2020.105890 Mongrain, R. S., & Ayyanar, R. (2020b). Control of nonideal grid-forming inverter in islanded microgrid with hierarchical control structure under unbalanced conditions. International Journal of Electrical Power and Energy Systems, 119. https://doi.org/10.1016/j.ijepes.2020.105890 Nageswara Rao, A., Vijaya Priya, P., Kowsalya, M., & Gnanadass, R. (2019). Wide area monitoring for energy system: A review. International Journal of Ambient Energy, 40(5), 537–553. https://doi.org/10.1080/01430750.2017.1399458 Nassourou, M., Blesa, J., & Puig, V. (2020). Optimal energy dispatch in a smart micro-grid system using economic model predictive control. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 234(1), 96–106. https://doi.org/10.1177/0959651818786376/ASSET/IMAGES/LARGE/10.1177_0959651818786376-FIG2.JPEG Navas-Fonseca, A., Burgos-Mellado, C., Espina, E., Rute, E., Gomez, J. S., Saez, D., & Sumner, M. (2021, July 18). Distributed predictive secondary control for voltage restoration and economic dispatch of generation for DC microgrids. 2021 IEEE 4th International Conference on DC Microgrids, ICDCM 2021. https://doi.org/10.1109/ICDCM50975.2021.9504612 Nazari-Heris, F., Mohammadi-ivatloo, B., & Nazarpour, D. (2019). Network constrained economic dispatch of renewable energy and CHP based microgrids. International Journal of Electrical Power and Energy Systems, 110, 144–160. https://doi.org/10.1016/j.ijepes.2019.02.037 Nehrir, M. H., Wang, C., Strunz, K., Aki, H., Ramakumar, R., Bing, J., Miao, Z., & Salameh, Z. (2011). A Review of Hybrid Renewable/Alternative Energy Systems for Electric Power Generation: Configurations, Control, and Applications. IEEE Transactions on Sustainable Energy, 2(4), 392–403. https://doi.org/10.1109/TSTE.2011.2157540 Nejabatkhah, F., & Li, Y. W. (2015). Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Transactions on Power Electronics, 30(12), 7072–7089. https://doi.org/10.1109/TPEL.2014.2384999 Nguyen, M. Y., Nguyen, V. T., & Yoon, Y. T. (2013). Three-wire network: a new distribution system approach considering both distributed generation and load requirements. International Transactions on Electrical Energy Systems, 23(5), 719–732. https://doi.org/10.1002/etep.1749 Nguyen, M. Y., & Yoon, Y. T. (2014). A Comparison of Microgrid Topologies Considering Both Market Operations and Reliability. Electric Power Components and Systems, 42(6), 585– 594. https://doi.org/10.1080/15325008.2014.880963 Nichols, D. K., Stevens, J., Lasseter, R. H., Eto, J. H., & Vollkommer, H. T. (2006). Validation of the CERTS microgrid concept the CEC/CERTS microgrid testbed. 2006 IEEE Power Engineering Society General Meeting, 3 pp. https://doi.org/10.1109/PES.2006.1709248 Ortiz, L., González, J. W., Gutierrez, L. B., & Llanes-Santiago, O. (2020). A review on control and fault-tolerant control systems of AC/DC microgrids. Heliyon, 6(8), e04799. https://doi.org/10.1016/j.heliyon.2020.e04799 Ortiz, L., Orizondo, R., Águila, A., González, J. W., López, G. J., & Isaac, I. (2019). Hybrid AC/DC microgrid test system simulation: grid-connected mode. Heliyon, 5(12), e02862. https://doi.org/10.1016/j.heliyon.2019.e02862 Patnaik, B., Mishra, M., Bansal, R. C., & Jena, R. K. (2020). AC microgrid protection – A review: Current and future prospective. Applied Energy, 271. https://doi.org/10.1016/j.apenergy.2020.115210 Pattanaik, J. K., Basu, M., & Dash, D. P. (2018). Improved real coded genetic algorithm for dynamic economic dispatch. Journal of Electrical Systems and Information Technology, 5(3), 349–362. https://doi.org/10.1016/j.jesit.2018.03.002 Pinto, J. O. C. P., & Moreto, M. (2021). Protection strategy for fault detection in inverterdominated low voltage AC microgrid. Electric Power Systems Research, 190, 106572. https://doi.org/10.1016/j.epsr.2020.106572 Pourbehzadi, M., Niknam, T., Aghaei, J., Mokryani, G., Shafie-khah, M., & Catalão, J. P. S. (2019). Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: A comprehensive review. In International Journal of Electrical Power and Energy Systems. https://doi.org/10.1016/j.ijepes.2019.01.025 Powerfactory, D. (n.d.). 4 Bus System. www.digsilent.de Priyadharshini, N., Gomathy, S., & Sabarimuthu, M. (2020). A review on microgrid architecture, cyber security threats and standards. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.622 Romero-Quete, D., & Garcia, J. R. (2019). An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids. Applied Energy, 242, 1436–1447. https://doi.org/10.1016/j.apenergy.2019.03.159 Roslan, A. M., Ahmed, K. H., Finney, S. J., & Williams, B. W. (2011). Improved Instantaneous Average Current-Sharing Control Scheme for Parallel-Connected Inverter Considering Line Impedance Impact in Microgrid Networks. IEEE Transactions on Power Electronics, 26(3), 702–716. https://doi.org/10.1109/TPEL.2010.2102775 Ross, S. M. (1993). Introduction to Probability Models. In Elsevier (Ed.), Academic Press (2014th ed.). Elsevier. https://doi.org/10.1016/C2013-0-11417-1 Rosslyn-Smith, W., De Abreu, N. V. A., & Pretorius, M. (2020). Exploring the indirect costs of a firm in business rescue. South African Journal of Accounting Research. https://doi.org/10.1080/10291954.2019.1667647 Roy, N. B., & Das, D. (2021). Optimal allocation of active and reactive power of dispatchable distributed generators in a droop controlled islanded microgrid considering renewable generation and load demand uncertainties. Sustainable Energy, Grids and Networks, 27. https://doi.org/10.1016/j.segan.2021.100482 Roy, N. B., & Das, D. (2023). Probabilistic optimal power allocation of dispatchable DGs and energy storage units in a reconfigurable grid-connected CCHP microgrid considering demand response. Journal of Energy Storage, 72, 108207. https://doi.org/10.1016/j.est.2023.108207 Sahoo, B., Routray, S. K., & Rout, P. K. (2018). A new topology with the repetitive controller of a reduced switch seven-level cascaded inverter for a solar PV-battery based microgrid. Engineering Science and Technology, an International Journal, 21(4), 639–653. https://doi.org/10.1016/j.jestch.2018.06.007 Saidane, A. (2001). Electric Machinery and Transformers. In Microelectronics Journal (Vol. 32, Issue 9). https://doi.org/10.1016/s0026-2692(01)00052-0 Shahzad, U. (University of N. at L. (2016). (PDF) A Quantitative Comparison of Wind and Solar Energy | Umair Shahzad - Academia.edu. Durreesamin Journal. https://www.academia.edu/32941924/A_Quantitative_Comparison_of_Wind_and_Solar_Energy Shen, Z., Li, P., Shi, R., Xia, Z., & Wang, G. (2021). Optimization Allocation Strategy of Distributed Generation in Grid-Connected Microgrid Based on Economic Dispatch. 5th IEEE Conference on Energy Internet and Energy System Integration: Energy Internet for Carbon Neutrality, EI2 2021, 4398–4403. https://doi.org/10.1109/EI252483.2021.9713522 Shezan, S. A., Ishraque, M. F., Muyeen, S. M., Abu-Siada, A., Saidur, R., Ali, M. M., & Rashid, M. M. (2022a). Selection of the best dispatch strategy considering techno-economic and system stability analysis with optimal sizing. Energy Strategy Reviews, 43. https://doi.org/10.1016/j.esr.2022.100923 Shi, G., Han, H., Liu, Y., Su, M., Liu, Z., & Sun, Y. (2019a). A Common Second Frequency Control of Island Cascaded-type Microgrid. 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019, 5407–5410. https://doi.org/10.1109/ECCE.2019.8912229 Shi, G., Han, H., Liu, Y., Su, M., Liu, Z., & Sun, Y. (2019b). A Common Second Frequency Control of Island Cascaded-type Microgrid. 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 5407–5410. https://doi.org/10.1109/ECCE.2019.8912229 Sidea, D. O., Toma, L., Sanduleac, M., Picioroaga, I. I., & Boicea, V. A. (2019). Optimal BESS scheduling strategy in microgrids based on genetic algorithms. 2019 IEEE Milan PowerTech, PowerTech 2019. https://doi.org/10.1109/PTC.2019.8810633 Silveira, J. R., Brandao, D. I., Fernandes, N. T. D., Uturbey, W., & Cardoso, B. (2021). Multifunctional dispatchable microgrids. Applied Energy, 282. https://doi.org/10.1016/j.apenergy.2020.116165 Siti, M. W., Tungadio, D. H., Sun, Y., Mbungu, N. T., & Tiako, R. (2019). Optimal frequency deviations control in microgrid interconnected systems. IET Renewable Power Generation, 13(13), 2376–2382. https://doi.org/10.1049/iet-rpg.2018.5801 Srinivasan, M., & Kwasinski, A. (2020). Control analysis of parallel DC-DC converters in a DC microgrid with constant power loads. International Journal of Electrical Power & Energy Systems, 122, 106207. https://doi.org/10.1016/j.ijepes.2020.106207 Sun, Y., Shi, G., Li, X., Yuan, W., Su, M., Han, H., & Hou, X. (2018a). An f-p/q droop control in cascaded-type microgrid. IEEE Transactions on Power Systems. https://doi.org/10.1109/TPWRS.2017.2752646 Sun, Y., Shi, G., Li, X., Yuan, W., Su, M., Han, H., & Hou, X. (2018b). An f-P/Q Droop Control in Cascaded-Type Microgrid. IEEE Transactions on Power Systems, 33(1), 1136–1138. https://doi.org/10.1109/TPWRS.2017.2752646 Tang, Z., Hill, D. J., & Liu, T. (2018). A Novel Consensus-Based Economic Dispatch for Microgrids. IEEE Transactions on Smart Grid, 9(4), 3920–3922. https://doi.org/10.1109/TSG.2018.2835657 Thakur, D., & Jiang, J. (2017). Design and Construction of a Wind Turbine Simulator for Integration to a Microgrid with Renewable Energy Sources. Electric Power Components and Systems, 45(9), 949–963. https://doi.org/10.1080/15325008.2017.1311385 Toub, M., Robinett, R. D., Maaroufi, M., & Aniba, G. (2019). Decentralized Hamiltonian control of multi-DEr isolated microgrids with meshed topology. Energy Procedia. https://doi.org/10.1016/j.egypro.2018.11.291 Trip, S., Han, R., Cucuzzella, M., Cheng, X., Scherpen, J., & Guerrero, J. (2018). Distributed Averaging Control for Voltage Regulation and Current Sharing in DC Microgrids: Modelling and Experimental Validation. IFAC-PapersOnLine, 51(23), 242–247. https://doi.org/10.1016/j.ifacol.2018.12.042 Trujillo, C. L., Velasco, D., Figueres, E., Garcerá, G., & Ortega, R. (2011). Modeling and control of a push–pull converter for photovoltaic microinverters operating in island mode. Applied Energy, 88(8), 2824–2834. https://doi.org/10.1016/j.apenergy.2011.01.053 Tsai-Fu Wu, Yu-Kai Chen, & Yong-Heh Huang. (2000). 3C strategy for inverters in parallel operation achieving an equal current distribution. IEEE Transactions on Industrial Electronics, 47(2), 273–281. https://doi.org/10.1109/41.836342 Ullah, S., Haidar, A. M. A., Hoole, P., Zen, H., & Ahfock, T. (2020a). The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids. Journal of Cleaner Production, 273, 122777. https://doi.org/10.1016/j.jclepro.2020.122777 Ullah, S., Haidar, A. M. A., Hoole, P., Zen, H., & Ahfock, T. (2020b). The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids. In Journal of Cleaner Production (Vol. 273). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.122777 Unamuno, E., & Barrena, J. A. (2015). Hybrid ac/dc microgrids—Part I: Review and classification of topologies. Renewable and Sustainable Energy Reviews, 52, 1251–1259. https://doi.org/10.1016/j.rser.2015.07.194 US EIA. (2020). February 2020 Monthly Energy Review. In Monthly Energy Review. Utkarsh, K., Srinivasan, D., Trivedi, A., Zhang, W., & Reindl, T. (2019). Distributed Model Predictive Real-Time Optimal Operation of a Network of Smart Microgrids. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2018.2810897 Velasquez, M. A., Barreiro-Gomez, J., Quijano, N., Cadena, A. I., & Shahidehpour, M. (2019). Distributed model predictive control for economic dispatch of power systems with high penetration of renewable energy resources. International Journal of Electrical Power and Energy Systems, 113, 607–617. https://doi.org/10.1016/j.ijepes.2019.05.044 Velasquez, M. A., Barreiro-Gomez, J., Quijano, N., Cadena, A. I., & Shahidehpour, M. (2020). Intra-Hour Microgrid Economic Dispatch Based on Model Predictive Control. IEEE Transactions on Smart Grid, 11(3), 1968–1979. https://doi.org/10.1109/TSG.2019.2945692 Velasquez, M. A., Quijano, N., Cadena, A. I., & Shahidehpour, M. (2021). Distributed stochastic economic dispatch via model predictive control and data-driven scenario generation. International Journal of Electrical Power and Energy Systems, 129. https://doi.org/10.1016/j.ijepes.2021.106796 Wang, Y., Rousis, A. O., & Strbac, G. (2020). On microgrids and resilience: A comprehensive review on modeling and operational strategies. Renewable and Sustainable Energy Reviews, 134, 110313. https://doi.org/10.1016/j.rser.2020.110313 Wanichrojanarat, C., & Wirasanti, P. (2018). Control Strategy for Seamless Transition of Microgrid Using Battery Energy Storage System. 2018 53rd International Universities Power Engineering Conference (UPEC), 1–6. https://doi.org/10.1109/UPEC.2018.8542087 Wei, P., & Chen, W. (2019). Microgrid in China: A review in the perspective of application. Energy Procedia, 158, 6601–6606. https://doi.org/10.1016/j.egypro.2019.01.059 Wiatros-Motyka, M., Jones, D., Broadbent, H., Fulghum, N., Bruce-Lockhart, C., Dizon, R., Macdonald, P., Moore, C., Candlin, A., Lee, U., Copsey, L., Hawkins, S., Ewen, M., Worthington, B., Benham, H., Trueman, M., Yang, M., Lolla, A., Shahram Edianto, A., … Bachelet, M. (2023). Global Electricity Review de Ember 2023. https://ember climate.org/app/uploads/2023/04/Global-Electricity-Review-2023_ES.pdf Willenberg, D., Winkens, A., & Linnartz, P. (2020). Impact of wind turbine generator technologies and frequency controls on the stable operation of medium voltage islanded microgrids. Electric Power Systems Research, 189, 106760. https://doi.org/10.1016/j.epsr.2020.106760 Wu, Y. J., Liang, X. Y., Huang, T., Lin, Z. W., Li, Z. X., & Hossain, M. F. (2021). A hierarchical framework for renewable energy sources consumption promotion among microgrids through two-layer electricity prices. Renewable and Sustainable Energy Reviews, 145. https://doi.org/10.1016/j.rser.2021.111140 Xie, M., Xiong, J., Ke, S., & Liu, M. (2017). Two-Stage Compensation Algorithm for Dynamic Economic Dispatching Considering Copula Correlation of Multiwind Farms Generation. IEEE Transactions on Sustainable Energy, 8(2), 763–771. https://doi.org/10.1109/TSTE.2016.2618939 Yan, Z., & Zhang, X. P. (2018). Master-slave wave farm systems based on energy filter with smoothed power output. Global Energy Interconnection, 1(5), 559–567.https://doi.org/10.14171/j.2096-5117.gei.2018.05.005 Yang, Y., Huang, C., Zhou, D., & Li, Y. (2021). Fault detection and location in multi-terminal DC microgrid based on local measurement. Electric Power Systems Research, 194, 107047. https://doi.org/10.1016/j.epsr.2021.107047 Yin, L., & Zhang, B. (2023). Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems. Applied Energy, 330. https://doi.org/10.1016/j.apenergy.2022.120300 Yu, Y., Li, J., & Chen, D. (2022). Optimal dispatching method for integrated energy system based on robust economic model predictive control considering source–load power interval prediction. Global Energy Interconnection, 5(5), 564–578. https://doi.org/10.1016/j.gloei.2022.10.010 Yuan, M., Fu, Y., Mi, Y., Li, Z., & Wang, C. (2019). Hierarchical control of DC microgrid with dynamical load power sharing. Applied Energy, 239, 1–11. https://doi.org/10.1016/j.apenergy.2019.01.081 Zafeiratou, I., Prodan, I., Lefèvre, L., & Piétrac, L. (2020). Meshed DC microgrid hierarchical control: A differential flatness approach. Electric Power Systems Research, 180, 106133. https://doi.org/10.1016/j.epsr.2019.106133 Zeng, L., Xu, J., Liu, Y., Li, C., Wu, M., Wen, M., & Xiao, H. (2022). Stochastic economic dispatch strategy based on quantile regression. International Journal of Electrical Power and Energy Systems, 134. https://doi.org/10.1016/j.ijepes.2021.107363 Zhao, B., Wang, X., Lin, D., Calvin, M. M., Morgan, J. C., Qin, R., & Wang, C. (2018). Energy management of multiple microgrids based on a system of systems architecture. IEEE Transactions on Power Systems. https://doi.org/10.1109/TPWRS.2018.2840055 Zheng, W., Wu, W., Zhang, B., Sun, H., Guo, Q., & Lin, C. (2016). Dynamic economic dispatch for microgrids: A fully distributed approach. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2016-July. https://doi.org/10.1109/TDC.2016.7520068 Zhou, X., Ai, Q., & Yousif, M. (2019). Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids. Applied Energy, 253. https://doi.org/10.1016/j.apenergy.2019.113588 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
144 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.department.spa.fl_str_mv |
Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Ingenieria Energética |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/6c916845-c78a-49a4-8808-ffe88af4610b/download https://repositorio.cuc.edu.co/bitstreams/855253ba-df8f-411e-b109-116065b527e9/download https://repositorio.cuc.edu.co/bitstreams/2b0d7f0c-6974-49f0-ad9d-f713f78b6cec/download https://repositorio.cuc.edu.co/bitstreams/92e87136-9371-4088-88f9-b53420c0a127/download |
bitstream.checksum.fl_str_mv |
d0a38df2b4e7580fbe29a2a2cee30332 2f9959eaf5b71fae44bbf9ec84150c7a cec684fb7d2c4d78bfcdde2040f9435a 3d405836c90c57be3d77b654852d4965 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166907521400832 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sousa Santos, VladimirCandelo Becerra, John EdwinCabana Jiménez, KatherineOspino C., Adalbertovirtual::933-1Universidad de la CostaOspino Castro, AdalbertoPosada Contreras, JhonyMarín, Juan Guillermo2023-12-14T14:09:35Z2023-12-14T14:09:35Z2023https://hdl.handle.net/11323/10637Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.coEsta investigación se centra en mejorar la operación del Sistema Eléctrico de Potencia (SEP) mediante la integración de Fuentes de Energía Renovable (FER) con Microrredes (MR). Se propone una estrategia de despacho económico (DE) para las MR que aborda la anticipación de contingencias y garantiza un despacho eficiente. La falta de predicción en la generación con FER provoca fluctuaciones en la potencia, lo que requiere costosas reservas de energía para adaptarse. La estrategia busca reducir el tiempo de respuesta en emergencias al anticipar contingencias sin comprometer la viabilidad económica. La estrategia considera aspectos críticos como el cálculo de reserva rodante, la transferencia de energía entre la red principal y las MR, la generación máxima en las MR y el uso exclusivo de energía renovable. Reduce la incertidumbre generada por las FER y optimiza los costos de generación, mejorando la continuidad del suministro eléctrico. Los SEP enfrentan desafíos debido a la obsolescencia de componentes y la necesidad de migrar hacia FER. Las MR, con su flexibilidad y eficiencia, se presentan como una solución prometedora. La investigación se enfoca en esta área, proponiendo soluciones para la integración efectiva de FER en el SEP a través del software PowerFactory 15.1. Se analiza una MR real acoplada a dos sistemas de prueba (IEEE-14 e IEEE-39) en tres escenarios de carga. Los resultados de la estrategia muestran una reducción de pérdidas de potencia en el sistema superior al 6.43%.This research focuses on the enhancement of the Electrical Power System (EPS) through the integration of Renewable Energy Sources (RES) into Microgrids (MG), along with the proposition of an economically optimized MG dispatch strategy. The primary objective is to improve contingency response, minimize power fluctuations, and optimize dispatch efficiency without undermining economic feasibility. The strategy encompasses essential elements such as the calculation of rolling reserve, efficient energy transfer between the primary network and MG, maximizing MG generation capacity, and the exclusive utilization of RES. It effectively mitigates uncertainties linked to RES in real-time operations, streamlines generation costs, and ensures a continuous and reliable electricity supply. The research sheds light on challenges faced by EPS due to component obsolescence and the necessity of transitioning to RES integration. In this context, MG, known for their adaptability and efficiency, emerge as a promising solution. The study delves into practical solutions for the seamless incorporation of RES into the EPS, utilizing PowerFactory 15.1 software. The research conducts a thorough analysis involving a real MG in conjunction with two test systems (IEEE-14 and IEEE-39) across various load scenarios, successfully demonstrating a substantial reduction in power losses exceeding 6.43%.Tablas y Figuras 13-- Introducción 17-- Capítulo I. El Problema 20-- Planteamiento del Problema 20-- Formulación del Problema 21—Justificación 22-- Objetivos de la Investigación 23-- Objetivo General 23--Objetivos Específicos 23—Limitaciones 24-- Metodología 24-- Novedad y Contribuciones 26-- Estructura de la Tesis 27-- Capítulo II. Topologías de Microrredes 29—Introducción 29-- Aspectos de las Microrredes 32-- Topologías de las Microrredes 37-- Topologías de MR CD y CA 41-- Técnicas de Reparto de Carga 41--Métodos de Control 45-- Sistemas Fotovoltaicos 45-- Sistemas Eólicos 48--Topologías de MR Hibridas 52--Acopladas CA 52-- Desacopladas CA 54-- MR Múltiples 57-- Topología de MR 3-NET 58--Topología de MR por su Configuración 59-- Tipo Cascada 59-- Tipo Paralelo 60-- Topologías de Microrredes Seleccionadas Para la Estrategia Predictiva de Despacho Económico 66-- Capítulo III. Despacho Económico Para Microrredes con Fuentes de Energía Renovables 69-- Introducción 69-- Características del Modelo Predictivo 72-- Interconexión Sistema – Microrred 76-- Escenarios de Evaluación 78-- Validación 82-- Descripción de los Elementos que Conforman el Modelo Predictivo 83-- Sistemas de Prueba 83-- Características de la Microrred 87-- Elementos de la Microrred 89-- Capítulo IV. Evaluación de la Estrategia Predictiva de Despacho Económico Para MR con Fuentes de Energía Renovables 93—Introducción 93-- Validación de los Resultados 93-- Definir las Variables de Interés 94-- Diseño de Escenarios 95-- Escenario Base 95-- Escenarios con Variación de Carga 96-- Implementación de la Estrategia Predictiva 103-- Análisis de las Contingencias en el Sistema IEEE-39 104-- Discusiones 107-- Conclusiones 110—Recomendaciones 112--Referencias 113—Anexos 139--Doctor(a) en Ingenieria EnergéticaDoctorado144 páginasapplication/pdfspaCorporación Universidad de la CostaIngenieríaBarranquillaDoctorado en Ingenieria EnergéticaEstrategia predictiva de despacho económico para la operación de microrredes con fuentes de energía renovablesTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttp://purl.org/redcol/resource_type/TDinfo:eu-repo/semantics/acceptedVersion2030.8-2018 - IEEE Standard for the Testing of Microgrid Controllers | IEEE Standard | IEEE Xplore. (n.d.). https://doi.org/10.1109/IEEESTD.2018.8444947Abu-Elzait, S., & Parkin, R. (2019). The Effect of Dispatch Strategy on Maintaining the Economic Viability of PV-based Microgrids. Conference Record of the IEEE Photovoltaic Specialists Conference, 1203–1205. https://doi.org/10.1109/PVSC40753.2019.8980548Ajoulabadi, A., Ravadanegh, S. N., & Behnam Mohammadi-Ivatloo. (2020). Flexible scheduling of reconfigurable microgrid-based distribution networks considering demand response program. Energy. https://doi.org/10.1016/j.energy.2020.117024Alex Navas, F., Gomez, J. S., Llanos, J., Rute, E., Saez, D., & Sumner, M. (2021). Distributed Predictive Control Strategy for Frequency Restoration of Microgrids Considering Optimal Dispatch. IEEE Transactions on Smart Grid, 12(4), 2748–2759. https://doi.org/10.1109/TSG.2021.3053092Alomoush, M. I. (2019). Microgrid combined power-heat economic-emission dispatch considering stochastic renewable energy resources, power purchase and emission tax. Energy Conversion and Management, 200. https://doi.org/10.1016/j.enconman.2019.112090Al-Sakkaf, S., Kassas, M., Khalid, M., & Abido, M. A. (2019). An Energy Management System for Residential Autonomous DC Microgrid Using Optimized Fuzzy Logic Controller Considering Economic Dispatch. Energies. https://doi.org/10.3390/en12081457Alvarez, J. M. G., & Targarona, J. C. G. (2011). Generación eólica empleando distintos tipos de generadores considerando su impacto en el sistema de potencia. DYNA (Colombia), 78(169), 95–104Álvaro, R., & Menéndez, J. (2020). Casos de microrredes. In Cuadernos Orkestra, núm. 73/2019 (73/2020, Vol. 73). Cuadernos OrkestraAndishgar, M. H., Gholipour, E., & Hooshmand, R. (2017). An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renewable and Sustainable Energy Reviews, 80, 1043–1060. https://doi.org/10.1016/j.rser.2017.05.267Arce Zapata, G., Humberto Ramirez Director General UPME, R., Públicas de Medellín ESP Codensa ESP ISAGEN SA ESP Electricaribe SA ESP TERMOBARRANQUILLA SA ESP, E. S., Esp Generación, S., Henao Ramírez, W. J., Zapata Lesmes, H. J., Aponte Gutiérrez, J. C., Hernández Beleño, L. A., Castaño Ramirez, D. L., Zárate Herrera, J. S., Jiménez Rivera TRANSMISIÓN, B. A., Jiménez Rivera, B. A., Gil Naranjo, R., Viasús Figueredo, C. C., Achury Beltrán, N., Ospina Sierra, A. M., Moreno Garzón, A., Fonseca Consuegra, S. P., Reyes Martínez, L. A., … Rodríguez Hernández, R. (2018). Con la asesoría del Comité Asesor de Planeamiento de la Transmisión-CAPT, conformado por.Arcia, M. G., Sánchez, Z. G., Herrera, H. H., Cruz, J. A. G. C., Silva-Ortega, J. I., & Sánchez, G. C. (2022). Frequency response analysis under faults in weak power systems. International Journal of Electrical and Computer Engineering, 12(2), 1077–1088. https://doi.org/10.11591/ijece.v12i2.pp1077-1088Arenas-Crespo, O., & Candelo, J. E. (2018). A power constraint index to rank and group critical contingencies based on sensitivity factors. Archives of Electrical Engineering, 67(2). https://doi.org/10.24425/119638Arenas-Crespo, O., Candelo-Becerra, J. E., & Velasco, F. E. H. (2019). Online economic redispatch to mitigate line overloads after line and generation contingencies. Energies. https://doi.org/10.3390/en12060966Arslan Iqbal Awan, M., Raza, A., Riaz, M., Khalil, L., & Liaquat Bhatti, K. (2020). Integration of sub-gradient based coordinate for multiple renewable generators in microgrid. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.05.146Basak, P., Chowdhury, S., Halder nee Dey, S., & Chowdhury, S. P. (2012). A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid. Renewable and Sustainable Energy Reviews, 16(8), 5545–5556. https://doi.org/10.1016/j.rser.2012.05.043Benahmed, S., Riedinger, P., & Pierfederici, S. (2021). Distributed-based Integral Action for Current Sharing and Average Voltage Regulation in DC Microgrids. IFAC-PapersOnLine, 54(9), 52–59. https://doi.org/10.1016/j.ifacol.2021.06.142Bernd, W. I. for I. S. and D. T. I., Leopold, O. I. for I. S. and D. T. I., Yunchao, H. I. for I. S. and D. T. I., & Martin, M. I. for I. S. and D. T. I. (2015). Voltage Control and Stabilization of Distributed and Centralized DC Micro Grids | VDE Conference Publication | IEEE Xplore. Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management.Bhag S. Guru, H. R. H. (2008). Electric Power Generation (PHI Learning, Ed.; 3rd, ilustra ed.). https://doi.org/10.1201/b12056-2Boddapati, V., Kumar, T. S., Prakash, N., & Gunapriya, B. (2021). Current droop control of parallel inverters in an autonomous microgrid. Materials Today: Proceedings, 45, 2034– 2039. https://doi.org/10.1016/j.matpr.2020.09.496Bordons, C., García-Torres, F., & Valverde, L. (2015). Gestión Óptima de la Energía en Microrredes con Generación Renovable. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 12(2), 117–132. https://doi.org/10.1016/j.riai.2015.03.001Brandao, D. I., de Araújo, L. S., Caldognetto, T., & Pomilio, J. A. (2018). Coordinated control of three- and single-phase inverters coexisting in low-voltage microgrids. Applied Energy, 228, 2050–2060. https://doi.org/10.1016/j.apenergy.2018.07.082C. Trujillo Rodriguez, J. Hernandez Mora, O. F. C. (2015). Sistemas fotovoltaicos y sistemas eólicos en microrredes. In E. UD & U. D. F. J. de Caldas (Eds.), Microrredes Electricas (Primera, pp. 61–83).Carvalho Silveira, J. P., dos Santos Neto, P. J., dos Santos Barros, T. A., Ruppert Filho, E., Chandra, A., Singh, G. K., & Pant, V. (2021). Power management of energy storage system with modified interlinking converters topology in hybrid AC/DC microgrid. International Journal of Electrical Power & Energy Systems, 130, 106880. https://doi.org/10.1016/j.epsr.2021.107036Chamorro, H. R., Ordonez, C. A., Peng, J. C. H., Gonzalez-Longatt, F., & Sood, V. K. (2019). Coherency Estimation in Power Systems: A Koopman Operator Approach. Springer Optimization and Its Applications, 150, 201–225. https://doi.org/10.1007/978-3-030-25446- 9_9/TABLES/8Chandra, A., Singh, G. K., & Pant, V. (2020). Protection techniques for DC microgrid- A review. In Electric Power Systems Research (Vol. 187). https://doi.org/10.1016/j.epsr.2020.106439Chandra, A., Singh, G. K., & Pant, V. (2021a). Protection of AC microgrid integrated with renewable energy sources – A research review and future trends. Electric Power Systems Research, 193, 107036.Chang, C.-Y., & Zhang, W. (2016). Distributed control of inverter-based lossy microgrids for power sharing and frequency regulation under voltage constraints. Automatica, 66, 85–95. https://doi.org/10.1016/j.automatica.2015.12.014Chandra, A., Singh, G. K., & Pant, V. (2021b). Protection of AC microgrid integrated with renewable energy sources – A research review and future trends. In Electric Power Systems Research (Vol. 193). Elsevier Ltd. https://doi.org/10.1016/j.epsr.2021.107036Chang, X., Xu, Y., Sun, H., & Khan, I. (2021). A distributed robust optimization approach for the economic dispatch of flexible resources. International Journal of Electrical Power and Energy Systems, 124. https://doi.org/10.1016/j.ijepes.2020.106360Chaurasia, R., Gairola, S., & Pal, Y. (2022a). Technical, economic, and environmental performance comparison analysis of a hybrid renewable energy system based on power dispatch strategies. Sustainable Energy Technologies and Assessments, 53, 102787. https://doi.org/10.1016/j.seta.2022.102787Chaurasia, R., Gairola, S., & Pal, Y. (2022b). Technical, economic, and environmental performance comparison analysis of a hybrid renewable energy system based on power dispatch strategies. Sustainable Energy Technologies and Assessments, 53. https://doi.org/10.1016/j.seta.2022.102787Che, L., Zhang, X., Shahidehpour, M., Alabdulwahab, A., & Abusorrah, A. (2017). Optimal Interconnection Planning of Community Microgrids with Renewable Energy Sources. IEEE Transactions on Smart Grid, 8(3), 1054–1063. https://doi.org/10.1109/TSG.2015.2456834Chemwiki, U. C. D., Alike, C. C. A., & License, U. S. (2016). π Systems π Systems. IEEE PressChen, X., Ju, Y., & Zhang, R. (2021). Land-Sea Relay Fishery Networked Microgrids under the Background of Cyber-Physical Fusion: Characteristics and Key Issues Prospect. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2021.02.002Chen, X., Wang, Y. H., & Wang, Y. C. (2013). A novel seamless transferring control method for microgrid based on master-slave configuration. 2013 IEEE ECCE Asia Downunder, 351– 357. https://doi.org/10.1109/ECCE-Asia.2013.6579120Chen, Z., & Li, H. (2008). Overview of different wind generator systems and their comparisons. IET Renewable Power Generation, 2(2), 123–138. https://doi.org/10.1049/iet-rpg:20070044Cheng, Z., Li, Z., Li, S., Gao, J., Si, J., Das, H. S., & Dong, W. (2020). A novel cascaded control to improve stability and inertia of parallel buck-boost converters in DC microgrid. International Journal of Electrical Power & Energy Systems, 119, 105950. https://doi.org/10.1016/j.ijepes.2020.105950Cole, W., Gates, N., & Mai, T. (2021). Exploring the cost implications of increased renewable energy for the U.S. power system. The Electricity Journal, 34(5), 106957. https://doi.org/10.1016/j.tej.2021.106957David Fernando, M. B. (2015). Energy Dispatch control in distribution systems based on Microgrid model. Pontificia Universidad JaverianaDe Madrid, C., De, G., Inteligentes, R., Energía, D., & Comunicación, Y. (2004). La Suma de Todos Guía de Redes Inteligentes de energía y comunicación.Dey, B., Bhattacharyya, B., & Márquez, F. P. G. (2021). A hybrid optimization-based approach to solve environment constrained economic dispatch problem on microgrid system. Journal of Cleaner Production, 307. https://doi.org/10.1016/j.jclepro.2021.127196DIgSILENT GmbH. (2015). 39 bus New England system (pp. 1–16). www.digsilent.deDranka, G. G., & Ferreira, P. (2019). Review and assessment of the different categories of demand response potentials. Energy, 179, 280–294. https://doi.org/10.1016/j.energy.2019.05.009Du, Y., Pei, W., Chen, N., Ge, X., & Xiao, H. (2017). Real-time microgrid economic dispatch based on model predictive control strategy. Journal of Modern Power Systems and Clean Energy, 5(5), 787–796. https://doi.org/10.1007/s40565-017-0265-4Dunham, H., Cutler, D., Mishra, S., & Li, X. (2020). Cost-optimal evaluation of centralized and distributed microgrid topologies considering voltage constraints. Energy for Sustainable Development, 56, 88–97. https://doi.org/10.1016/j.esd.2020.03.002Enkhtuvshin, M., Liu, K. Z., Wei, Y., Sanabria, C., Koiwa, K., & Zanma, T. (2023). Economic dispatch of thermal and PV powers: Frequency maintenance, smoothing effect based statistic model and peak-cut operation. International Journal of Electrical Power and Energy Systems, 148, 108938. https://doi.org/10.1016/j.ijepes.2022.108938Fuentes, A. (2017). ESTUDIO DE VIABILIDAD Y REQUISITOS TÉCNICOS NECESARIOS PARA LA IMPLANTACIÓN DE UNA MICRO-RED ELÉCTRICA. Universidad de Sevilla, 100.Fundación Naturgy. (n.d.). Integración de las tecnologías-renovables en la transición energética. Retrieved August 28, 2023, from https://www.fundacionnaturgy.org/wpcontent/uploads/2020/07/integracion-de-las-tecnologias-renovables-en-latransicionenergetica.pdfFusheng, L., Ruisheng, L., & Fengquan, Z. (2016). Composition and classification of the microgrid. In Microgrid Technology and Engineering Application (pp. 11–27). Elsevier. https://doi.org/10.1016/B978-0-12-803598-6.00002-4Gadanayak, D. A. (2021). Protection algorithms of microgrids with inverter interfaced distributed generation units—A review. Electric Power Systems Research, 192, 106986. https://doi.org/10.1016/j.epsr.2020.106986Gaona, E. E., Mancera, P. A., & Trujillo, C. L. (2016). sensores inalámbricos aplicada a una Microrred en modo “ Isla ” Routing Algorithm with topology reconfiguration for Wireless Sensor Network applied to microgrid in Island mode. Revista UIS Ingenierías, 15(2), 93–104. https://doi.org/10.18273/revuin.v15n2-2016008.94Gaona Garcia, E. E. (2017). Esquemas de trasmisión de datos en una Microrred a través de una Infraestructura de medición avanzada. Revista UIS Ingenierías. https://doi.org/10.18273/revuin.v15n2-2016007Gaona García, E. E., Rodríguez Trujillo, C. L., & Rojas Cubides, H. E. (2014). INFRAESTRUCTURA DE COMUNICACIONES EN MICRORREDES ELECTRICAS. Redes de Ingeniería. https://doi.org/10.14483/2248762x.8044Gaonkar, D. N. (2010). Investigation on Electromagnetic Transients of Distributed Generation Systems in the Microgrid. Electric Power Components and Systems, 38(13), 1486–1497. https://doi.org/10.1080/15325008.2010.482090Ge, X., Han, H., Xiong, W., Su, M., Liu, Z., & Sun, Y. (2020a). Locally-distributed and globallydecentralized control for hybrid series-parallel microgrids. International Journal of Electrical Power & Energy Systems, 116, 105537. https://doi.org/10.1016/j.ijepes.2019.105537Ge, X., Han, H., Xiong, W., Su, M., Liu, Z., & Sun, Y. (2020b). Locally-distributed and globallydecentralized control for hybrid series-parallel microgrids. International Journal of Electrical Power & Energy Systems, 116, 105537. https://doi.org/10.1016/j.ijepes.2019.105537Ge, X., Han, H., Yuan, W., Sun, Y., Su, M., Zhang, X., & Hai, K. L. (2018). An Integrated SeriesParallel Microgrid Structure and its Unified Distributed Control. 2018 IEEE 4th Southern Power Electronics Conference (SPEC), 1–6. https://doi.org/10.1109/SPEC.2018.8635952Gil-González, W., Montoya, O. D., Holguín, E., Garces, A., & Grisales-Noreña, L. F. (2019). Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. Journal of Energy Storage, 21, 1–8. https://doi.org/10.1016/j.est.2018.10.025Giraldo, J. S., Murad, M. A. A., Kërçi, T., & Milano, F. (2022). Impact of decentralized microgrids optimal energy management on power system dynamics. Electric Power Systems Research, 212. https://doi.org/10.1016/j.epsr.2022.108337Golla, M., Sankar, S., & Chandrasekaran, K. (2021). Renewable integrated UAPF fed microgrid system for power quality enhancement and effective power flow management. International Journal of Electrical Power & Energy Systems, 133, 107301. https://doi.org/10.1016/j.ijepes.2021.107301González Estrada, T., & Valencia Marín, J. (2015). Integración de las energías renovables no convencionales en Colombia. http://www1.upme.gov.co/sgic/Grainger, J., & Stevenson, W. Jr. (1996). Analisis de Sistemas de Potencia. In Cenace, Uanl (McGraw Hil, p. 743). https://catedras.facet.unt.edu.ar/sep/wpcontent/uploads/sites/20/2020/03/Análisis-de-Sistemas-de-Potencia-Grainger-Stevenson.pdfGrigsby, L. L. (2017). Power system stability and control. In Power System Stability and Control, Third Edition. McGraw-Hill Education. https://doi.org/10.4324/b12113Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuna, L. G., & Castilla, M. (2011). Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. IEEE Transactions on Industrial Electronics, 58(1), 158–172. https://doi.org/10.1109/TIE.2010.2066534Gupta, A., Doolla, S., & Chatterjee, K. (2018). Hybrid AC-DC Microgrid: Systematic Evaluation of Control Strategies. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2017.2727344Hannan, M. A., Tan, S. Y., Al-Shetwi, A. Q., Jern, K. P., & Begum, R. A. (2020). Optimized controller for renewable energy sources integration into microgrid: Functions, constraints and suggestions. Journal of Cleaner Production, 256, 120419. https://doi.org/10.1016/j.jclepro.2020.120419Hassan, M. H., Kamel, S., Eid, A., Nasrat, L., Jurado, F., & Elnaggar, M. F. (2023). A developed eagle-strategy supply-demand optimizer for solving economic load dispatch problems. Ain Shams Engineering Journal, 14(5), 102083. https://doi.org/10.1016/j.asej.2022.102083Hayman, A. K. (2008). Development of a High-Efficiency Solar Micro-Inverter. Massachusetts Institute of Technology.He, L., Wei, Z., Yan, H., Xv, K. Y., Zhao, M. Y., & Cheng, S. (2019). A day-ahead scheduling optimization model of multi-microgrid considering interactive power control. 2019 4th International Conference on Intelligent Green Building and Smart Grid, IGBSG 2019, 666– 669. https://doi.org/10.1109/IGBSG.2019.8886341Hernández Mora, J., Trujillo Rodríguez, C., & Vallejo Lozada, W. (2013). Modelo de un sistema fotovoltaico interconectado. Tecnura, 17(1), 26–34. https://doi.org/10.14483/22487638.7235Hooshyar, A., & Iravani, R. (2017). Microgrid Protection. Proceedings of the IEEE. https://doi.org/10.1109/JPROC.2017.2669342Hossain, M. A., Pota, H. R., Hossain, M. J., & Blaabjerg, F. (2019). Evolution of microgrids with converter-interfaced generations: Challenges and opportunities. International Journal of Electrical Power & Energy Systems, 109, 160–186. https://doi.org/10.1016/j.ijepes.2019.01.038Hou, X., Sun, Y., Han, H., Liu, Z., Yuan, W., & Su, M. (2019). A fully decentralized control of grid-connected cascaded inverters. IEEE Transactions on Sustainable Energy, 10(1), 315– 317. https://doi.org/10.1109/TPWRD.2018.2816813Hou, X., Sun, Y., Zhang, X., Zhang, G., Lu, J., & Blaabjerg, F. (2019). A Self-Synchronized Decentralized Control for Series-Connected H-Bridge Rectifiers. IEEE Transactions on Power Electronics, 34(8), 7136–7142. https://doi.org/10.1109/TPEL.2019.2896150Huang, L., Li, Y., Cui, Q., Xie, N., Zeng, J., & Shu, J. (2020). Research on optimal configuration of AC/DC hybrid system integrated with multiport solid-state transforms and renewable energy based on a coordinate strategy. International Journal of Electrical Power & Energy Systems, 119, 105880. https://doi.org/10.1016/j.ijepes.2020.105880IEC TS 62898-1:2017 | Microgrids - Part 1: Guidelines for microgrid projects planning and specification (p. 33). (2017). INTERNATIONAL ELECTROTECHNICAL COMMISSION.ISE, P. R. I. F. O. R. S. E. S. (2020). Photovoltaics Report.Issa, W. R., Khateb, A. H. E., Abusara, M. A., & Mallick, T. K. (2018). Control Strategy for Uninterrupted Microgrid Mode Transfer during Unintentional Islanding Scenarios. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2017.2772199Jiayi, H., Chuanwen, J., & Rong, X. (2008). A review on distributed energy resources and MicroGrid. Renewable and Sustainable Energy Reviews, 12(9), 2472–2483. https://doi.org/10.1016/j.rser.2007.06.004Jmii, H., Abbes, M., Meddeb, A., & Chebbi, S. (2020). Centralized VSM control of an AC meshed microgrid for ancillary services provision. International Journal of Electrical Power & Energy Systems, 115, 105450. https://doi.org/10.1016/j.ijepes.2019.105450Khan, A. A., Beg, O. A., Alamaniotis, M., & Ahmed, S. (2021). Intelligent anomaly identification in cyber-physical inverter-based systems. Electric Power Systems Research, 193, 107024. https://doi.org/10.1016/j.epsr.2021.107024Khan, H. A. U., Al Hosani, M., & Zeineldin, H. (2020). Topology planning for autonomous MMGs: an ordered binary decision diagram‐based approach. IET Smart Grid, 3(1), 60–68. https://doi.org/10.1049/iet-stg.2019.0083Khan, O., & Xiao, W. (2017). Review and qualitative analysis of submodule-level distributed power electronic solutions in PV power systems. Renewable and Sustainable Energy Reviews, 76, 516–528. https://doi.org/10.1016/j.rser.2017.03.073Kohler, J., Muller, M. A., Li, N., & Allgower, F. (2017). Real time economic dispatch for power networks: A distributed economic model predictive control approach. 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 6340–6345. https://doi.org/10.1109/CDC.2017.8264615Komala, K., Kumar, K. P., & Cherukuri, S. H. C. (2021). Storage and non-Storage Methods of Power balancing to counter Uncertainty in Hybrid Microgrids - A review. Journal of Energy Storage, 36, 102348. https://doi.org/10.1016/j.est.2021.102348Laaksonen, H. J. (2010). Protection principles for future microgrids. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2010.2066990Lakatos, L., Hevessy, G., & Kovács, J. (2011). Advantages and Disadvantages of Solar Energy and Wind-Power Utilization. World Futures, 67(6), 395–408. https://doi.org/10.1080/02604020903021776Li, C., De Bosio, F., Chen, F., Chaudhary, S. K., Vasquez, J. C., & Guerrero, J. M. (2017). Economic Dispatch for Operating Cost Minimization under Real-Time Pricing in DroopControlled DC Microgrid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(1), 587–595. https://doi.org/10.1109/JESTPE.2016.2634026Li, P., Guo, T., Zhou, F., Yang, J., & Liu, Y. (2020). Nonlinear coordinated control of parallel bidirectional power converters in an AC/DC hybrid microgrid. International Journal of Electrical Power & Energy Systems, 122, 106208. https://doi.org/10.1016/j.ijepes.2020.106208Li, X., Zeng, Y., & Lu, Z. (2022). Decomposition and coordination calculation of economic dispatch for active distribution network with multi-microgrids. International Journal of Electrical Power and Energy Systems, 135. https://doi.org/10.1016/j.ijepes.2021.107617Li, Y., Sun, Q., Qin, D., Cheng, K., & Li, Z. (2020). Power Control of a Modular Three-Port SolidState Transformer with Three-Phase Unbalance Regulation Capabilities. IEEE Access, 8, 72859–72869. https://doi.org/10.1109/ACCESS.2020.2987075Li, Y., Sun, Q., Qin, D., Cheng, K., Li, Z., Agrawal, A., Nalamati, C. S., & Gupta, R. (2019). Hybrid DC–AC Zonal Microgrid Enabled by Solid-State Transformer and Centralized ESD Integration. IEEE Transactions on Industrial Electronics, 66(11), 9097–9107. https://doi.org/10.1109/TIE.2019.2899559Li, Y., Zhang, P., Althoff, M., & Yue, M. (2019). Distributed Formal Analysis for Power Networks with Deep Integration of Distributed Energy Resources. IEEE Transactions on Power Systems, 34(6), 5147–5156. https://doi.org/10.1109/TPWRS.2018.2875150Lopez Castrillon, Y. U., & Gaviria Cataño, F. A. (2018). Metodología y evaluación de recursos energéticos renovables: implementación de microrredes aisladas. Visión Electrónica. https://doi.org/10.14483/22484728.14260Lotfi, H., & Khodaei, A. (2017). Hybrid AC/DC microgrid planning. Energy, 118, 37–46. https://doi.org/10.1016/j.energy.2016.12.015Mandal, S., & Mandal, K. K. (2020). Optimal energy management of microgrids under environmental constraints using chaos enhanced differential evolution. Renewable Energy Focus, 34, 129–141. https://doi.org/10.1016/j.ref.2020.05.002Martin-Martínez, F., Sánchez-Miralles, A., & Rivier, M. (2016). A literature review of Microgrids: A functional layer based classification. In Renewable and Sustainable Energy Reviews (Vol. 62, pp. 1133–1153). https://doi.org/10.1016/j.rser.2016.05.025Mehmood, F., Khan, B., & Ali, S. M. (2021). Renewable generation intermittence and economic dispatch control of autonomous microgrid with distributed sliding mode. International Journal of Electrical Power and Energy Systems, 130. https://doi.org/10.1016/j.ijepes.2021.106937Mehmood, F., Khan, B., Ali, S. M., & Rossiter, J. A. (2021). Distributed MPC for economic dispatch and intermittence control of renewable based autonomous microgrid. Electric Power Systems Research, 195. https://doi.org/10.1016/j.epsr.2021.107131Meng, L., Sanseverino, E. R., Luna, A., Dragicevic, T., Vasquez, J. C., & Guerrero, J. M. (2016). Microgrid supervisory controllers and energy management systems: A literature review. Renewable and Sustainable Energy Reviews, 60, 1263–1273. https://doi.org/10.1016/j.rser.2016.03.003Mia, S., Kumer Podder, A., Manoj Kumar, N., Bhatt, A., & Kumar, K. (2023). Experimental verification of a dynamic programming and IoT-based simultaneous load-sharing controller for residential homes powered with grid and onsite solar photovoltaic electricity. Sustainable Energy Technologies and Assessments, 55, 102964. https://doi.org/10.1016/j.seta.2022.102964Mishra, D. K., Ghadi, M. J., Li, L., Hossain, Md. J., Zhang, J., Ray, P. K., & Mohanty, A. (2021). A review on solid-state transformer: A breakthrough technology for future smart distribution grids. International Journal of Electrical Power & Energy Systems, 133, 107255. https://doi.org/10.1016/j.ijepes.2021.107255Mohammadi, S., Ojaghi, M., Jalilvand, A., & Shafiee, Q. (2021). A pilot-based unit protection scheme for meshed microgrids using apparent resistance estimation. International Journal of Electrical Power & Energy Systems, 126, 106564. https://doi.org/10.1016/j.ijepes.2020.106564Mongrain, R. S., & Ayyanar, R. (2020a). Control of nonideal grid-forming inverter in islanded microgrid with hierarchical control structure under unbalanced conditions. International Journal of Electrical Power & Energy Systems, 119, 105890. https://doi.org/10.1016/j.ijepes.2020.105890Mongrain, R. S., & Ayyanar, R. (2020b). Control of nonideal grid-forming inverter in islanded microgrid with hierarchical control structure under unbalanced conditions. International Journal of Electrical Power and Energy Systems, 119. https://doi.org/10.1016/j.ijepes.2020.105890Nageswara Rao, A., Vijaya Priya, P., Kowsalya, M., & Gnanadass, R. (2019). Wide area monitoring for energy system: A review. International Journal of Ambient Energy, 40(5), 537–553. https://doi.org/10.1080/01430750.2017.1399458Nassourou, M., Blesa, J., & Puig, V. (2020). Optimal energy dispatch in a smart micro-grid system using economic model predictive control. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 234(1), 96–106. https://doi.org/10.1177/0959651818786376/ASSET/IMAGES/LARGE/10.1177_0959651818786376-FIG2.JPEGNavas-Fonseca, A., Burgos-Mellado, C., Espina, E., Rute, E., Gomez, J. S., Saez, D., & Sumner, M. (2021, July 18). Distributed predictive secondary control for voltage restoration and economic dispatch of generation for DC microgrids. 2021 IEEE 4th International Conference on DC Microgrids, ICDCM 2021. https://doi.org/10.1109/ICDCM50975.2021.9504612Nazari-Heris, F., Mohammadi-ivatloo, B., & Nazarpour, D. (2019). Network constrained economic dispatch of renewable energy and CHP based microgrids. International Journal of Electrical Power and Energy Systems, 110, 144–160. https://doi.org/10.1016/j.ijepes.2019.02.037Nehrir, M. H., Wang, C., Strunz, K., Aki, H., Ramakumar, R., Bing, J., Miao, Z., & Salameh, Z. (2011). A Review of Hybrid Renewable/Alternative Energy Systems for Electric Power Generation: Configurations, Control, and Applications. IEEE Transactions on Sustainable Energy, 2(4), 392–403. https://doi.org/10.1109/TSTE.2011.2157540Nejabatkhah, F., & Li, Y. W. (2015). Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Transactions on Power Electronics, 30(12), 7072–7089. https://doi.org/10.1109/TPEL.2014.2384999Nguyen, M. Y., Nguyen, V. T., & Yoon, Y. T. (2013). Three-wire network: a new distribution system approach considering both distributed generation and load requirements. International Transactions on Electrical Energy Systems, 23(5), 719–732. https://doi.org/10.1002/etep.1749Nguyen, M. Y., & Yoon, Y. T. (2014). A Comparison of Microgrid Topologies Considering Both Market Operations and Reliability. Electric Power Components and Systems, 42(6), 585– 594. https://doi.org/10.1080/15325008.2014.880963Nichols, D. K., Stevens, J., Lasseter, R. H., Eto, J. H., & Vollkommer, H. T. (2006). Validation of the CERTS microgrid concept the CEC/CERTS microgrid testbed. 2006 IEEE Power Engineering Society General Meeting, 3 pp. https://doi.org/10.1109/PES.2006.1709248Ortiz, L., González, J. W., Gutierrez, L. B., & Llanes-Santiago, O. (2020). A review on control and fault-tolerant control systems of AC/DC microgrids. Heliyon, 6(8), e04799. https://doi.org/10.1016/j.heliyon.2020.e04799Ortiz, L., Orizondo, R., Águila, A., González, J. W., López, G. J., & Isaac, I. (2019). Hybrid AC/DC microgrid test system simulation: grid-connected mode. Heliyon, 5(12), e02862. https://doi.org/10.1016/j.heliyon.2019.e02862Patnaik, B., Mishra, M., Bansal, R. C., & Jena, R. K. (2020). AC microgrid protection – A review: Current and future prospective. Applied Energy, 271. https://doi.org/10.1016/j.apenergy.2020.115210Pattanaik, J. K., Basu, M., & Dash, D. P. (2018). Improved real coded genetic algorithm for dynamic economic dispatch. Journal of Electrical Systems and Information Technology, 5(3), 349–362. https://doi.org/10.1016/j.jesit.2018.03.002Pinto, J. O. C. P., & Moreto, M. (2021). Protection strategy for fault detection in inverterdominated low voltage AC microgrid. Electric Power Systems Research, 190, 106572. https://doi.org/10.1016/j.epsr.2020.106572Pourbehzadi, M., Niknam, T., Aghaei, J., Mokryani, G., Shafie-khah, M., & Catalão, J. P. S. (2019). Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: A comprehensive review. In International Journal of Electrical Power and Energy Systems. https://doi.org/10.1016/j.ijepes.2019.01.025Powerfactory, D. (n.d.). 4 Bus System. www.digsilent.dePriyadharshini, N., Gomathy, S., & Sabarimuthu, M. (2020). A review on microgrid architecture, cyber security threats and standards. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.622Romero-Quete, D., & Garcia, J. R. (2019). An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids. Applied Energy, 242, 1436–1447. https://doi.org/10.1016/j.apenergy.2019.03.159Roslan, A. M., Ahmed, K. H., Finney, S. J., & Williams, B. W. (2011). Improved Instantaneous Average Current-Sharing Control Scheme for Parallel-Connected Inverter Considering Line Impedance Impact in Microgrid Networks. IEEE Transactions on Power Electronics, 26(3), 702–716. https://doi.org/10.1109/TPEL.2010.2102775Ross, S. M. (1993). Introduction to Probability Models. In Elsevier (Ed.), Academic Press (2014th ed.). Elsevier. https://doi.org/10.1016/C2013-0-11417-1Rosslyn-Smith, W., De Abreu, N. V. A., & Pretorius, M. (2020). Exploring the indirect costs of a firm in business rescue. South African Journal of Accounting Research. https://doi.org/10.1080/10291954.2019.1667647Roy, N. B., & Das, D. (2021). Optimal allocation of active and reactive power of dispatchable distributed generators in a droop controlled islanded microgrid considering renewable generation and load demand uncertainties. Sustainable Energy, Grids and Networks, 27. https://doi.org/10.1016/j.segan.2021.100482Roy, N. B., & Das, D. (2023). Probabilistic optimal power allocation of dispatchable DGs and energy storage units in a reconfigurable grid-connected CCHP microgrid considering demand response. Journal of Energy Storage, 72, 108207. https://doi.org/10.1016/j.est.2023.108207Sahoo, B., Routray, S. K., & Rout, P. K. (2018). A new topology with the repetitive controller of a reduced switch seven-level cascaded inverter for a solar PV-battery based microgrid. Engineering Science and Technology, an International Journal, 21(4), 639–653. https://doi.org/10.1016/j.jestch.2018.06.007Saidane, A. (2001). Electric Machinery and Transformers. In Microelectronics Journal (Vol. 32, Issue 9). https://doi.org/10.1016/s0026-2692(01)00052-0Shahzad, U. (University of N. at L. (2016). (PDF) A Quantitative Comparison of Wind and Solar Energy | Umair Shahzad - Academia.edu. Durreesamin Journal. https://www.academia.edu/32941924/A_Quantitative_Comparison_of_Wind_and_Solar_EnergyShen, Z., Li, P., Shi, R., Xia, Z., & Wang, G. (2021). Optimization Allocation Strategy of Distributed Generation in Grid-Connected Microgrid Based on Economic Dispatch. 5th IEEE Conference on Energy Internet and Energy System Integration: Energy Internet for Carbon Neutrality, EI2 2021, 4398–4403. https://doi.org/10.1109/EI252483.2021.9713522Shezan, S. A., Ishraque, M. F., Muyeen, S. M., Abu-Siada, A., Saidur, R., Ali, M. M., & Rashid, M. M. (2022a). Selection of the best dispatch strategy considering techno-economic and system stability analysis with optimal sizing. Energy Strategy Reviews, 43. https://doi.org/10.1016/j.esr.2022.100923Shi, G., Han, H., Liu, Y., Su, M., Liu, Z., & Sun, Y. (2019a). A Common Second Frequency Control of Island Cascaded-type Microgrid. 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019, 5407–5410. https://doi.org/10.1109/ECCE.2019.8912229Shi, G., Han, H., Liu, Y., Su, M., Liu, Z., & Sun, Y. (2019b). A Common Second Frequency Control of Island Cascaded-type Microgrid. 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 5407–5410. https://doi.org/10.1109/ECCE.2019.8912229Sidea, D. O., Toma, L., Sanduleac, M., Picioroaga, I. I., & Boicea, V. A. (2019). Optimal BESS scheduling strategy in microgrids based on genetic algorithms. 2019 IEEE Milan PowerTech, PowerTech 2019. https://doi.org/10.1109/PTC.2019.8810633Silveira, J. R., Brandao, D. I., Fernandes, N. T. D., Uturbey, W., & Cardoso, B. (2021). Multifunctional dispatchable microgrids. Applied Energy, 282. https://doi.org/10.1016/j.apenergy.2020.116165Siti, M. W., Tungadio, D. H., Sun, Y., Mbungu, N. T., & Tiako, R. (2019). Optimal frequency deviations control in microgrid interconnected systems. IET Renewable Power Generation, 13(13), 2376–2382. https://doi.org/10.1049/iet-rpg.2018.5801Srinivasan, M., & Kwasinski, A. (2020). Control analysis of parallel DC-DC converters in a DC microgrid with constant power loads. International Journal of Electrical Power & Energy Systems, 122, 106207. https://doi.org/10.1016/j.ijepes.2020.106207Sun, Y., Shi, G., Li, X., Yuan, W., Su, M., Han, H., & Hou, X. (2018a). An f-p/q droop control in cascaded-type microgrid. IEEE Transactions on Power Systems. https://doi.org/10.1109/TPWRS.2017.2752646Sun, Y., Shi, G., Li, X., Yuan, W., Su, M., Han, H., & Hou, X. (2018b). An f-P/Q Droop Control in Cascaded-Type Microgrid. IEEE Transactions on Power Systems, 33(1), 1136–1138. https://doi.org/10.1109/TPWRS.2017.2752646Tang, Z., Hill, D. J., & Liu, T. (2018). A Novel Consensus-Based Economic Dispatch for Microgrids. IEEE Transactions on Smart Grid, 9(4), 3920–3922. https://doi.org/10.1109/TSG.2018.2835657Thakur, D., & Jiang, J. (2017). Design and Construction of a Wind Turbine Simulator for Integration to a Microgrid with Renewable Energy Sources. Electric Power Components and Systems, 45(9), 949–963. https://doi.org/10.1080/15325008.2017.1311385Toub, M., Robinett, R. D., Maaroufi, M., & Aniba, G. (2019). Decentralized Hamiltonian control of multi-DEr isolated microgrids with meshed topology. Energy Procedia. https://doi.org/10.1016/j.egypro.2018.11.291Trip, S., Han, R., Cucuzzella, M., Cheng, X., Scherpen, J., & Guerrero, J. (2018). Distributed Averaging Control for Voltage Regulation and Current Sharing in DC Microgrids: Modelling and Experimental Validation. IFAC-PapersOnLine, 51(23), 242–247. https://doi.org/10.1016/j.ifacol.2018.12.042Trujillo, C. L., Velasco, D., Figueres, E., Garcerá, G., & Ortega, R. (2011). Modeling and control of a push–pull converter for photovoltaic microinverters operating in island mode. Applied Energy, 88(8), 2824–2834. https://doi.org/10.1016/j.apenergy.2011.01.053Tsai-Fu Wu, Yu-Kai Chen, & Yong-Heh Huang. (2000). 3C strategy for inverters in parallel operation achieving an equal current distribution. IEEE Transactions on Industrial Electronics, 47(2), 273–281. https://doi.org/10.1109/41.836342Ullah, S., Haidar, A. M. A., Hoole, P., Zen, H., & Ahfock, T. (2020a). The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids. Journal of Cleaner Production, 273, 122777. https://doi.org/10.1016/j.jclepro.2020.122777Ullah, S., Haidar, A. M. A., Hoole, P., Zen, H., & Ahfock, T. (2020b). The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids. In Journal of Cleaner Production (Vol. 273). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.122777Unamuno, E., & Barrena, J. A. (2015). Hybrid ac/dc microgrids—Part I: Review and classification of topologies. Renewable and Sustainable Energy Reviews, 52, 1251–1259. https://doi.org/10.1016/j.rser.2015.07.194US EIA. (2020). February 2020 Monthly Energy Review. In Monthly Energy Review.Utkarsh, K., Srinivasan, D., Trivedi, A., Zhang, W., & Reindl, T. (2019). Distributed Model Predictive Real-Time Optimal Operation of a Network of Smart Microgrids. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2018.2810897Velasquez, M. A., Barreiro-Gomez, J., Quijano, N., Cadena, A. I., & Shahidehpour, M. (2019). Distributed model predictive control for economic dispatch of power systems with high penetration of renewable energy resources. International Journal of Electrical Power and Energy Systems, 113, 607–617. https://doi.org/10.1016/j.ijepes.2019.05.044Velasquez, M. A., Barreiro-Gomez, J., Quijano, N., Cadena, A. I., & Shahidehpour, M. (2020). Intra-Hour Microgrid Economic Dispatch Based on Model Predictive Control. IEEE Transactions on Smart Grid, 11(3), 1968–1979. https://doi.org/10.1109/TSG.2019.2945692Velasquez, M. A., Quijano, N., Cadena, A. I., & Shahidehpour, M. (2021). Distributed stochastic economic dispatch via model predictive control and data-driven scenario generation. International Journal of Electrical Power and Energy Systems, 129. https://doi.org/10.1016/j.ijepes.2021.106796Wang, Y., Rousis, A. O., & Strbac, G. (2020). On microgrids and resilience: A comprehensive review on modeling and operational strategies. Renewable and Sustainable Energy Reviews, 134, 110313. https://doi.org/10.1016/j.rser.2020.110313Wanichrojanarat, C., & Wirasanti, P. (2018). Control Strategy for Seamless Transition of Microgrid Using Battery Energy Storage System. 2018 53rd International Universities Power Engineering Conference (UPEC), 1–6. https://doi.org/10.1109/UPEC.2018.8542087Wei, P., & Chen, W. (2019). Microgrid in China: A review in the perspective of application. Energy Procedia, 158, 6601–6606. https://doi.org/10.1016/j.egypro.2019.01.059Wiatros-Motyka, M., Jones, D., Broadbent, H., Fulghum, N., Bruce-Lockhart, C., Dizon, R., Macdonald, P., Moore, C., Candlin, A., Lee, U., Copsey, L., Hawkins, S., Ewen, M.,Worthington, B., Benham, H., Trueman, M., Yang, M., Lolla, A., Shahram Edianto, A., … Bachelet, M. (2023). Global Electricity Review de Ember 2023. https://ember climate.org/app/uploads/2023/04/Global-Electricity-Review-2023_ES.pdfWillenberg, D., Winkens, A., & Linnartz, P. (2020). Impact of wind turbine generator technologies and frequency controls on the stable operation of medium voltage islanded microgrids. Electric Power Systems Research, 189, 106760. https://doi.org/10.1016/j.epsr.2020.106760Wu, Y. J., Liang, X. Y., Huang, T., Lin, Z. W., Li, Z. X., & Hossain, M. F. (2021). A hierarchical framework for renewable energy sources consumption promotion among microgrids through two-layer electricity prices. Renewable and Sustainable Energy Reviews, 145. https://doi.org/10.1016/j.rser.2021.111140Xie, M., Xiong, J., Ke, S., & Liu, M. (2017). Two-Stage Compensation Algorithm for Dynamic Economic Dispatching Considering Copula Correlation of Multiwind Farms Generation. IEEE Transactions on Sustainable Energy, 8(2), 763–771. https://doi.org/10.1109/TSTE.2016.2618939Yan, Z., & Zhang, X. P. (2018). Master-slave wave farm systems based on energy filter with smoothed power output. Global Energy Interconnection, 1(5), 559–567.https://doi.org/10.14171/j.2096-5117.gei.2018.05.005Yang, Y., Huang, C., Zhou, D., & Li, Y. (2021). Fault detection and location in multi-terminal DC microgrid based on local measurement. Electric Power Systems Research, 194, 107047. https://doi.org/10.1016/j.epsr.2021.107047Yin, L., & Zhang, B. (2023). Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems. Applied Energy, 330. https://doi.org/10.1016/j.apenergy.2022.120300Yu, Y., Li, J., & Chen, D. (2022). Optimal dispatching method for integrated energy system based on robust economic model predictive control considering source–load power interval prediction. Global Energy Interconnection, 5(5), 564–578. https://doi.org/10.1016/j.gloei.2022.10.010Yuan, M., Fu, Y., Mi, Y., Li, Z., & Wang, C. (2019). Hierarchical control of DC microgrid with dynamical load power sharing. Applied Energy, 239, 1–11. https://doi.org/10.1016/j.apenergy.2019.01.081Zafeiratou, I., Prodan, I., Lefèvre, L., & Piétrac, L. (2020). Meshed DC microgrid hierarchical control: A differential flatness approach. Electric Power Systems Research, 180, 106133. https://doi.org/10.1016/j.epsr.2019.106133Zeng, L., Xu, J., Liu, Y., Li, C., Wu, M., Wen, M., & Xiao, H. (2022). Stochastic economic dispatch strategy based on quantile regression. International Journal of Electrical Power and Energy Systems, 134. https://doi.org/10.1016/j.ijepes.2021.107363Zhao, B., Wang, X., Lin, D., Calvin, M. M., Morgan, J. C., Qin, R., & Wang, C. (2018). Energy management of multiple microgrids based on a system of systems architecture. IEEE Transactions on Power Systems. https://doi.org/10.1109/TPWRS.2018.2840055Zheng, W., Wu, W., Zhang, B., Sun, H., Guo, Q., & Lin, C. (2016). Dynamic economic dispatch for microgrids: A fully distributed approach. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2016-July. https://doi.org/10.1109/TDC.2016.7520068Zhou, X., Ai, Q., & Yousif, M. (2019). Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids. Applied Energy, 253. https://doi.org/10.1016/j.apenergy.2019.113588MicrorredesTopologíasEnergía renovableDespacho económicoEstrategia predictivaSistema eléctricoMicrogridsTopologiesRenewable energyEconomic dispatchPredictive strategyElectrical systemPublicationaf89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::933-1af89e44d-2c08-45ae-b01c-cd941b86fa8avirtual::933-1https://scholar.google.es/citations?user=ODmDjToAAAAJ&hl=esvirtual::933-10000-0003-1466-0424virtual::933-1ORIGINAL55306782 KATHERINE CABANA.pdf55306782 KATHERINE CABANA.pdfapplication/pdf3669452https://repositorio.cuc.edu.co/bitstreams/6c916845-c78a-49a4-8808-ffe88af4610b/downloadd0a38df2b4e7580fbe29a2a2cee30332MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/855253ba-df8f-411e-b109-116065b527e9/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXT55306782 KATHERINE CABANA.pdf.txt55306782 KATHERINE CABANA.pdf.txtExtracted texttext/plain217909https://repositorio.cuc.edu.co/bitstreams/2b0d7f0c-6974-49f0-ad9d-f713f78b6cec/downloadcec684fb7d2c4d78bfcdde2040f9435aMD53THUMBNAIL55306782 KATHERINE CABANA.pdf.jpg55306782 KATHERINE CABANA.pdf.jpgGenerated Thumbnailimage/jpeg6909https://repositorio.cuc.edu.co/bitstreams/92e87136-9371-4088-88f9-b53420c0a127/download3d405836c90c57be3d77b654852d4965MD5411323/10637oai:repositorio.cuc.edu.co:11323/106372025-02-25 11:45:13.093https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |