Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution

Over the last decades, the concern about air pollution has increased significantly, especially in urban areas. Active sampling of air pollutants requires specific instrumentation not always available in all the laboratories. Passive sampling has a lower cost than active alternatives but still requir...

Full description

Autores:
Gallego Cartagena, Euler
Morillas, Héctor
MORGADO GAMERO, WENDY BEATRIZ
Fuentes Gandara, Fabio Armando
Vacca Jimeno, Victor
Salcedo, Isabel
Madariaga, Juan Manuel
Maguregui, Maite
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10825
Acceso en línea:
https://hdl.handle.net/11323/10825
https://repositorio.cuc.edu.co/
Palabra clave:
Subaerial biofilms
Atmospheric heavy metals pollution
X-ray fluorescence imaging
Construction materials
Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectrometry
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_7aea3deb35ac81f91bd58aab2a1096dc
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10825
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution
title Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution
spellingShingle Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution
Subaerial biofilms
Atmospheric heavy metals pollution
X-ray fluorescence imaging
Construction materials
Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectrometry
title_short Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution
title_full Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution
title_fullStr Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution
title_full_unstemmed Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution
title_sort Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution
dc.creator.fl_str_mv Gallego Cartagena, Euler
Morillas, Héctor
MORGADO GAMERO, WENDY BEATRIZ
Fuentes Gandara, Fabio Armando
Vacca Jimeno, Victor
Salcedo, Isabel
Madariaga, Juan Manuel
Maguregui, Maite
dc.contributor.author.none.fl_str_mv Gallego Cartagena, Euler
Morillas, Héctor
MORGADO GAMERO, WENDY BEATRIZ
Fuentes Gandara, Fabio Armando
Vacca Jimeno, Victor
Salcedo, Isabel
Madariaga, Juan Manuel
Maguregui, Maite
dc.subject.proposal.eng.fl_str_mv Subaerial biofilms
Atmospheric heavy metals pollution
X-ray fluorescence imaging
Construction materials
Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectrometry
topic Subaerial biofilms
Atmospheric heavy metals pollution
X-ray fluorescence imaging
Construction materials
Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectrometry
description Over the last decades, the concern about air pollution has increased significantly, especially in urban areas. Active sampling of air pollutants requires specific instrumentation not always available in all the laboratories. Passive sampling has a lower cost than active alternatives but still requires efforts to cover extensive areas. The use of biological systems as passive samplers might be a solution that provides information about air pollution to assist decision-makers in environmental health and urban planning. This study aims to employ subaerial biofilms (SABs) growing naturally on façades of historical and recent constructions as natural passive biomonitors of atmospheric heavy metals pollution. Concretely, SABs spontaneously growing on constructions located in a tropical climate, like the one of the city of Barranquilla (Colombia), have been used to develop the methodological approach here presented as an alternative to SABS grown under laboratory conditions. After a proper identification of the biocolonizers in the SAB through taxonomic and morphological observations, the study of the particulate matter accumulated on the SABs of five constructions was conducted under a multi-analytical approach based mainly on elemental imaging studies by micro Energy Dispersive X-ray fluorescence spectrometry (μ-EDXRF) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectrometry (SEM-EDS) techniques, trying to reduce the time needed and associated costs. This methodology allowed to discriminate metals that are part of the original structure of the SABs, from those coming from the anthropogenic emissions. The whole methodology applied assisted the identification of the main metallic particles that could be associated with nearby anthropogenic sources of emission such as Zn, Fe, Mn, Ni and Ti by SEM-EDS and by μ-EDXRF Ba, Sb, Sn, Cl and Br apart others; revealing that it could be used as a good alternative for a rapid screening of the atmospheric heavy metals pollution.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12
dc.date.accessioned.none.fl_str_mv 2024-03-07T14:26:11Z
dc.date.available.none.fl_str_mv 2024-12
2024-03-07T14:26:11Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Euler Gallego-Cartagena, Héctor Morillas, Wendy Morgado-Gamero, Fabio Fuentes-Gandara, Víctor Vacca-Jimeno, Isabel Salcedo, Juan Manuel Madariaga, Maite Maguregui, Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution, Chemosphere, Volume 309, Part 2, 2022, 136743, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2022.136743
dc.identifier.issn.spa.fl_str_mv 0045-6535
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10825
dc.identifier.doi.none.fl_str_mv 10.1016/j.chemosphere.2022.136743
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC – Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Euler Gallego-Cartagena, Héctor Morillas, Wendy Morgado-Gamero, Fabio Fuentes-Gandara, Víctor Vacca-Jimeno, Isabel Salcedo, Juan Manuel Madariaga, Maite Maguregui, Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution, Chemosphere, Volume 309, Part 2, 2022, 136743, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2022.136743
0045-6535
10.1016/j.chemosphere.2022.136743
Corporación Universidad de la Costa
REDICUC – Repositorio CUC
url https://hdl.handle.net/11323/10825
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Chemosphere
dc.relation.references.spa.fl_str_mv Agudelo-Castaneda, ˜ D., De Paoli, F., Morgado-Gamero, W., Mendoza, M., Parody, A., Maturana, A., Teixeira, E., 2020. Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city. Sci. Total Environ. 720, 137675.
Anagnostidis, K., 1986. Modern approach to the classification system of cyanophytes. 2. Chroococcales. Algological Studies/Archiv für Hydrobiologie, Supplement 73, 157–226.
Anagnostidis, K., Komarek, ´ J.A., 1988. A modern approach to the classification systems of cyanophytes 3—Oscillatorales. Arch. Hydrobiol. Suppl. 80, 327–472.
Andrade-Guel, M., Cabello-Alvarado, C., Avila-Orta, C.A., P´erez-Alvarez, M., CadenasPliego, G., Reyes-Rodríguez, P.Y., Ríos-Gonzalez, ´ L., 2022. Green flame-retardant composites based on PP/TiO2/lignin obtained by melt-mixing extrusion. Polymers 14 (7), 1300.
Bartnicki-Garcia, S., 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22 (1), 87–108.
Bloise, A., Fornero, E., Belluso, E., Barrese, E., Rinaudo, C., 2008. Synthesis and characterization of tremolite asbestos fibres. Eur. J. Mineral 20 (20), 1027–1033.
Boquete, M.T., Ares, A., Fernandez, J.A., Aboal, J.R., 2020. Matching times: trying to improve the correlation between heavy metal levels in mosses and bulk deposition. Sci. Total Environ. 715, 136955.
Botle, A., Singhal, R.K., Basu, H., Manisha, V., Masih, J., 2020. Health risk assessment of heavy metals associated with Coarse and Quasi-accumulative airborne particulate matter in Mumbai City situated on the Western Coast of India. Environ. Technol. Innovat. 19, 100857.
Carrero, J.A., Arrizabalaga, I., Bustamante, J., Goienaga, N., Arana, G., Madariaga, J.M., 2013. Diagnosing the traffic impact on roadside soils through a multianalytical data analysis of the concentration profiles of traffic-related elements. Sci. Total Environ. 458, 427–434.
Carrero, J.A., Arana, G., Madariaga, J.M., 2014. Use of Raman spectroscopy and scanning electron microscopy for the detection and analysis of road transport pollution. Spectrosc. Prop. Inorg. Organomet. C 45, 178–210.
Castaneda-Miranda, A.G., Chaparro, M.A.E., Pacheco-Castro, A., Chaparro, M.A.E., Bohnel, H.N., 2020. Magnetic biomonitoring of atmospheric dust using tree leaves of Ficus benjamina in Queretaro (Mexico). Environ. Monit. Assess. 192 (6), 382.
Chakrabortty, S., Paratkar, G.T., 2006. Biomonitoring of trace element air pollution using mosses. Aerosol Air Qual. Res. 6, 247–258.
Chang, M.B., Huang, C.K., Wu, H.T., Lin, J.J., Chang, S.H., 2000. Characteristics of heavy metals on particles with different sizes from municipal solid waste incineration. J. Hazard Mater. 79 (3), 229–239.
Chatterjee, A., Sarkar, C., Adak, A., Mukherjee, U., Ghosh, S.K., Raha, S., 2013. Ambient air quality during Diwali Festival over Kolkata-a mega-city in India. Aerosol Air Qual. Res. 13 (3), 1133–1144.
Cheng, X., Xu, W., Wang, N., Mu, Y., Zhu, J., Luo, J., 2018. Adsorption of Cu2+ and mechanism by natural biofilm. Water Sci. Technol. 78 (4), 721–731.
Chiaia-Hern´ andez, A.C., Scheringer, M., Muller, A., Stieger, G., Wachter, D., Keller, A., Pintado-Herrera, M.G., Lara-Martin, P.A., Bucheli, T.D., Hollender, J., 2020. Target and suspect screening analysis reveals persistent emerging organic contaminants in soils and sediments. Sci. Total Environ. 740, 140181.
Combes, A., Franchineau, G., 2019. Fine particle environmental pollution and cardiovascular diseases. Metabolism 100, 153944.
Contardo, T., Vannini, A., Sharma, K., Giordani, P., Loppi, S., 2020. Disentangling sources of trace element air pollution in complex urban areas by lichen biomonitoring. A case study in Milan (Italy). Chemosphere 256, 127155.
Crispim, C.A., Gaylarde, C.C., 2005. Cyanobacteria and biodeterioration of cultural heritage: a review. Microb. Ecol. 49 (1), 1–9.
Crispim, C.A., Gaylarde, P.M., Gaylarde, C.C., 2003. Algal and cyanobacterial biofilms on calcareous historic buildings. Curr. Microbiol. 46 (2), 79–82.
Cutler, N., Viles, H., 2010. Eukaryotic microorganisms and stone biodeterioration. Geomicrobiol. J. 27, 630–646.
Di Turo, F., Proietti, C., Screpanti, A., Fornasier, M.F., Cionni, I., Favero, G., De Marco, A., 2016. Impacts of air pollution on cultural heritage corrosion at European level: what has been achieved and what are the future scenarios. Environ. Pollut. 218, 586–594.
Gallego-Cartagena, E., Morillas, H., Maguregui, M., Patino-Camelo, ˜ K., Marcaida, I., Morgado-Gamero, W., Silva, L.F.O., Madariaga, J.M., 2020. A comprehensive study of biofilms growing on the built heritage of a Caribbean industrial city in correlation with construction materials. Int. Biodeterior. Biodegrad. 147, 104874.
Gallego-Cartagena, E., Morillas, H., Carrero, J.A., Madariaga, J.M., Maguregui, M., 2021. Naturally growing grimmiaceae family mosses as passive biomonitors of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan area. Chemosphere 263, 128190.
García-Florentino, C., Maguregui, M., Morillas, H., Marcaida, I., Salcedo, I., Madariaga, J.M., 2018a. Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution. Sci. Total Environ. 626, 441–450.
García-Florentino, C., Maguregui, M., Marguí, E., Torrent, L., Queralt, I., Madariaga, J. M., 2018b. Development of Total Reflection X-ray fluorescence spectrometry quantitative methodologies for elemental characterization of building materials and their degradation products. Spectrochim. Acta, Part B 143, 18–25.
García-Florentino, C., Maguregui, M., Ciantelli, C., Sardella, A., Bonazza, A., Queralt, I., Carrero, J.A., Natalí, C., Morillas, H., Madariaga, J.M., Arana, G., 2020. Deciphering past and present atmospheric metal pollution of urban environments: the role of black crusts formed on historical constructions. J. Clean. Prod. 243, 118594.
Gasik, M.I., 2004. Hadfield steel. State-of-the-art of technology and materials science of railway switch frogs. Adv. Electrometall. 1, 27–37.
Gaylarde, C., 2020. Influence of environment on microbial colonization of historic stone buildings with emphasis on cyanobacteria. Heritage 3 (4), 1469–1482.
Gaylarde, C.C., Gaylarde, P.M., 2002. Biodeterioration of historic buildings in Latin America. In: Burn, S. (Ed.), Proceedings of the 9th International Conference on Durability of Materials and Components. Brisbane, Australia.
Glencross, D.A., Ho, T.-R., Camina, ˜ N., Hawrylowicz, C.M., Pfeffer, P.E., 2020. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 151, 56–68.
Grossi, C.M., Brimblecombe, P., 2002. The effect of atmospheric pollution on building materials. J. Phys IV France. 12, 197–210.
Gulotta, D., Villa, F., Cappitelli, F., Toniolo, L., 2018. Biofilm colonization of metamorphic lithotypes of a renaissance cathedral exposed to urban atmosphere. Sci. Total Environ. 639, 1480–1490.
Haikerwal, A., Reisen, F., Sim, M.R., Abramson, M.J., Meyer, C.P., Johnston, F.H., Dennekamp, M., 2015. Impact of smoke from prescribed burning: is it a public health concern? J. Air Waste Manag. 6 (5), 592–598.
H¨ aubner, N., Schumann, R., Karsten, U., 2006. Aeroterrestrial microalgae growing in biofilms on facades—response to temperature and water stress. Microb. Ecol. 51 (3), 285–293.
Hoyos, C.D., Herrera-Mejía, L., Rold´ an-Henao, N., Isaza, A., 2020. Effects of fireworks on particulate matter concentration in a narrow valley: the case of the Medellín metropolitan area. Environ. Monit. Assess. 192 (1), 1–31.
IDEAM, 2017. «Atlas climatologico ´ de Colombia» 1997. Geografía Física de Barranquilla. Blanco, Jos´e A. En: historia General de Barranquilla. In: Mejoras, Primera Edicion. ´ Barranquilla, Colombia, ISBN 958-96185-0-2, pp. 13–22.
Islam, N., Saikia, B.K., 2020. Atmospheric particulate matter and potentially hazardous compounds around residential/road side soil in an urban area. Chemosphere 259, 127453.
Karri, V., Schuhmacher, M., Kumar, V., 2016. Heavy metals (Pb, Cd, as and MeHg) as risk factors for cognitive dysfunction: a general review of metal mixture mechanism in brain. Environ. Toxicol. Pharmacol. 48, 203–213.
Kidd, S., Halliday, C., Alexiou, H., Ellis, D., 2016. Descriptions of Medical Fungi, 3a edition. Adelaide, Australia.
Kurniawan, A., Fukuda, Y., 2022. Analysis of the electric charge properties of biofilm for the development of biofilm matrices as biosorbents for water pollutant. Energ. Ecol. Environ. 1–7.
Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371.
Lembre, P., Lorentz, C., Di Martino, P., 2012. Exopolysaccharides of the biofilm matrix: a complex biophysical world. In: Karunaratne, D.N. (Ed.), The Complex World of Polysaccharides. InTech Prepress. Rijeka, Croatia, pp. 371–392 (Chapter 13).
Lin, V.S., 2015. Research highlights: natural passive samplers–plants as biomonitors. Environ. Sci.: Process. Impacts 17 (6), 1137–1140.
Liu, E., Yan, T., Birch, G., Zhu, Y., 2014. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci. Total Environ. 476, 522–531.
Liu, F., Zhang, G., Lian, X., Fu, Y., Lin, Q., Yang, Y., Sheng, G., 2022. Influence of meteorological parameters and oxidizing capacity on characteristics of airborne particulate amines in an urban area of the Pearl River Delta, China. Environ. Res. 212, 113212.
Lopez-Bautista, ´ J.M., Rindi, F., Casamatta, D., 2007. The systematics of subaerial algae. In: Seckbach, J. (Ed.), Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol. 11. Springer, Dordrecht, pp. 601–617.
Machado, A., García, N., García, C., Acosta, L., Cordova, ´ A., Linares, M., Vel´ asquez, H., 2008. Contaminacion ´ por metales (Pb, Zn, Ni y Cr) en aire, sedimentos viales y suelo en una zona de alto tr´ afico vehicular. Rev. Int. Contam. Ambient. 24 (4), 171–182.
Mariani, R.L., de Mello, W.Z., 2007. PM2.5–10, PM2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro. Atmos. Environ. 41 (13), 2887–2892.
Martínez-Arkarazo, I., Angulo, M., Bartolom´e, L., Etxebarria, N., Olazabal, M.A., Madariaga, J.M., 2007. An integrated analytical approach to diagnose the conservation state of building materials of a palace house in the metropolitan Bilbao (Basque Country, North of Spain). Anal. Chim. Acta 584 (2), 350–359.
Mitsos, D., Kantarelou, V., Palamara, E., Karydas, A.G., Zacharias, N., Gerasopoulos, E., 2022. Characterization of black crust on archaeological marble from the Library of Hadrian in Athens and inferences about contributing pollution sources. J. Cult. Herit. 53, 236–243.
Moreno, T., Querol, X., Alastuey, A., Minguillon, ´ M.C., Pey, J., Rodriguez, S., Gibbons, W., 2007. Recreational atmospheric pollution episodes: inhalable metalliferous particles from firework displays. Atmos. Environ. 41 (5), 913–922.
Morillas, H., Maguregui, M., García-Florentino, C., Carrero, J.A., Salcedo, I., Madariaga, J.M., 2016. The cauliflower-like black crusts on sandstones: a natural passive sampler to evaluate the surrounding environmental pollution. Environ. Res. 147, 218–232.
Nolte, C., 2016. Identifying challenges to enforcement in protected areas: empirical insights from 15 Colombian parks. Oryx 50 (2), 317–322.
Ogunkunle, C.O., Ziyath, A.M., Rufai, S.S., Fatoba, P.O., 2016. Surrogate approach to determine heavy metal loads in a moss species -Barbula lambaranensis-. J. King Saud Univ. Sci. 28, 193–197.
Osorio-Martinez, J., Silva, L.F., Flores, E.M., Nascimento, M.S., Picoloto, R.S., OliveroVerbel, J., 2021. Environmental and human health risks associated with exposure to hazardous elements present in urban dust from Barranquilla, Colombian Caribbean. J. Environ. Qual. 50 (2), 350–363.
Paglietti, F., Malinconico, S., Conestabile della Staffa, B., Bellagamba, S., De Simone, P., 2016. Classification and management of asbestos-containing waste: European legislation and the Italian experience. Waste Manag. 50, 130–115.
Pant, P., Harrison, R.M., 2013. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos. Environ. 77, 78–97.
Paull, N.J., Krix, D., Irga, P.J., Torpy, F.R., 2020. Airborne particulate matter accumulation on common green wall plants. Int. J. Phytoremediation 22 (6), 594–606.
Pinto, A.C., Palomar, T., Alves, L.C., da Silva, S.H.M., Monteiro, R.C., Macedo, M.F., Vilarigues, M.G., 2019. Fungal biodeterioration of stained-glass windows in monuments from Bel´em do Par´ a (Brazil). Int. Biodeterior. Biodegrad. 138, 106–113.
Pirker, L., Velkavrh, Z., ˇ Os¯ıte, A., Drinovec, L., Moˇcnik, G., Remˇskar, M., 2021. Fireworks—a source of nanoparticles, PM2.5, PM10, and carbonaceous aerosols. Air. Qual. Atmos. Health 1275–1286.
Poulakis, E., Theodosi, C., Bressi, M., Sciare, J., Ghersi, V., Mihalopoulos, N., 2015. Airborne mineral components and trace metals in Paris region: spatial and temporal variability. Environ. Sci. Pollut. Res. 22 (19), 14663–14672.
Prescott, G.W., 1964. How to know the freshwater algae?. In: How to Know the Freshwater Algae. Michigan State Univ., East Lansing. Wm C. . Brown Company Publishers, Dubuque, Iowa, p. 272.
Prieto-Taboada, N., Ibarrondo, I., Gomez-Laserna, ´ O., Martinez-Arkarazo, I., Olazabal, M. A., Madariaga, J.M., 2013. Buildings as repositories of hazardous pollutants of anthropogenic origin. J. Hazard Mater. 248, 451–460.
Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Salvador, P., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 41, 7219–7231.
Radi´c, M., Brkovi´c Dodig, M., Auer, T., 2019. Green facades and living walls —a review establishing the classification of construction types and mapping the benefits. Sustainability 11 (17), 4579.
Ramírez, M., Hern´ andez-Marine, M., Novelo, E., Roldan, ´ M., 2010. Cyanobacteriacontaining biofilms from a mayan monument in palenque, Mexico. Biofouling 26 (4), 399–409.
Ramírez-Cerpa, E., Acosta-Coll, M., V´elez-Zapata, J., 2017. Analisis ´ de condiciones climatologicas ´ de precipitaciones de corto plazo en zonas urbanas: caso de estudio Barranquilla, Colombia. IDESIA 35 (2), 87–94.
Rossi, F., De Philippis, R., 2015. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5 (2), 1218–1238.
Roy, A., Bhattacharya, T., Kumari, M., 2020. Air pollution tolerance, metal accumulation and dust capturing capacity of common tropical trees in commercial and industrial sites. Sci. Total Environ. 722, 137622.
Rubio, M.A., Lissi, E., Riveros, V., P´ aez, M.A., 2001. Remocion ´ de contaminantes por lluvias y rocíos en la region ´ metropolitana. Bol Soc Chilena Quím. 46 (3), 353–361.
Ruffolo, S.A., Comite, V., La Russa, M.F., Belfiore, C.M., Barca, D., Bonazza, A., Sabbioni, C., 2015. An analysis of the black crusts from the Seville Cathedral: a challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources. Sci. Total Environ. 502, 157–166.
Saiz-Jimenez, C., 1993. Deposition of airborne organic pollutants on historic buildings. Atmos. Environ. B, Urban Atmos. 27 (1), 77–85.
Salo, H., Bu´cko, M.S., Vaahtovuo, E., Limo, J., M¨ akinen, J., Pesonen, L.J., 2012. Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J. Geochem. Explor. 115, 69–81.
Scheerer, S., Ortega-Morales, O., Gaylarde, C., 2009. Microbial deterioration of stone monuments-an updated overview. Adv. Appl. Microbiol. 66, 97–139.
Schleicher, N., Norra, S., Chen, Y., Chai, F., Wang, S., 2012. Efficiency of mitigation measures to reduce particulate air pollution—a case study during the Olympic Summer Games 2008 in Beijing, China. Sci. Total Environ. 427, 146–158.
Schraufnagel, D.E., Balmes, J.R., Cowl, C.T., De Matteis, S., Jung, S.H., Mortimer, K., Perez-Padilla, R., Rice, M.B., Riojas-Rodriguez, H., Sood, A., Thurston, G.D., To, T., Vanker, A., Wuebbles, D.J., 2019. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, Part 1: the damaging effects of air pollution. Chest 155 (2), 409–416.
Sesana, E., Gagnon, A.S., Bertolin, C., Hughes, J., 2018. Adapting cultural heritage to climate change risks: perspectives of cultural heritage experts in Europe. Geosciences 8 (8), 305.
Srbinovska, M., Andova, V., Mateska, A.K., Krstevska, M.C., 2021. The effect of small green walls on reduction of particulate matter concentration in open areas. J. Clean. Prod. 279, 123306.
Sun, F., Yun, D.A.I., Yu, X., 2017. Air pollution, food production and food security: a review from the perspective of food system. J. Integr. Agric. 16 (12), 2945–2962.
Sun, Y., Lu, Y., Saredy, J., Wang, X., Drummer IV, C., Shao, Y., Saaoud, F., Xu, K., Liu, M., Yang, W.Y., Jiang, X., Wang, H., Yang, X., 2020. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 37, 101696.
Szynkowska, M.I., Pawlaczyk, A., Mackiewicz, E., 2018. Bioaccumulation and biomagnification of trace elements in the environment. In: Chojnacka, K., Saeid, A. (Eds.), Recent Advances in Trace Elements. Wroclaw, Poland, pp. 249–251 (Chapter 13).
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metal toxicity and the environment. In: Luch, A. (Ed.), Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol. 101. Springer, Basel.
Vianna, N.A., Gonçalves, D., Brandao, ˜ F., de Barros, R.P., Meire, R.O., Torres, J.P.M., Andrade, L.R., 2011. Assessment of heavy metals in the particulate matter of two Brazilian metropolitan areas by using Tillandsia usneoides as atmospheric biomonitor. Environ. Sci. Pollut. Res. 18 (3), 416–427.
Villa, F., Cappitelli, F., 2019. The ecology of subaerial biofilms in dry and inhospitable terrestrial environments. Microorganisms 7 (10), 380.
Villa, F., Pitts, B., Lauchnor, E., Cappitelli, F., Stewart, P.S., 2015. Development of a laboratory model of a phototroph-heterotroph mixed-species biofilm at the stone/air interface. Front. Microbiol. 6, 1251.
Villa, F., Stewart, P.S., Klapper, I., Jacob, J.M., Cappitelli, F., 2016. Subaerial biofilms on outdoor stone monuments: changing the perspective toward an ecological framework. Bioscience 66 (4), 285–294.
Vojtkov´ a, H., 2017. Algae and their biodegradation effects on building materials in the Ostrava industrial agglomeration. In: Proceedings of the 1st International Conference on Advances in Environmental Engineering (AEE), vol. 92. Czech Republic, Ostrava, pp. 28–30.
Wang, Z., Li, J., Mu, X., Zhao, L., Gu, C., Gao, H., Huang, T., 2021. A WRF-CMAQ modeling of atmospheric PAH cycling and health risks in the heavy petrochemical industrialized Lanzhou valley, Northwest China. J. Clean. Prod. 291, 125989.
Wannaz, E.D., Abril, G.A., Rodriguez, J.H., Pignata, M.L., 2013. Assessment of polycyclic aromatic hydrocarbons in industrial and urban areas using passive air samplers and leaves of Tillandsia capillaris. J. Environ. Chem. Eng. 1, 1028–1035.
Weber, R.W., Pitt, D., 2000. Teaching techniques for mycology: 11. Riddell’s slide cultures. Mycologist 14 (3), 118–120.
World Health Organization, 2016. Exposure to ambient air pollution, Chapter 2. In: Ambient Air Pollution: a Global Assessment of Exposure and Burden of Disease. World Health Organization. Inis Communication, Geneva, Switzerland, pp. 23–28.
Zafra, C., Temprano, J., Tejero, I.A., 2016. The physical factors affecting heavy metals accumulated in the sediment deposited on road surfaces in dry weather: a review. Urban Water J. 14, 639–649.
Zerboni, A., Villa, F., Wu, Y.L., Solomon, T., Trentini, A., Rizzi, A., Gallinaro, M., 2022. The sustainability of rock art: preservation and Research. Sustainability 14 (10), 6305.
Zhang, K., Batterman, S., 2013. Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 450, 307–316.
Zhang, K., Chai, F., Zheng, Z., Yang, Q., Zhong, X., Fomba, K.W., Zhou, G., 2018. Size distribution and source of heavy metals in particulate matter on the lead and zinc smelting affected area. J. Environ. Sci. 71, 188–196.
Zhou, S., Cong, L., Liu, J., Zhang, Z., 2022. Consistency between deposition of particulate matter and its removal by rainfall from leaf surfaces in plant canopies. Ecotoxicol. Environ. Saf. 240, 113679.
dc.relation.citationendpage.spa.fl_str_mv 14
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 309
dc.rights.eng.fl_str_mv © 2022 The Authors. Published by Elsevier Ltd.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 The Authors. Published by Elsevier Ltd.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Ltd.
dc.publisher.place.spa.fl_str_mv United Kingdom
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0045653522032362
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/6851c544-9974-45d8-8c26-25bdadf84af5/download
https://repositorio.cuc.edu.co/bitstreams/8a46cad2-062e-40c5-bc3c-cf7be37f80f5/download
https://repositorio.cuc.edu.co/bitstreams/bfe57402-d81c-43e3-b8bc-06fe4a70d5c4/download
https://repositorio.cuc.edu.co/bitstreams/1ed09b86-79ba-4243-96f5-f7e4f08c5375/download
bitstream.checksum.fl_str_mv fc9f6b51e19782b141ccde46b3afc783
2f9959eaf5b71fae44bbf9ec84150c7a
0f98b3e16775b4df9cef024fe6c16d94
ff7a97cd5b90c79ee14f193e4f0308ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166890038493184
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 The Authors. Published by Elsevier Ltd.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfGallego Cartagena, EulerMorillas, HéctorMORGADO GAMERO, WENDY BEATRIZFuentes Gandara, Fabio ArmandoVacca Jimeno, VictorSalcedo, IsabelMadariaga, Juan ManuelMaguregui, Maite2024-03-07T14:26:11Z2024-122024-03-07T14:26:11Z2022-12Euler Gallego-Cartagena, Héctor Morillas, Wendy Morgado-Gamero, Fabio Fuentes-Gandara, Víctor Vacca-Jimeno, Isabel Salcedo, Juan Manuel Madariaga, Maite Maguregui, Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution, Chemosphere, Volume 309, Part 2, 2022, 136743, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2022.1367430045-6535https://hdl.handle.net/11323/1082510.1016/j.chemosphere.2022.136743Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/Over the last decades, the concern about air pollution has increased significantly, especially in urban areas. Active sampling of air pollutants requires specific instrumentation not always available in all the laboratories. Passive sampling has a lower cost than active alternatives but still requires efforts to cover extensive areas. The use of biological systems as passive samplers might be a solution that provides information about air pollution to assist decision-makers in environmental health and urban planning. This study aims to employ subaerial biofilms (SABs) growing naturally on façades of historical and recent constructions as natural passive biomonitors of atmospheric heavy metals pollution. Concretely, SABs spontaneously growing on constructions located in a tropical climate, like the one of the city of Barranquilla (Colombia), have been used to develop the methodological approach here presented as an alternative to SABS grown under laboratory conditions. After a proper identification of the biocolonizers in the SAB through taxonomic and morphological observations, the study of the particulate matter accumulated on the SABs of five constructions was conducted under a multi-analytical approach based mainly on elemental imaging studies by micro Energy Dispersive X-ray fluorescence spectrometry (μ-EDXRF) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectrometry (SEM-EDS) techniques, trying to reduce the time needed and associated costs. This methodology allowed to discriminate metals that are part of the original structure of the SABs, from those coming from the anthropogenic emissions. The whole methodology applied assisted the identification of the main metallic particles that could be associated with nearby anthropogenic sources of emission such as Zn, Fe, Mn, Ni and Ti by SEM-EDS and by μ-EDXRF Ba, Sb, Sn, Cl and Br apart others; revealing that it could be used as a good alternative for a rapid screening of the atmospheric heavy metals pollution.14 páginasapplication/pdfengElsevier Ltd.United Kingdomhttps://www.sciencedirect.com/science/article/pii/S0045653522032362Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollutionArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85ChemosphereAgudelo-Castaneda, ˜ D., De Paoli, F., Morgado-Gamero, W., Mendoza, M., Parody, A., Maturana, A., Teixeira, E., 2020. Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city. Sci. Total Environ. 720, 137675.Anagnostidis, K., 1986. Modern approach to the classification system of cyanophytes. 2. Chroococcales. Algological Studies/Archiv für Hydrobiologie, Supplement 73, 157–226.Anagnostidis, K., Komarek, ´ J.A., 1988. A modern approach to the classification systems of cyanophytes 3—Oscillatorales. Arch. Hydrobiol. Suppl. 80, 327–472.Andrade-Guel, M., Cabello-Alvarado, C., Avila-Orta, C.A., P´erez-Alvarez, M., CadenasPliego, G., Reyes-Rodríguez, P.Y., Ríos-Gonzalez, ´ L., 2022. Green flame-retardant composites based on PP/TiO2/lignin obtained by melt-mixing extrusion. Polymers 14 (7), 1300.Bartnicki-Garcia, S., 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22 (1), 87–108.Bloise, A., Fornero, E., Belluso, E., Barrese, E., Rinaudo, C., 2008. Synthesis and characterization of tremolite asbestos fibres. Eur. J. Mineral 20 (20), 1027–1033.Boquete, M.T., Ares, A., Fernandez, J.A., Aboal, J.R., 2020. Matching times: trying to improve the correlation between heavy metal levels in mosses and bulk deposition. Sci. Total Environ. 715, 136955.Botle, A., Singhal, R.K., Basu, H., Manisha, V., Masih, J., 2020. Health risk assessment of heavy metals associated with Coarse and Quasi-accumulative airborne particulate matter in Mumbai City situated on the Western Coast of India. Environ. Technol. Innovat. 19, 100857.Carrero, J.A., Arrizabalaga, I., Bustamante, J., Goienaga, N., Arana, G., Madariaga, J.M., 2013. Diagnosing the traffic impact on roadside soils through a multianalytical data analysis of the concentration profiles of traffic-related elements. Sci. Total Environ. 458, 427–434.Carrero, J.A., Arana, G., Madariaga, J.M., 2014. Use of Raman spectroscopy and scanning electron microscopy for the detection and analysis of road transport pollution. Spectrosc. Prop. Inorg. Organomet. C 45, 178–210.Castaneda-Miranda, A.G., Chaparro, M.A.E., Pacheco-Castro, A., Chaparro, M.A.E., Bohnel, H.N., 2020. Magnetic biomonitoring of atmospheric dust using tree leaves of Ficus benjamina in Queretaro (Mexico). Environ. Monit. Assess. 192 (6), 382.Chakrabortty, S., Paratkar, G.T., 2006. Biomonitoring of trace element air pollution using mosses. Aerosol Air Qual. Res. 6, 247–258.Chang, M.B., Huang, C.K., Wu, H.T., Lin, J.J., Chang, S.H., 2000. Characteristics of heavy metals on particles with different sizes from municipal solid waste incineration. J. Hazard Mater. 79 (3), 229–239.Chatterjee, A., Sarkar, C., Adak, A., Mukherjee, U., Ghosh, S.K., Raha, S., 2013. Ambient air quality during Diwali Festival over Kolkata-a mega-city in India. Aerosol Air Qual. Res. 13 (3), 1133–1144.Cheng, X., Xu, W., Wang, N., Mu, Y., Zhu, J., Luo, J., 2018. Adsorption of Cu2+ and mechanism by natural biofilm. Water Sci. Technol. 78 (4), 721–731.Chiaia-Hern´ andez, A.C., Scheringer, M., Muller, A., Stieger, G., Wachter, D., Keller, A., Pintado-Herrera, M.G., Lara-Martin, P.A., Bucheli, T.D., Hollender, J., 2020. Target and suspect screening analysis reveals persistent emerging organic contaminants in soils and sediments. Sci. Total Environ. 740, 140181.Combes, A., Franchineau, G., 2019. Fine particle environmental pollution and cardiovascular diseases. Metabolism 100, 153944.Contardo, T., Vannini, A., Sharma, K., Giordani, P., Loppi, S., 2020. Disentangling sources of trace element air pollution in complex urban areas by lichen biomonitoring. A case study in Milan (Italy). Chemosphere 256, 127155.Crispim, C.A., Gaylarde, C.C., 2005. Cyanobacteria and biodeterioration of cultural heritage: a review. Microb. Ecol. 49 (1), 1–9.Crispim, C.A., Gaylarde, P.M., Gaylarde, C.C., 2003. Algal and cyanobacterial biofilms on calcareous historic buildings. Curr. Microbiol. 46 (2), 79–82.Cutler, N., Viles, H., 2010. Eukaryotic microorganisms and stone biodeterioration. Geomicrobiol. J. 27, 630–646.Di Turo, F., Proietti, C., Screpanti, A., Fornasier, M.F., Cionni, I., Favero, G., De Marco, A., 2016. Impacts of air pollution on cultural heritage corrosion at European level: what has been achieved and what are the future scenarios. Environ. Pollut. 218, 586–594.Gallego-Cartagena, E., Morillas, H., Maguregui, M., Patino-Camelo, ˜ K., Marcaida, I., Morgado-Gamero, W., Silva, L.F.O., Madariaga, J.M., 2020. A comprehensive study of biofilms growing on the built heritage of a Caribbean industrial city in correlation with construction materials. Int. Biodeterior. Biodegrad. 147, 104874.Gallego-Cartagena, E., Morillas, H., Carrero, J.A., Madariaga, J.M., Maguregui, M., 2021. Naturally growing grimmiaceae family mosses as passive biomonitors of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan area. Chemosphere 263, 128190.García-Florentino, C., Maguregui, M., Morillas, H., Marcaida, I., Salcedo, I., Madariaga, J.M., 2018a. Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution. Sci. Total Environ. 626, 441–450.García-Florentino, C., Maguregui, M., Marguí, E., Torrent, L., Queralt, I., Madariaga, J. M., 2018b. Development of Total Reflection X-ray fluorescence spectrometry quantitative methodologies for elemental characterization of building materials and their degradation products. Spectrochim. Acta, Part B 143, 18–25.García-Florentino, C., Maguregui, M., Ciantelli, C., Sardella, A., Bonazza, A., Queralt, I., Carrero, J.A., Natalí, C., Morillas, H., Madariaga, J.M., Arana, G., 2020. Deciphering past and present atmospheric metal pollution of urban environments: the role of black crusts formed on historical constructions. J. Clean. Prod. 243, 118594.Gasik, M.I., 2004. Hadfield steel. State-of-the-art of technology and materials science of railway switch frogs. Adv. Electrometall. 1, 27–37.Gaylarde, C., 2020. Influence of environment on microbial colonization of historic stone buildings with emphasis on cyanobacteria. Heritage 3 (4), 1469–1482.Gaylarde, C.C., Gaylarde, P.M., 2002. Biodeterioration of historic buildings in Latin America. In: Burn, S. (Ed.), Proceedings of the 9th International Conference on Durability of Materials and Components. Brisbane, Australia.Glencross, D.A., Ho, T.-R., Camina, ˜ N., Hawrylowicz, C.M., Pfeffer, P.E., 2020. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 151, 56–68.Grossi, C.M., Brimblecombe, P., 2002. The effect of atmospheric pollution on building materials. J. Phys IV France. 12, 197–210.Gulotta, D., Villa, F., Cappitelli, F., Toniolo, L., 2018. Biofilm colonization of metamorphic lithotypes of a renaissance cathedral exposed to urban atmosphere. Sci. Total Environ. 639, 1480–1490.Haikerwal, A., Reisen, F., Sim, M.R., Abramson, M.J., Meyer, C.P., Johnston, F.H., Dennekamp, M., 2015. Impact of smoke from prescribed burning: is it a public health concern? J. Air Waste Manag. 6 (5), 592–598.H¨ aubner, N., Schumann, R., Karsten, U., 2006. Aeroterrestrial microalgae growing in biofilms on facades—response to temperature and water stress. Microb. Ecol. 51 (3), 285–293.Hoyos, C.D., Herrera-Mejía, L., Rold´ an-Henao, N., Isaza, A., 2020. Effects of fireworks on particulate matter concentration in a narrow valley: the case of the Medellín metropolitan area. Environ. Monit. Assess. 192 (1), 1–31.IDEAM, 2017. «Atlas climatologico ´ de Colombia» 1997. Geografía Física de Barranquilla. Blanco, Jos´e A. En: historia General de Barranquilla. In: Mejoras, Primera Edicion. ´ Barranquilla, Colombia, ISBN 958-96185-0-2, pp. 13–22.Islam, N., Saikia, B.K., 2020. Atmospheric particulate matter and potentially hazardous compounds around residential/road side soil in an urban area. Chemosphere 259, 127453.Karri, V., Schuhmacher, M., Kumar, V., 2016. Heavy metals (Pb, Cd, as and MeHg) as risk factors for cognitive dysfunction: a general review of metal mixture mechanism in brain. Environ. Toxicol. Pharmacol. 48, 203–213.Kidd, S., Halliday, C., Alexiou, H., Ellis, D., 2016. Descriptions of Medical Fungi, 3a edition. Adelaide, Australia.Kurniawan, A., Fukuda, Y., 2022. Analysis of the electric charge properties of biofilm for the development of biofilm matrices as biosorbents for water pollutant. Energ. Ecol. Environ. 1–7.Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371.Lembre, P., Lorentz, C., Di Martino, P., 2012. Exopolysaccharides of the biofilm matrix: a complex biophysical world. In: Karunaratne, D.N. (Ed.), The Complex World of Polysaccharides. InTech Prepress. Rijeka, Croatia, pp. 371–392 (Chapter 13).Lin, V.S., 2015. Research highlights: natural passive samplers–plants as biomonitors. Environ. Sci.: Process. Impacts 17 (6), 1137–1140.Liu, E., Yan, T., Birch, G., Zhu, Y., 2014. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci. Total Environ. 476, 522–531.Liu, F., Zhang, G., Lian, X., Fu, Y., Lin, Q., Yang, Y., Sheng, G., 2022. Influence of meteorological parameters and oxidizing capacity on characteristics of airborne particulate amines in an urban area of the Pearl River Delta, China. Environ. Res. 212, 113212.Lopez-Bautista, ´ J.M., Rindi, F., Casamatta, D., 2007. The systematics of subaerial algae. In: Seckbach, J. (Ed.), Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol. 11. Springer, Dordrecht, pp. 601–617.Machado, A., García, N., García, C., Acosta, L., Cordova, ´ A., Linares, M., Vel´ asquez, H., 2008. Contaminacion ´ por metales (Pb, Zn, Ni y Cr) en aire, sedimentos viales y suelo en una zona de alto tr´ afico vehicular. Rev. Int. Contam. Ambient. 24 (4), 171–182.Mariani, R.L., de Mello, W.Z., 2007. PM2.5–10, PM2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro. Atmos. Environ. 41 (13), 2887–2892.Martínez-Arkarazo, I., Angulo, M., Bartolom´e, L., Etxebarria, N., Olazabal, M.A., Madariaga, J.M., 2007. An integrated analytical approach to diagnose the conservation state of building materials of a palace house in the metropolitan Bilbao (Basque Country, North of Spain). Anal. Chim. Acta 584 (2), 350–359.Mitsos, D., Kantarelou, V., Palamara, E., Karydas, A.G., Zacharias, N., Gerasopoulos, E., 2022. Characterization of black crust on archaeological marble from the Library of Hadrian in Athens and inferences about contributing pollution sources. J. Cult. Herit. 53, 236–243.Moreno, T., Querol, X., Alastuey, A., Minguillon, ´ M.C., Pey, J., Rodriguez, S., Gibbons, W., 2007. Recreational atmospheric pollution episodes: inhalable metalliferous particles from firework displays. Atmos. Environ. 41 (5), 913–922.Morillas, H., Maguregui, M., García-Florentino, C., Carrero, J.A., Salcedo, I., Madariaga, J.M., 2016. The cauliflower-like black crusts on sandstones: a natural passive sampler to evaluate the surrounding environmental pollution. Environ. Res. 147, 218–232.Nolte, C., 2016. Identifying challenges to enforcement in protected areas: empirical insights from 15 Colombian parks. Oryx 50 (2), 317–322.Ogunkunle, C.O., Ziyath, A.M., Rufai, S.S., Fatoba, P.O., 2016. Surrogate approach to determine heavy metal loads in a moss species -Barbula lambaranensis-. J. King Saud Univ. Sci. 28, 193–197.Osorio-Martinez, J., Silva, L.F., Flores, E.M., Nascimento, M.S., Picoloto, R.S., OliveroVerbel, J., 2021. Environmental and human health risks associated with exposure to hazardous elements present in urban dust from Barranquilla, Colombian Caribbean. J. Environ. Qual. 50 (2), 350–363.Paglietti, F., Malinconico, S., Conestabile della Staffa, B., Bellagamba, S., De Simone, P., 2016. Classification and management of asbestos-containing waste: European legislation and the Italian experience. Waste Manag. 50, 130–115.Pant, P., Harrison, R.M., 2013. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos. Environ. 77, 78–97.Paull, N.J., Krix, D., Irga, P.J., Torpy, F.R., 2020. Airborne particulate matter accumulation on common green wall plants. Int. J. Phytoremediation 22 (6), 594–606.Pinto, A.C., Palomar, T., Alves, L.C., da Silva, S.H.M., Monteiro, R.C., Macedo, M.F., Vilarigues, M.G., 2019. Fungal biodeterioration of stained-glass windows in monuments from Bel´em do Par´ a (Brazil). Int. Biodeterior. Biodegrad. 138, 106–113.Pirker, L., Velkavrh, Z., ˇ Os¯ıte, A., Drinovec, L., Moˇcnik, G., Remˇskar, M., 2021. Fireworks—a source of nanoparticles, PM2.5, PM10, and carbonaceous aerosols. Air. Qual. Atmos. Health 1275–1286.Poulakis, E., Theodosi, C., Bressi, M., Sciare, J., Ghersi, V., Mihalopoulos, N., 2015. Airborne mineral components and trace metals in Paris region: spatial and temporal variability. Environ. Sci. Pollut. Res. 22 (19), 14663–14672.Prescott, G.W., 1964. How to know the freshwater algae?. In: How to Know the Freshwater Algae. Michigan State Univ., East Lansing. Wm C. . Brown Company Publishers, Dubuque, Iowa, p. 272.Prieto-Taboada, N., Ibarrondo, I., Gomez-Laserna, ´ O., Martinez-Arkarazo, I., Olazabal, M. A., Madariaga, J.M., 2013. Buildings as repositories of hazardous pollutants of anthropogenic origin. J. Hazard Mater. 248, 451–460.Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Salvador, P., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 41, 7219–7231.Radi´c, M., Brkovi´c Dodig, M., Auer, T., 2019. Green facades and living walls —a review establishing the classification of construction types and mapping the benefits. Sustainability 11 (17), 4579.Ramírez, M., Hern´ andez-Marine, M., Novelo, E., Roldan, ´ M., 2010. Cyanobacteriacontaining biofilms from a mayan monument in palenque, Mexico. Biofouling 26 (4), 399–409.Ramírez-Cerpa, E., Acosta-Coll, M., V´elez-Zapata, J., 2017. Analisis ´ de condiciones climatologicas ´ de precipitaciones de corto plazo en zonas urbanas: caso de estudio Barranquilla, Colombia. IDESIA 35 (2), 87–94.Rossi, F., De Philippis, R., 2015. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5 (2), 1218–1238.Roy, A., Bhattacharya, T., Kumari, M., 2020. Air pollution tolerance, metal accumulation and dust capturing capacity of common tropical trees in commercial and industrial sites. Sci. Total Environ. 722, 137622.Rubio, M.A., Lissi, E., Riveros, V., P´ aez, M.A., 2001. Remocion ´ de contaminantes por lluvias y rocíos en la region ´ metropolitana. Bol Soc Chilena Quím. 46 (3), 353–361.Ruffolo, S.A., Comite, V., La Russa, M.F., Belfiore, C.M., Barca, D., Bonazza, A., Sabbioni, C., 2015. An analysis of the black crusts from the Seville Cathedral: a challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources. Sci. Total Environ. 502, 157–166.Saiz-Jimenez, C., 1993. Deposition of airborne organic pollutants on historic buildings. Atmos. Environ. B, Urban Atmos. 27 (1), 77–85.Salo, H., Bu´cko, M.S., Vaahtovuo, E., Limo, J., M¨ akinen, J., Pesonen, L.J., 2012. Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J. Geochem. Explor. 115, 69–81.Scheerer, S., Ortega-Morales, O., Gaylarde, C., 2009. Microbial deterioration of stone monuments-an updated overview. Adv. Appl. Microbiol. 66, 97–139.Schleicher, N., Norra, S., Chen, Y., Chai, F., Wang, S., 2012. Efficiency of mitigation measures to reduce particulate air pollution—a case study during the Olympic Summer Games 2008 in Beijing, China. Sci. Total Environ. 427, 146–158.Schraufnagel, D.E., Balmes, J.R., Cowl, C.T., De Matteis, S., Jung, S.H., Mortimer, K., Perez-Padilla, R., Rice, M.B., Riojas-Rodriguez, H., Sood, A., Thurston, G.D., To, T., Vanker, A., Wuebbles, D.J., 2019. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, Part 1: the damaging effects of air pollution. Chest 155 (2), 409–416.Sesana, E., Gagnon, A.S., Bertolin, C., Hughes, J., 2018. Adapting cultural heritage to climate change risks: perspectives of cultural heritage experts in Europe. Geosciences 8 (8), 305.Srbinovska, M., Andova, V., Mateska, A.K., Krstevska, M.C., 2021. The effect of small green walls on reduction of particulate matter concentration in open areas. J. Clean. Prod. 279, 123306.Sun, F., Yun, D.A.I., Yu, X., 2017. Air pollution, food production and food security: a review from the perspective of food system. J. Integr. Agric. 16 (12), 2945–2962.Sun, Y., Lu, Y., Saredy, J., Wang, X., Drummer IV, C., Shao, Y., Saaoud, F., Xu, K., Liu, M., Yang, W.Y., Jiang, X., Wang, H., Yang, X., 2020. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 37, 101696.Szynkowska, M.I., Pawlaczyk, A., Mackiewicz, E., 2018. Bioaccumulation and biomagnification of trace elements in the environment. In: Chojnacka, K., Saeid, A. (Eds.), Recent Advances in Trace Elements. Wroclaw, Poland, pp. 249–251 (Chapter 13).Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metal toxicity and the environment. In: Luch, A. (Ed.), Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol. 101. Springer, Basel.Vianna, N.A., Gonçalves, D., Brandao, ˜ F., de Barros, R.P., Meire, R.O., Torres, J.P.M., Andrade, L.R., 2011. Assessment of heavy metals in the particulate matter of two Brazilian metropolitan areas by using Tillandsia usneoides as atmospheric biomonitor. Environ. Sci. Pollut. Res. 18 (3), 416–427.Villa, F., Cappitelli, F., 2019. The ecology of subaerial biofilms in dry and inhospitable terrestrial environments. Microorganisms 7 (10), 380.Villa, F., Pitts, B., Lauchnor, E., Cappitelli, F., Stewart, P.S., 2015. Development of a laboratory model of a phototroph-heterotroph mixed-species biofilm at the stone/air interface. Front. Microbiol. 6, 1251.Villa, F., Stewart, P.S., Klapper, I., Jacob, J.M., Cappitelli, F., 2016. Subaerial biofilms on outdoor stone monuments: changing the perspective toward an ecological framework. Bioscience 66 (4), 285–294.Vojtkov´ a, H., 2017. Algae and their biodegradation effects on building materials in the Ostrava industrial agglomeration. In: Proceedings of the 1st International Conference on Advances in Environmental Engineering (AEE), vol. 92. Czech Republic, Ostrava, pp. 28–30.Wang, Z., Li, J., Mu, X., Zhao, L., Gu, C., Gao, H., Huang, T., 2021. A WRF-CMAQ modeling of atmospheric PAH cycling and health risks in the heavy petrochemical industrialized Lanzhou valley, Northwest China. J. Clean. Prod. 291, 125989.Wannaz, E.D., Abril, G.A., Rodriguez, J.H., Pignata, M.L., 2013. Assessment of polycyclic aromatic hydrocarbons in industrial and urban areas using passive air samplers and leaves of Tillandsia capillaris. J. Environ. Chem. Eng. 1, 1028–1035.Weber, R.W., Pitt, D., 2000. Teaching techniques for mycology: 11. Riddell’s slide cultures. Mycologist 14 (3), 118–120.World Health Organization, 2016. Exposure to ambient air pollution, Chapter 2. In: Ambient Air Pollution: a Global Assessment of Exposure and Burden of Disease. World Health Organization. Inis Communication, Geneva, Switzerland, pp. 23–28.Zafra, C., Temprano, J., Tejero, I.A., 2016. The physical factors affecting heavy metals accumulated in the sediment deposited on road surfaces in dry weather: a review. Urban Water J. 14, 639–649.Zerboni, A., Villa, F., Wu, Y.L., Solomon, T., Trentini, A., Rizzi, A., Gallinaro, M., 2022. The sustainability of rock art: preservation and Research. Sustainability 14 (10), 6305.Zhang, K., Batterman, S., 2013. Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 450, 307–316.Zhang, K., Chai, F., Zheng, Z., Yang, Q., Zhong, X., Fomba, K.W., Zhou, G., 2018. Size distribution and source of heavy metals in particulate matter on the lead and zinc smelting affected area. J. Environ. Sci. 71, 188–196.Zhou, S., Cong, L., Liu, J., Zhang, Z., 2022. Consistency between deposition of particulate matter and its removal by rainfall from leaf surfaces in plant canopies. Ecotoxicol. Environ. Saf. 240, 113679.141309Subaerial biofilmsAtmospheric heavy metals pollutionX-ray fluorescence imagingConstruction materialsScanning Electron Microscopy coupled with Energy Dispersive X-ray spectrometryPublicationORIGINALElemental imaging approach to assess the ability of subaerial biofilms.pdfElemental imaging approach to assess the ability of subaerial biofilms.pdfArtículoapplication/pdf11817388https://repositorio.cuc.edu.co/bitstreams/6851c544-9974-45d8-8c26-25bdadf84af5/downloadfc9f6b51e19782b141ccde46b3afc783MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/8a46cad2-062e-40c5-bc3c-cf7be37f80f5/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTElemental imaging approach to assess the ability of subaerial biofilms.pdf.txtElemental imaging approach to assess the ability of subaerial biofilms.pdf.txtExtracted texttext/plain85188https://repositorio.cuc.edu.co/bitstreams/bfe57402-d81c-43e3-b8bc-06fe4a70d5c4/download0f98b3e16775b4df9cef024fe6c16d94MD53THUMBNAILElemental imaging approach to assess the ability of subaerial biofilms.pdf.jpgElemental imaging approach to assess the ability of subaerial biofilms.pdf.jpgGenerated Thumbnailimage/jpeg14176https://repositorio.cuc.edu.co/bitstreams/1ed09b86-79ba-4243-96f5-f7e4f08c5375/downloadff7a97cd5b90c79ee14f193e4f0308ceMD5411323/10825oai:repositorio.cuc.edu.co:11323/108252024-09-17 14:22:45.307https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 The Authors. Published by Elsevier Ltd.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=