Advances made in removing paraquat herbicide by adsorption technology: a review

The present review analyzed papers using adsorption that explore the removal of paraquat herbicide from aqueous effluents. Contamination and toxicology aspects of the paraquat are tackled as well. Analysis regarding the effects of process variables and textural proprieties on the paraquat adsorption...

Full description

Autores:
Silva Oliveira, Luis Felipe
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13358
Acceso en línea:
https://hdl.handle.net/11323/13358
Palabra clave:
Adsorption
Paraquat
Ecotoxicology
Contamination
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_725e909992001ae0577d59453801de97
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13358
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.none.fl_str_mv Advances made in removing paraquat herbicide by adsorption technology: a review
title Advances made in removing paraquat herbicide by adsorption technology: a review
spellingShingle Advances made in removing paraquat herbicide by adsorption technology: a review
Adsorption
Paraquat
Ecotoxicology
Contamination
title_short Advances made in removing paraquat herbicide by adsorption technology: a review
title_full Advances made in removing paraquat herbicide by adsorption technology: a review
title_fullStr Advances made in removing paraquat herbicide by adsorption technology: a review
title_full_unstemmed Advances made in removing paraquat herbicide by adsorption technology: a review
title_sort Advances made in removing paraquat herbicide by adsorption technology: a review
dc.creator.fl_str_mv Silva Oliveira, Luis Felipe
dc.contributor.author.none.fl_str_mv Silva Oliveira, Luis Felipe
dc.contributor.corporatename.none.fl_str_mv Franco, Dison S.P.
Georgin, Jordana
Lima, Eder C.
Silva Oliveira, Luis Felipe
dc.subject.proposal.none.fl_str_mv Adsorption
topic Adsorption
Paraquat
Ecotoxicology
Contamination
dc.subject.proposal.eng.fl_str_mv Paraquat
Ecotoxicology
Contamination
description The present review analyzed papers using adsorption that explore the removal of paraquat herbicide from aqueous effluents. Contamination and toxicology aspects of the paraquat are tackled as well. Analysis regarding the effects of process variables and textural proprieties on the paraquat adsorption is presented. The reported works found that the best adsorbent was those of silicate and carbon nature, which presented adsorption capacities above 400 mg g−1. Unfortunately, most works do not report the paraquat solution's pH or perform adsorption conditions optimization. Regarding the adsorption kinetics, it was found that the pseudo-second-order is the proper model to represent several paraquat systems; however, mass transfer investigations are not presented. Classical isotherm models are the most employed, such as Langmuir and Freundlich. In addition, the paraquat adsorption systems are of any thermic nature (endothermic/exothermic), with the paraquat molecules binding due to physisorption. Last, common mistakes in the reports, knowledge gaps, and future perspectives are discussed, focusing on improving the adsorption works.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10
dc.date.accessioned.none.fl_str_mv 2024-09-23T20:39:21Z
dc.date.available.none.fl_str_mv 2024-10
2024-09-23T20:39:21Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Dison S.P. Franco, Jordana Georgin, Eder C. Lima, Luis F.O. Silva, Advances made in removing paraquat herbicide by adsorption technology: A review, Journal of Water Process Engineering, Volume 49, 2022, 102988, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2022.102988.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13358
dc.identifier.eissn.none.fl_str_mv 2214-7144
dc.identifier.ark.none.fl_str_mv 10.1016/j.jwpe.2022.102988
identifier_str_mv Dison S.P. Franco, Jordana Georgin, Eder C. Lima, Luis F.O. Silva, Advances made in removing paraquat herbicide by adsorption technology: A review, Journal of Water Process Engineering, Volume 49, 2022, 102988, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2022.102988.
2214-7144
10.1016/j.jwpe.2022.102988
url https://hdl.handle.net/11323/13358
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Journal of Water Process Engineering
dc.relation.references.none.fl_str_mv [1] T. Tongur, E. Ayranci, Adsorption and electrosorption of paraquat, diquat, and difenzoquat from aqueous solutions onto activated carbon cloth as monitored by in-situ UV-visible spectroscopy, J. Environ. Chem. Eng. 9 (2021), 105566, https://doi.org/10.1016/j.jece.2021.105566.
[2] S. Mostafalou, M. Abdollahi, Pesticides, and human chronic diseases: evidences, mechanisms, and perspectives, Toxicol. Appl. Pharmacol. 268 (2013) 157–177, https://doi.org/10.1016/j.taap.2013.01.025
[3] M. Arias-Est´evez, E. Lopez-Periago, ´ E. Martínez-Carballo, J. Simal-G´ andara, J. C. Mejuto, L. García-Río, The mobility and degradation of pesticides in soils and the pollution of groundwater resources, Agric. Ecosyst. Environ. 123 (2008) 247–260, https://doi.org/10.1016/j.agee.2007.07.011.
[4] M.S.F. Santos, G. Schaule, A. Alves, L.M. Madeira, Adsorption of paraquat herbicide on deposits from drinking water networks, Chem. Eng. J. 229 (2013) 324–333, https://doi.org/10.1016/j.cej.2013.06.008
[5] O. Núnez, ˜ J.B. Kim, E. Moyano, M.T. Galceran, S. Terabe, Analysis of the herbicides paraquat, diquat, and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation-selective exhaustive injection, J. Chromatogr. A 961 (2002) 65–75, https://doi.org/10.1016/S0021- 9673(02)00031-6.
[6] H.J. Beckie, Herbicide-resistant weed management: focus on glyphosate, Pest Manag. Sci. 67 (2011) 1037–1048, https://doi.org/10.1002/ps.2195.
[7] R.H. Bromilow, Paraquat, and sustainable agriculture, Pest Manag. Sci. 60 (2004) 340–349, https://doi.org/10.1002/ps.823.
[8] A. Walsh, R. Kingwell, Economic implications of the loss of glyphosate and paraquat on australian mixed enterprise farms, Agric. Syst. 193 (2021), 103207, https://doi.org/10.1016/j.agsy.2021.103207.
[9] N. Chamkasem, T. Harmon, Direct determination of glyphosate, glufosinate, and AMPA in soybean and corn by liquid chromatography/tandem mass spectrometry, Anal. Bioanal. Chem. 408 (2016) 4995–5004, https://doi.org/ 10.1007/s00216-016-9597-6.
[10] M. Brigante, P.C. Schulz, Adsorption of paraquat on mesoporous silica modified with titania: effects of pH, ionic strength and temperature, J. Colloid Interface Sci. 363 (2011) 355–361, https://doi.org/10.1016/j.jcis.2011.07.061.
[11] T.R. Roberts, J.S. Dyson, M.C.G. Lane, Deactivation of the biological activity of paraquat in the soil environment: a review of long-term environmental fate, J. Agric. Food Chem. 50 (2002) 3623–3631, https://doi.org/10.1021/jf011323x.
[12] M. Fernandez, ´ M. Ib´ anez, ˜ Y. Pico, ´ J. Manes, ˜ Spatial and temporal trends of paraquat, diquat, and difenzoquat contamination in water from marsh areas of the valencian community (Spain), Arch. Environ. Contam. Toxicol. 35 (1998) 377–384, https://doi.org/10.1007/s002449900391.
[13] M.S.F. Santos, L.M. Madeira, A. Alves, Paraquat quantification in deposits from drinking water networks, Anal. Methods 6 (2014) 3791–3798, https://doi.org/ 10.1039/c4ay00121d.
[14] R. Grillo, A.E.S. Pereira, C.S. Nishisaka, R. De Lima, K. Oehlke, R. Greiner, L. F. Fraceto, Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control, J. Hazard. Mater. 278 (2014) 163–171, https://doi.org/10.1016/j.jhazmat.2014.05.079.
[15] M.P. Leite, L.G.T. dos Reis, N.F. Robaina, W.F. Pacheco, R.J. Cassella, Adsorption of paraquat from aqueous medium by amberlite XAD-2 and XAD-4 resins using dodecylsulfate as a counter ion, Chem. Eng. J. 215–216 (2013) 691–698, https:// doi.org/10.1016/j.cej.2012.10.087
[16] C.F. Huang, C.W. Tu, R.H. Lee, C.H. Yang, W.C. Hung, K.Y.Andrew Lin, Study of various diameter and functionality of TEMPO-oxidized cellulose nanofibers on paraquat adsorptions, Polym. Degrad. Stab. 161 (2019) 206–212, doi:10.1016/j. polymdegradstab. 2019.01.023.
[17] M.G.A. Vieira, A.F.A. Neto, M.L. Gimenes, M.G.C. da Silva, Sorption kinetics and equilibrium for the removal of nickel ions from the aqueous phase on calcined bofe bentonite clay, J. Hazard. Mater. 177 (2010) 362–371, https://doi.org/ 10.1016/j.jhazmat.2009.12.040.
[18] H.S. Lee, K.S. Lee, K. Yu, S.Y. Hong, Expression of genes related to Parkinson's disease after paraquat treatment in Drosophila melanogaster, Pestic. Biochem. Physiol. 92 (2008) 19–23, https://doi.org/10.1016/j.pestbp.2008.05.002.
[19] D. Melchiorri, R.J. Reiter, E. Sewerynek, M. Hara, L. Chen, G. Nistico, ` Paraquat toxicity, and oxidative damage: reduction by melatonin, Biochem. Pharmacol. 51 (1996) 1095–1099, https://doi.org/10.1016/0006-2952(96)00055-X.
[20] R. Brown, M. Clapp, J. Dyson, D. Scott, I. Wheals, M. Wilks, Paraquat in perspective, Outlooks Pest Manag. 15 (2004) 259–267, https://doi.org/10.1564/ 15dec09.
[21] C.M. Tanner, F. Kame, G.W. Ross, J.A. Hoppin, S.M. Goldman, M. Korell, C. Marras, G.S. Bhudhikanok, M. Kasten, A.R. Chade, K. Comyns, M.B. Richards, C. Meng, B. Priestley, H.H. Fernandez, F. Cambi, D.M. Umbach, A. Blair, D. P. Sandler, J.W. Langston, Rotenone, paraquat, and Parkinson's disease, Environ. Health Perspect. 119 (2011) 866–872, https://doi.org/10.1289/ehp.1002839.
[22] S. Costello, M. Cockburn, J. Bronstein, X. Zhang, B. Ritz, Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California, Am. J. Epidemiol. 169 (2009) 919–926, https://doi. org/10.1093/aje/kwp006.
[23] H.M. Cochem´e, M.P. Murphy, Complex I is the major site of mitochondrial superoxide production by paraquat, J. Biol. Chem. 283 (2008) 1786–1798, https://doi.org/10.1074/jbc.M708597200.
[24] P.R. Castello, D.A. Drechsel, M. Patel, Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain, J. Biol. Chem. 282 (2007) 14186–14193, https://doi.org/10.1074/jbc.M700827200.
[25] V. Tatjana, S. Domitille, S. Jean-Charles, Paraquat-induced cholesterol biosynthesis proteins dysregulation in human brain microvascular endothelial cells, Sci. Rep. 11 (2021) 1–10, https://doi.org/10.1038/s41598-021-97175-w.
[26] A.B. Manning-Bog, A.L. McCormack, J. Li, V.N. Uversky, A.L. Fink, D.A. Di Monte, The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein, J. Biol. Chem. 277 (2002) 1641–1644, https:// doi.org/10.1074/jbc.C100560200
[27] B. Dinham, Why paraquat should be banned, Outlooks Pest Manag. 15 (2004) 268–271, https://doi.org/10.1564/15dec10.
[28] C. Wesseling, B.V.W. De Joode, C. Ruepert, C. Leon, ´ P. Monge, H. Hermosillo, L. J. Partanen, Paraquat in developing countries, Int. J. Occup. Environ. Health 7 (2001) 275–286, https://doi.org/10.1179/107735201800339209.
[29] R.A. Mendes, R.G. de Freitas, A. Brown, G.L.C. de Souza, Exploring ground and low-lying excited states for diquat, paraquat, and dipyridyl isomers, J. Photochem. Photobiol. A Chem. 402 (2020), 112817, https://doi.org/10.1016/ j.jphotochem.2020.112817
[30] W.T. Tsai, C.W. Lai, K.J. Hsien, Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth, Chemosphere 55 (2004) 829–837, https://doi.org/10.1016/j.chemosphere.2003.11.043.
[31] T. Ahmad, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim, A. Ahmad, Removal of pesticides from water and wastewater by different adsorbents: a review, J. Environ. Sci. Health., Part C Environ. Carcinog. Ecotoxicol. Rev. 28 (2010) 231–271, https://doi.org/10.1080/10590501.2010.525782.
[32] W. Khongthon, G. Jovanovic, A. Yokochi, P. Sangvanich, V. Pavarajarn, Degradation of diuron via an electrochemical advanced oxidation process in a microscale-based reactor, Chem. Eng. J. 292 (2016) 298–307, https://doi.org/ 10.1016/j.cej.2016.02.042
[33] S. Meephon, T. Rungrotmongkol, S. Puttamat, S. Praserthdam, V. Pavarajarn, Heterogeneous photocatalytic degradation of diuron on zinc oxide: influence of surface-dependent adsorption on kinetics, degradation pathway, and toxicity of intermediates, J. Environ. Sci. (China) 84 (2019) 97–111, https://doi.org/ 10.1016/j.jes.2019.04.016
[34] P.A.C. Bonn´e, E.F. Beerendonk, J.P. Van Der Hoek, J.A.M.H. Hofman, Retention of herbicides and pesticides in relation to aging of RO membranes, Desalination 132 (2000) 189–193, https://doi.org/10.1016/S0011-9164(00)00148-X.
[35] R. Mehta, H. Brahmbhatt, N.K. Saha, A. Bhattacharya, Removal of substituted phenyl urea pesticides by reverse osmosis membranes: laboratory scale study for field water application, Desalination 358 (2015) 69–75, https://doi.org/ 10.1016/j.desal.2014.12.019
[36] P. Sharma, A. Chopra, S.S. Cameotra, C.R. Suri, Efficient biotransformation of herbicide diuron by bacterial strain micrococcus sp. PS-1, Biodegradation 21 (2010) 979–987, https://doi.org/10.1007/s10532-010-9357-9.
[37] B. Perissini-Lopes, T.C. Egea, D.A. Monteiro, A.C. Vici, D.G.H. Da Silva, D.C.D. O. Lisboa, E.A. De Almeida, J.R. Parsons, R. Da Silva, E. Gomes, Evaluation of diuron tolerance and biotransformation by fungi from a sugar cane plantation Sandy-loam soil, J. Agric. Food Chem. 64 (2016) 9268–9275, https://doi.org/ 10.1021/acs.jafc.6b03247
[38] J. Georgin, D.S.P. Franco, M. Schadeck Netto, D. Allasia, E.L. Foletto, L.F. S. Oliveira, G.L. Dotto, Transforming shrub waste into a high-efficiency adsorbent: application of physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide, J. Environ Chem. Eng. 9 (2021), 104574, https://doi.org/10.1016/j.jece.2020.104574.
[39] Y.L.D.O.de O. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E. L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ. Chem. Eng. 9 (2021), 104911, https://doi.org/10.1016/j.jece.2020.104911.
[40] J.O. Ighalo, O.J. Ajala, G. Umenweke, S. Ogunniyi, C.A. Adeyanju, C.A. Igwegbe, A.G. Adeniyi, Mitigation of clofibric acid pollution by adsorption: a review of recent developments, J. Environ. Chem. Eng. 8 (2020), 104264, https://doi.org/ 10.1016/j.jece.2020.104264.
[41] C. Keawkumay, W. Rongchapo, N. Sosa, S. Suthirakun, I.Z. Koleva, H. A. Aleksandrov, G.N. Vayssilov, J. Wittayakun, Paraquat adsorption on NaY zeolite at various Si/Al ratios: a combined experimental and computational study, Mater. Chem. Phys. 238 (2019), 121824, https://doi.org/10.1016/j. matchemphys.2019.121824
[42] H. Li, H. Qi, M. Yin, Y. Chen, Q. Deng, S. Wang, Carbon tubes from biomass with prominent adsorption performance for paraquat, Chemosphere 262 (2021), 127797, https://doi.org/10.1016/j.chemosphere.2020.127797.
[43] G.C. Schmitt, C. Paniz, D. Grotto, J. Valentini, K.L. Schott, V.J. Pomblum, S. C. Garcia, General aspects and clinical laboratorial diagnostic of poisoning by paraquat | aspectos gerais e diagnostico ´ clinicolaboratorial da intoxicaç˜ ao por paraquat, J. Bras. Patol. Med. Lab. 42 (2006) 235–243.
[44] R.J. Dinis-Oliveira, J.A. Duarte, A. S´ anchez-Navarro, F. Remiao, ˜ M.L. Bastos, F. Carvalho, Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment, Crit. Rev. Toxicol. 38 (2008) 13–71, https://doi.org/10.1080/ 10408440701669959
[45] M. Pateiro-Moure, C. P´erez-Novo, M. Arias-Est´evez, R. Rial-Otero, J. SimalG´ andara, Effect of organic matter and iron oxides on quaternary herbicide sorption-desorption in vineyard-devoted soils, J. Colloid Interface Sci. 333 (2009) 431–438, https://doi.org/10.1016/j.jcis.2009.02.019.
[46] W. Amondham, P. Parkpian, C. Polprasert, R. DeLaune, A. Jugsujinda, Paraquat adsorption, degradation, and remobilization in tropical soils of Thailand, J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 41 (2006) 485–507, https://doi.org/10.1080/03601230600701635.
[47] W.T. Tsai, C.W. Lai, Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth, J. Hazard. Mater. 134 (2006) 144–148, https://doi.org/10.1016/j.jhazmat.2005.10.045.
[48] G. Yuan, R. Li, Q. Zhao, X. Kong, Y. Wang, X. Wang, R. Guo, Simultaneous determination of paraquat and diquat in human plasma by HPLC-DAD: its application in acute poisoning patients induced by these two herbicides, J. Clin. Lab. Anal. 35 (2021) 1–8, https://doi.org/10.1002/jcla.23669.
[49] Pesticides Action Network Europe, Banned and hazardous pesticides in European. 2020. https://www.pan-europe.info/resources/reports/2020/09/banned-and -hazardous-pesticides-european-food, 2020.
[50] European Parliament, The Use of Pesticides in Developing Countries and Their Impact on Health and the Right to Food, 2021.
[51] Y.F. Zhang, Z.H. Wang, X.Q. Yao, Y.M. Zhang, T.B. Wei, H. Yao, Q. Lin, Novel tripodal-pillar[5]arene-based chemical sensor for efficient detection and removal paraquat by synergistic effect, Sensors Actuators B Chem. 327 (2021), 128885, https://doi.org/10.1016/j.snb.2020.128885.
[52] F. Laghrib, M. Bakasse, S. Lahrich, M.A. El Mhammedi, Electrochemical sensors for improved detection of paraquat in food samples: a review, Mater. Sci. Eng. C. 107 (2020), 110349, https://doi.org/10.1016/j.msec.2019.110349.
[53] R.F.T. Tagne, N.G. Ndifor-Angwagor, R.C.T. Temgoua, D.R.T. Tchuifon, T. Vintila, A.S. Ngueabouo, S.G. Anagho, Development of an electroanalytical method using activated rice husk-derived carbon for the detection of a paraquat herbicide, Carbon Trends 4 (2021), 100060, https://doi.org/10.1016/j. cartre.2021.100060.
[54] R. Botta, P. Eiamchai, M. Horprathum, S. Limwichean, C. Chananonnawathorn, V. Patthanasettakul, R. Maezono, A. Jomphoak, N. Nuntawong, 3D structured laser engraves decorated with gold nanoparticle SERS chips for paraquat herbicide detection in environments, Sensors Actuators B Chem. 304 (2020), 127327, https://doi.org/10.1016/j.snb.2019.127327.
[55] F. Du, L. Sun, Q. Zen, W. Tan, Z. Cheng, G. Ruan, J. Li, A highly sensitive and selective "on-off-on" fluorescent sensor based on nitrogen-doped graphene quantum dots for the detection of Hg2+ and paraquat, Sensors Actuators B Chem. 288 (2019) 96–103, https://doi.org/10.1016/j.snb.2019.02.109.
[56] H. Zhang, K.T. Huang, L. Ding, J. Yang, Y.W. Yang, F. Liang, Electrochemical determination of paraquat using a glassy carbon electrode decorated with pillararene-coated nitrogen-doped carbon dots, Chin. Chem. Lett. (2021), https:// doi.org/10.1016/j.cclet.2021.09.002.
[57] K. Charoenkitamorn, C. Chotsuwan, S. Chaiyo, W. Siangproh, O. Chailapakul, A new ready-to-use gel-based electrolyte for paraquat sensor, Sensors Actuators B Chem. 315 (2020), 128089, https://doi.org/10.1016/j.snb.2020.128089.
[58] P.A. Raymundo-Pereira, N.O. Gomes, F.M. Shimizu, S.A.S. Machado, O. N. Oliveira, Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors, Chem. Eng. J. 408 (2021), https://doi.org/10.1016/j.cej.2020.127279.
[59] M. Majdinasab, M. Daneshi, J. Louis Marty, Recent developments in nonenzymatic (bio)sensors for detection of pesticide residues: focusing on an antibody, aptamer and molecularly imprinted polymer, Talanta 232 (2021), 122397, https://doi.org/10.1016/j.talanta.2021.122397.
[60] E. Stavra, P.S. Petrou, G. Koukouvinos, C. Kiritsis, I. Pirmettis, M. Papadopoulos, D. Goustouridis, A. Economou, K. Misiakos, I. Raptis, S.E. Kakabakos, Simultaneous determination of paraquat and atrazine in water samples with a white light reflectance spectroscopy biosensor, J. Hazard. Mater. 359 (2018) 67–75, https://doi.org/10.1016/j.jhazmat.2018.07.029.
[61] H. Du, Y. Xie, J. Wang, Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications, TrAC - Trends Anal. Chem. 135 (2021), 116178, https://doi.org/10.1016/j.trac.2020.116178.
[62] R. Gao, N. Choi, S.I. Chang, S.H. Kang, J.M. Song, S.I. Cho, D.W. Lim, J. Choo, Highly sensitive trace analysis of paraquat using a surface-enhanced raman scattering microdroplet sensor, Anal. Chim. Acta 681 (2010) 87–91, https://doi. org/10.1016/j.aca.2010.09.036.
[63] D. Singh, A. Yadav, C. Singh, Autonomous regulation of inducible nitric oxide synthase and cytochrome P450 2E1-mediated oxidative stress in maneb- and paraquat-treated rat polymorphs, Pestic. Biochem. Physiol. 178 (2021), 104944, https://doi.org/10.1016/j.pestbp.2021.104944
[64] E.A. Awadalla, Efficacy of vitamin C against liver and kidney damage induced by paraquat toxicity, Exp. Toxicol. Pathol. 64 (2012) 431–434, https://doi.org/ 10.1016/j.etp.2010.10.009.
[65] L. Sun, P.B. Yan, Y. Zhang, L.Q. Wei, G.Q. Li, Effect of activated charcoal hemoperfusion on renal function in patients with paraquat poisoning, Exp. Ther. Med. 15 (2018) 2688–2692, https://doi.org/10.3892/etm.2018.5712.
[66] A. Das, N.S. Neera, F.U.H. Chowdhury, M.A. Kahhar, Acute lung fibrosis following paraquat poisoning, Bangladesh J. Med. 29 (2018) 41–44, https://doi.org/ 10.3329/bjmed.v29i1.35407.
[67] M. Thiruchelvam, A. McCormack, E.K. Richfield, R.B. Baggs, A.W. Tank, D.A. Di Monte, D.A. Cory-Slechta, Age-related irreversible, progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype, Eur. J. Neurosci. 18 (2003) 589–600, https://doi.org/ 10.1046/j.1460-9568.2003.02781.x.
[68] C. Berry, C. La Vecchia, P. Nicotera, Paraquat and Parkinson's disease, Cell Death Differ. 17 (2010) 1115–1125, https://doi.org/10.1038/cdd.2009.217.
[69] W. Yang, E. Tiffany-Castiglioni, The bipyridyl herbicide paraquat produces oxidative stress-mediated toxicity in human neuroblastoma SH-SY5Y cells: relevance to the dopaminergic pathogenesis, J. Toxic. Environ. Health A 68 (2005) 1939–1961, https://doi.org/10.1080/15287390500226987.
[70] M. Khwaja, A. McCormack, J.M. McIntosh, D.A. Di Monte, M. Quik, Nicotine partially protects against paraquat-induced nigrostriatal damage in mice; link to α6β2* nAChRs, J. Neurochem. 100 (2007) 180–190, https://doi.org/10.1111/ j.1471-4159.2006.04177.x.
[71] M.G. Purisai, A.L. McCormack, S. Cumine, J. Li, M.Z. Isla, D.A. Di Monte, Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration, Neurobiol. Dis. 25 (2007) 392–400, https://doi. org/10.1016/j.nbd.2006.10.008.
[72] L.K. Chao, T.C. Fang, Dialysis catheter-related pulmonary embolism in a patient with paraquat intoxication, Tzu Chi Med. J. 28 (2016) 166–169, https://doi.org/ 10.1016/j.tcmj.2015.05.005.
[73] M.J. Fallahi, B. Dalfardi, Early lung fibrosis after accidental ingestion of paraquat herbicide, Vis. J. Emerg. Med. 13 (2018) 66–67, https://doi.org/10.1016/j. visj.2018.09.008.
[74] D.A. Feinfeld, J.W. Rosenberg, J.F. Winchester, Three controversial issues in extracorporeal toxin removal, Semin. Dial. 19 (2006) 358–362, https://doi.org/ 10.1111/j.1525-139X.2006.00187_1.x.
[75] T.J. Meredith, J.A. Vale, Treatment of paraquat poisoning in man: methods to prevent absorption, Hum. Exp. Toxicol. 6 (1987) 49–55, https://doi.org/ 10.1177/096032718700600108.
[76] A. Figueiredo-Fernandes, A. Fontaínhas-Fernandes, E. Rocha, M.A. ReisHenriques, The effect of paraquat on hepatic EROD activity, liver, and gonadal histology in males and females of Nile tilapia, Oreochromis niloticus, exposed at different temperatures, Arch. Environ. Contam. Toxicol. 51 (2006) 626–632, https://doi.org/10.1007/s00244-005-0208-3.
[77] M. Saint-Pierre, M.E. Tremblay, A. Sik, R.E. Gross, F. Cicchetti, Temporal effects of paraquat/maneb on microglial activation and dopamine neuronal loss in older rats, J. Neurochem. 98 (2006) 760–772, https://doi.org/10.1111/j.1471- 4159.2006.03923.x.
[78] F. Zhao, H. Zhang, Salt, and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice, Plant Cell Tissue O
[79] D. Litteljohn, E. Nelson, C. Bethune, S. Hayley, The effects of paraquat on regional brain neurotransmitter activity, hippocampal BDNF and behavioural function in female mice, Neurosci. Lett. 502 (2011) 186–191, https://doi.org/10.1016/j. neulet.2011.07.041.
[80] Q. Li, H. Xiao, Y. Shao, X. Chang, Y. Zhang, Z. Zhou, Paraquat increases interleukin-1β in hippocampal dentate gyrus to impair hippocampal neurogenesis in adult mice, Ecotoxicol. Environ. Saf. 200 (2020), 110733, https://doi.org/ 10.1016/j.ecoenv.2020.110733.
[81] Z. Dwyer, C. Rudyk, K. Farmer, S. Beauchamp, P. Shail, A. Derksen, T. Fortin, K. Ventura, C. Torres, K. Ayoub, S. Hayley, Characterizing the protracted neurobiological and neuroanatomical effects of paraquat in a murine model of Parkinson's disease, Neurobiol. Aging 100 (2021) 11–21, https://doi.org/ 10.1016/j.neurobiolaging.2020.11.013
[82] N.F. Naspolini, C.E. Heinz Rieg, V.H. Cenci, D. Cattani, A. Zamoner, Paraquat induces redox imbalance and disrupts glutamate and energy metabolism in the hippocampus of prepubertal rats, Neurotoxicology 85 (2021) 121–132, https:// doi.org/10.1016/j.neuro.2021.05.010.
[83] F. Amin, A. Roohbakhsh, A. Memarzia, H.R. Kazerani, M.H. Boskabady, Immediate and late systemic and lung effects of inhaled paraquat in rats, J. Hazard. Mater. 415 (2021), 125633, https://doi.org/10.1016/j. jhazmat.2021.125633.
[84] Q. Hamdaoui, Y. Zekri, S. Richard, D. Aubert, R. Guyot, S. Markossian, K. Gauthier, F. Gaie-Levrel, A. Bencsik, F. Flamant, Prenatal exposure to paraquat and nanoscaled TiO2 aerosols alters the gene expression of the developing brain, Chemosphere 287 (2022), https://doi.org/10.1016/j.chemosphere.2021.132253.
[85] Y. Zhang, D. Yuan, Y. Li, F. Yang, L. Hou, Y. Yu, C. Sun, G. Duan, C. Meng, H. Yan, D. Li, Y. Gao, T. Sun, C. Zhu, Paraquat promotes acute lung injury in rats by regulating alveolar macrophage polarization through glycolysis, Ecotoxicol. Environ. Saf. 223 (2021), https://doi.org/10.1016/j.ecoenv.2021.112571.
[86] T.M. Wijerathna, F. Mohamed, I.B. Gawarammana, K. Wunnapuk, D. M. Dissanayake, F. Shihana, N.A. Buckley, Cellular injury leading to oxidative stress in acute poisoning with potassium permanganate/oxalic acid, paraquat, and glyphosate surfactant herbicide, Environ. Toxicol. Pharmacol. 80 (2020), 103510, https://doi.org/10.1016/j.etap.2020.103510.
[87] H. Li, Q. Zhu, S. Wang, T. Huang, X. Li, C. Ni, Y. Fang, L. Li, Q. Lian, R.S. Ge, Paraquat exposure delays stem/progenitor leydig cell regeneration in the adult rat testis, Chemosphere 231 (2019) 60–71, https://doi.org/10.1016/j. chemosphere.2019.05.104.
[88] M.H. Ahmad, M. Fatima, M. Ali, M.A. Rizvi, A.C. Mondal, Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson's disease, Neuropharmacology 201 (2021), 108831, https://doi.org/ 10.1016/j.neuropharm.2021.108831.
[89] H. Li, T. Hong, Q. Zhu, S. Wang, T. Huang, X. Li, Q. Lian, R.S. Ge, Paraquat exposure delays late-stage leydig cell differentiation in rats during puberty, Environ. Pollut. 255 (2019), 113316, https://doi.org/10.1016/j. envpol.2019.113316.
[90] Y. Gao, L. Hou, Y. Wang, S. Guo, D. Yuan, Y. Jiang, G. Duan, Y. Zhang, Z. Xu, L. Che, C. Sun, S. Li, S. Zhang, T. Sun, Y. Li, Octreotide alleviates pancreatic damage caused by paraquat in rats by reducing inflammatory responses and oxidative stress, Environ. Toxicol. Pharmacol. 80 (2020), https://doi.org/ 10.1016/j.etap.2020.103456.
[91] X. Hu, L. Chen, T. Li, M. Zhao, TLR3 is involved in a paraquat-induced acute renal injury, Life Sci. 223 (2019) 102–109, https://doi.org/10.1016/j.lfs.2019.03.029.
[92] J. Ma, Y. Li, W. Li, X. Li, Hepatotoxicity of paraquat on common carp (Cyprinus Carpio L.), Sci. Total Environ. 616–617 (2018) 889–898, https://doi.org/ 10.1016/j.scitotenv.2017.10.231.
[93] R. Soni, C. Haldar, C.M. Chaturvedi, Paraquat induced impaired reproductive function and modulation of retinal and extra-retinal photoreceptors in japanese quail (Coturnix coturnix japonica), Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 224 (2019), 108568, https://doi.org/10.1016/j.cbpc.2019.108568.
[94] A. Czerniczyniec, A.G. Karadayian, J. Bustamante, R.A. Cutrera, S. Lores-Arnaiz, Paraquat induces behavioral changes and cortical and striatal mitochondrial dysfunction, Free Radic. Biol. Med. 51 (2011) 1428–1436, https://doi.org/ 10.1016/j.freeradbiomed.2011.06.034.
[95] S. Bora, G.S.H. Vardhan, N. Deka, L. Khataniar, D. Gogoi, A. Baruah, Paraquat exposure over generation affects lifespan and reproduction through mitochondrial disruption in C. Elegans, Toxicology 447 (2021), 152632, https:// doi.org/10.1016/j.tox.2020.152632.
[96] X.H. Wang, C.L. Souders, Y.H. Zhao, C.J. Martyniuk, Paraquat Affects Mitochondrial Bioenergetics, Dopamine System expression, and Locomotor Activity in Zebrafish (Danio rerio), Elsevier Ltd, 2018, https://doi.org/10.1016/j. chemosphere.2017.10.032.
[97] J. Chen, Y. Su, F. Lin, M. Iqbal, K. Mehmood, H. Zhang, D. Shi, Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: a review of mechanisms and ecological implications, Ecotoxicol. Environ. Saf. 224 (2021), 112711, https://doi.org/10.1016/j.ecoenv.2021.112711
[98] Z. Dehgani, M. Sedghi Asl, M. Ghaedi, M.M. Sabzehmeidani, E. Adhami, Removal of paraquat from aqueous solutions by bentonite modified zero-valent iron adsorbent, New J. Chem. 44 (2020) 13368–13376, https://doi.org/10.1039/ d0nj02259d
[99] H. Li, Q. Miao, Y. Chen, M. Yin, H. Qi, M. Yang, Q. Deng, S. Wang, Modified carbon spheres as universal materials for adsorption of cationic harmful substances (paraquat and dyes) in water, Microporous Mesoporous Mater. 297 (2020), 110040, https://doi.org/10.1016/j.micromeso.2020.110040.
[100] A. Iglesias, R. Lopez, ´ D. Gondar, J. Antelo, S. Fiol, F. Arce, Adsorption of paraquat on goethite and humic acid-coated goethite, J. Hazard. Mater. 183 (2010) 664–668, https://doi.org/10.1016/j.jhazmat.2010.07.077.
[101] S.T. Hsu, L.C. Chen, C.C. Lee, T.C. Pan, B.X. You, Q.F. Yan, Preparation of methacrylic acid-modified rice husk improved by an experimental design and application for paraquat adsorption, J. Hazard. Mater. 171 (2009) 465–470, https://doi.org/10.1016/j.jhazmat.2009.06.144.
[102] S.T. Hsu, T.C. Pan, Adsorption of paraquat using methacrylic acid-modified rice husk, Bioresour. Technol. 98 (2007) 3617–3621, https://doi.org/10.1016/j. biortech.2006.11.060.
[103] N. Mueanpun, N. Srisuk, N. Chaiammart, G. Panomsuwan, Nanoporous activated carbons derived from water ferns as an adsorbent for removal of paraquat from contaminated water, Materialia 15 (2021), https://doi.org/10.1016/j. mtla.2020.100986.
[104] W.T. Tsai, K.J. Hsien, Y.M. Chang, C.C. Lo, Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth, Bioresour. Technol. 96 (2005) 657–663, https://doi.org/10.1016/j. biortech.2004.06.023.
[105] A. Rasaie, M.M. Sabzehmeidani, M. Ghaedi, M. Ghane-Jahromi, A. SedaratianJahromi, Removal of herbicide paraquat from aqueous solutions by bentonite modified with mesoporous silica, Mater. Chem. Phys. 262 (2021), 124296, https://doi.org/10.1016/j.matchemphys.2021.124296.
[106] N.K. Hamadi, S. Swaminathan, X.D. Chen, Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires, J. Hazard. Mater. 112 (2004) 133–141, https://doi.org/10.1016/j.jhazmat.2004.04.011.
[107] N. Osakoo, C. Pansakdanon, N. Sosa, K. Deekamwong, C. Keawkumay, W. Rongchapo, N. Chanlek, J. Jitcharoen, S. Prayoonpokarach, J. Wittayakun, Characterization and comprehension of zeolite NaY/mesoporous SBA-15 composite as adsorbent for paraquat, Mater. Chem. Phys. 193 (2017) 470–476, https://doi.org/10.1016/j.matchemphys.2017.03.002.
[108] W. Rongchapo, O. Sophiphun, K. Rintramee, S. Prayoonpokarach, J. Wittayakun, Paraquat adsorption on porous materials synthesized from rice husk silica, Water Sci. Technol. 68 (2013) 863–869, https://doi.org/10.2166/wst.2013.311.
[109] M.G. Kamble, S.K. Deokar, S.P. Tajane, S.A. Mandavgane, Groundnut plant ash: characterisation and adsorption efficacy study for removal of paraquat dichloride, Indian J. Chem. Technol. 27 (2020) 35–42.
[110] D.S. Cocenza, M.A. De Moraes, M.M. Beppu, L.F. Fraceto, Use of biopolymeric membranes for adsorption of paraquat herbicide from water, Water Air Soil Pollut. 223 (2012) 3093–3104, https://doi.org/10.1007/s11270-012-1092-x.
[111] D. Shetty, S. Boutros, T. Skorjanc, B. Garai, Z. Asfari, J. Raya, A. Trabolsi, Fast and efficient removal of paraquat in water by porous polycalix[: N] arenes (n = 4, 6, and 8), J. Mater. Chem. A 8 (2020) 13942–13945, https://doi.org/10.1039/ d0ta01907k.
[112] Y. Seki, K. Yurdakoç, Paraquat adsorption onto clays and organoclays from aqueous solution, J. Colloid Interface Sci. 287 (2005) 1–5, https://doi.org/ 10.1016/j.jcis.2004.10.072.
[113] S. Rodriguez-Cruz, M.S. Andrades, M. Sanchez-, M.J. Sanchez-martin, I. De Recursos, C. Apdo, Relationship between the adsorption capacity of pesticides pesticides, Environ. Sci. Technol. 41 (2007) 1–5.
[114] M. Zbair, Z. Anfar, H. Ait Ahsaine, H. Khallok, Kinetics, equilibrium, statistical surface modeling and cost analysis of paraquat removal from aqueous solution using carbonated jujube seed, RSC Adv. 9 (2019) 1084–1094, https://doi.org/ 10.1039/c8ra09337g.
[115] J. Junthip, W. Promma, S. Sonsupap, C. Boonyanusith, Adsorption of paraquat from water by insoluble cyclodextrin polymer crosslinked with 1,2,3,4-butane tetracarboxylic acid, Iran, Polym. J. (English Ed. 28 (2019) 213–223, https://doi. org/10.1007/s13726-019-00692-9.
[116] P. Kumari, Alka, S. Kumar, K. Nisa, D.Kumar Sharma, Efficient system for encapsulation and removal of paraquat and diquat from aqueous solution: 4- Sulfonatocalix[n]arenes and its magnetite modified nanomaterials, J. Environ. Chem. Eng. 7 (2019), https://doi.org/10.1016/j.jece.2019.103130.
[117] J. Junthip, Water-insoluble cyclodextrin polymer crosslinked with citric acid for paraquat removal from water, J. Macromol. Sci. Part A 56 (2019) 555–563, https://doi.org/10.1080/10601325.2019.1586444.
[118] J. Junthip, Coating of PET textiles with anionic cyclodextrin polymer for paraquat removal from aqueous solution, Fibers Polym. 19 (2018) 2335–2343, https://doi. org/10.1007/s12221-018-8557-5.
[119] A. Ebrahimi, M. Mansour Lakouraj, V. Hasantabar, Synthesis and characterization of amphiphilic star copolymer of polyaniline and polyacrylic acid-based on calix [4]resorcinarene as an efficient adsorbent for removal of paraquat herbicide from water, Mater. Today Commun. 25 (2020), 101523, https://doi.org/10.1016/j. mtcomm.2020.101523
[120] J. Junthip, N. Jumrernsuk, P. Klongklaw, W. Promma, S. Sonsupap, Removal of paraquat herbicide from water by textile coated with anionic cyclodextrin polymer, SN Appl. Sci. 1 (2019), https://doi.org/10.1007/s42452-018-0102-z.
[121] E. Martwong, S. Chuetor, J. Junthip, Adsorption of paraquat by Poly(Vinyl Alcohol)-cyclodextrin nanosponges, Polymers (Basel) 13 (2021) 4110, https:// doi.org/10.3390/polym13234110.
[122] E. Martwong, S. Chuetor, J. Junthip, Adsorption of cationic contaminants by cyclodextrin nanosponges cross-linked with 1,2,3,4-butanetetracarboxylic acid and Poly(vinyl alcohol), Polymers (Basel) 14 (2022) 342, https://doi.org/ 10.3390/polym14020342.
[123] E. Martwong, N. Sukhawipat, J. Junthip, Adsorption of cationic pollutants from water by cotton rope coated with cyclodextrin polymers, Polymers (Basel) 14 (2022) 2312, https://doi.org/10.3390/polym14122312.
[124] E. Martwong, N. Sukhawipat, J. Junthip, Cotton cord coated with cyclodextrin polymers for paraquat removal from water, Polymers (Basel) 14 (2022) 2199, https://doi.org/10.3390/polym14112199.
[125] S. Iftekhar, D.L. Ramasamy, V. Srivastava, M.B. Asif, M. Sillanpa¨a, ¨ Understanding the factors affecting the adsorption of lanthanum using different adsorbents: a critical review, Chemosphere 20
[126] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, F. Caroline, D. Patrícia, G. Dison, F. Guilherme, L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove gentian violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703, https://doi.org/10.2166/wst.2018.448.
[127] J. Georgin, D.S.P. Franco, P. Grassi, D. Tonato, D.G.A. Piccilli, L. Meili, G.L. Dotto, Potential of cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents, Environ. Sci. Pollut. Res. 26 (2019) 19207–19219, https://doi.org/10.1007/s11356-019-05321-9.
[128] C.M. Kerkhoff, K. da Boit Martinello, D.S.P.P. Franco, M.S. Netto, J. Georgin, E. L. Foletto, D.G.A.A. Piccilli, L.F.O.O. Silva, G.L. Dotto, K. da Boit Martinello, D.S. P.P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A.A. Piccilli, L.F.O.O. Silva, G.L. Dotto, Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp, J. Mol. Liq. 339 (2021), 117184, https://doi.org/10.1016/j.molliq.2021.117184.
[129] C.O. Aniagor, M.C. Menkiti, Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate, J. Environ. Chem. Eng. 6 (2018) 2105–2118, https://doi.org/10.1016/j. jece.2018.01.070
[130] N.T.H. Ha, N.C. Toan, P. Kajitvichyanukul, Enhanced paraquat removal from contaminated water using cell-immobilized biochar, Clean Techn. Environ. Policy (2021), https://doi.org/10.1007/s10098-020-01996-8.
[131] W.T. Tsai, H.R. Chen, Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar, Int. J. Environ. Sci. Technol. 10 (2013) 1349–1356, https://doi.org/10.1007/s13762- 012-0174-z.
[132] D.S.P. Franco, J.L.S. Fagundes, J. Georgin, N.P.G. Salau, G.L. Dotto, A mass transfer study considering intraparticle diffusion and axial dispersion for fixedbed adsorption of crystal violet on pecan pericarp (Carya illinoensis), Chem. Eng. J. 397 (2020), 125423, https://doi.org/10.1016/j.cej.2020.125423.
[133] M. Suzuki, Adsorption Engineering, 1st ed., Elsevier, 1990.
[134] M. Brigante, M. Avena, Synthesis, characterization, and application of hexagonal mesoporous silica for pesticide removal from aqueous solution, Microporous Mesoporous Mater. 191 (2014) 1–9, https://doi.org/10.1016/j. micromeso.2014.02.035.
[135] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Pirajan, ´ I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.
[136] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (2010) 2–10, https://doi.org/10.1016/j. cej.2009.09.013.
[137] A.M. Awad, S.M.R. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor, S. Adham, Adsorption of organic pollutants by natural and modified clays: a comprehensive review, Sep. Purif. Technol. 228 (2019), 115719, https://doi.org/ 10.1016/J.SEPPUR.2019.115719.
[138] J.P. Maity, C.M. Hsu, T.J. Lin, W.C. Lee, P. Bhattacharya, J. Bundschuh, C. Y. Chen, Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: adsorption isotherm, adsorption kinetic and adsorption thermodynamics, Environ. Nanotechnology, Monit. Manag. 9 (2018) 18–28, https://doi.org/10.1016/j. enmm.2017.11.001.
[139] S. Hong, C. Wen, J. He, F. Gan, Y.S. Ho, Adsorption thermodynamics of methylene blue onto bentonite, J. Hazard. Mater. 167 (2009) 630–633, https://doi.org/ 10.1016/J.JHAZMAT.2009.01.014.
[140] S.S. Lyubchik, A. Lyubchik, O. Lygina, S.S. Lyubchik, I. Fonsec, Comparison of the thermodynamic parameters estimation for the adsorption process of the metals from liquid phase on activated carbons, in: Thermodyn. - Interact. Stud. - Solids, Liq. Gases, InTech, 2011, p. 13, https://doi.org/10.5772/19514.
[141] O.S. Bello, K.A. Adegoke, O.O. Sarumi, O.S. Lameed, Functionalized locust bean pod (Parkia biglobosa) activated carbon for rhodamine B dye removal, Heliyon 5 (2019), e02323, https://doi.org/10.1016/j.heliyon.2019.e02323.
[142] Z. Dehghani, M. Sedghi-Asl, M. Ghaedi, M.M. Sabzehmeidani, E. Adhami, Ultrasound-assisted adsorption of paraquat herbicide from aqueous solution by graphene oxide/ mesoporous silica, J. Environ. Chem. Eng. 9 (2021), 105043, https://doi.org/10.1016/j.jece.2021.105043.
[143] E.C. ´ Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran, Adsorption: fundamental aspects and applications of adsorption for effluent treatment, in: M. Hadi Dehghani, R. Karri, E. Lima (Eds.), Green Technol. Defluoridation Water, Elsevier, 2021, pp. 41–88, https://doi.org/10.1016/b978- 0-323-85768-0.00004-x.
[144] C.O. Aniagor, C.A. Igwegbe, J.O. Ighalo, S.N. Oba, Adsorption of doxycycline from aqueous media: a review, J. Mol. Liq. 334 (2021), 116124, https://doi.org/ 10.1016/J.MOLLIQ.2021.116124.
[145] R. Leyva-Ramos, C.J. Geankoplis, Model simulation and analysis of surface diffusion of liquids in porous solids, Chem. Eng. Sci. 40 (1985) 799–807, https:// doi.org/10.1016/0009-2509(85)85032-6.
[146] D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G. L. Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (2021), 105927, https://doi.org/10.1016/j. jece.2021.105927.
[147] L. Hevira, Rahmayeni Zilfa, J.O. Ighalo, R. Zein, Biosorption of indigo carmine from aqueous solution by terminalia catappa shell, J. Environ Chem. Eng. 8 (2020), 104290, https://doi.org/10.1016/J.JECE.2020.104290.
[148] C. Alvarez-Esmorís, ´ M. Conde-Cid, D. Fernandez-Calvi ´ no, ˜ M.J. Fernandez- ´ Sanjurjo, A. Núnez-Delgado, ˜ E. Alvarez-Rodríguez, ´ M. Arias-Est´evez, Adsorptiondesorption of doxycycline in agricultural soils: batch and stirred-flow-chamber experiments, Environ. Res. 186 (2020), https://doi.org/10.1016/J. ENVRES.2020.109565.
[149] H.N. Tran, S.J. You, A. Hosseini-Bandegharaei, H.P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res. 120 (2017) 88–116, https://doi.org/10.1016/j. watres.2017.04.014.
[150] G. Cassol, R. Gallon, M. Schwaab, E. Barbosa-Coutinho, J. Júnior, J. Pinto, Statistical evaluation of nonlinear parameter estimation procedures for adsorption equilibrium models, Adsorpt. Sci. Technol. 32 (2014) 257–274, https://doi.org/10.1260/0263-6174.32.4.257.
[151] M. Jafari, M.R. Rahimi, A. Asfaram, M. Ghaedi, H. Javadian, Experimental design for the optimization of paraquat removal from aqueous media using a fixed-bed column packed with pinus eldarica stalks activated carbon, Chemosphere (2021), 132670, https://doi.org/10.1016/j.chemosphere.2021.132670.
[152] M.S.F. Santos, A. Alves, L.M. Madeira, Paraquat removal from water by oxidation with Fenton's reagent, Chem. Eng. J. 175 (2011) 279–290, https://doi.org/ 10.1016/j.cej.2011.09.106.
[153] N.M. Nghia, N. Negishi, N.T. Hue, Enhanced adsorption and photocatalytic activities of co-doped TiO2 immobilized on silica for paraquat, J. Electron. Mater. 47 (2018) 692–700, https://doi.org/10.1007/s11664-017-5838-5.
[154] S. Kruanetr, R. Wanchanthuek, Enhancing the photocatalytic degradation of fe-ti over SiO2 nanocomposite material for paraquat removal, Mater. Res. Express. 5 (2018), https://doi.org/10.1088/2053-1591/aabe69.
[155] S. Vigneshwaran, J. Preethi, S. Meenakshi, Interface engineering of ultrathin multi-functional 2D draped chitosan for efficient charge separation on the degradation of paraquat a' ˆ a mechanistic study, J. Environ. Chem. Eng. 8 (2020), 104446, https://doi.org/10.1016/j.jece.2020.104446.
[156] C. Oliveira, M.S.F. Santos, F.J. Maldonado-Hodar, ´ G. Schaule, A. Alves, L. M. Madeira, Use of pipe deposits from water networks as novel catalysts in paraquat peroxidation, Chem. Eng. J. 210 (2012) 339–349, https://doi.org/ 10.1016/j.cej.2012.09.001.
[157] E.M. Diaz Kirmser, D.O. M´ artire, M.C. Gonzalez, J.A. Rosso, Degradation of the herbicides clomazone, paraquat, and glyphosate by thermally activated peroxydisulfate, J. Agric. Food Chem. 58 (2010) 12858–12862, https://doi.org/ 10.1021/jf103054h.
[158] A. Dhaouadi, N. Adhoum, Degradation of paraquat herbicide by electrochemical advanced oxidation methods, J. Electroanal. Chem. 637 (2009) 33–42, https:// doi.org/10.1016/j.jelechem.2009.09.027.
[159] M.A.M. Cartaxo, C.M. Borges, M.I.S. Pereira, M.H. Mendonça, Electrochemical oxidation of paraquat in neutral medium, Electrochim. Acta 176 (2015) 1010–1018, https://doi.org/10.1016/j.electacta.2015.07.099.
[160] S. Vigneshwaran, J. Preethi, S. Meenakshi, Interface engineering of ultrathin multi-functional 2D draped chitosan for efficient charge separation on the degradation of paraquat – a mechanistic study, J. Environ. Chem. Eng. 8 (2020), 104446, https://doi.org/10.1016/j.jece.2020.104446.
[161] H. Zhang, S.K. Khanal, Y. Jia, S. Song, H. Lu, Fundamental insights into ciprofloxacin adsorption by sulfate-reducing bacteria sludge: mechanisms and thermodynamics, Chem. Eng. J. 378 (2019), 122103, https://doi.org/10.1016/j. cej.2019.122103.
dc.relation.citationendpage.none.fl_str_mv 14
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 49
dc.rights.none.fl_str_mv © 2022 Elsevier Ltd. All rights reserved.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 Elsevier Ltd. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.place.none.fl_str_mv United Kingdom
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2214714422004329?via%3Dihub
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e68417e2-58e2-497b-950e-3a1d173f9b5c/download
https://repositorio.cuc.edu.co/bitstreams/67cce31a-7ab1-4373-ab0e-e89c37df4ffd/download
https://repositorio.cuc.edu.co/bitstreams/912c2341-986a-48c8-b65c-919f30fdcf1c/download
https://repositorio.cuc.edu.co/bitstreams/dc703b9c-f63c-4cfd-b184-822eec5e1f36/download
bitstream.checksum.fl_str_mv cc1d07eccb91ccc2b2c82f5e3f1a1617
73a5432e0b76442b22b026844140d683
393d9e151cad2cf5453478ccd8704756
62b6eae97231cd133240fce226d9c87b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1836753347213787136
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Elsevier Ltd. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfSilva Oliveira, Luis Felipevirtual::1534-1Franco, Dison S.P.Georgin, JordanaLima, Eder C.Silva Oliveira, Luis Felipe2024-09-23T20:39:21Z2024-102024-09-23T20:39:21Z2022-10Dison S.P. Franco, Jordana Georgin, Eder C. Lima, Luis F.O. Silva, Advances made in removing paraquat herbicide by adsorption technology: A review, Journal of Water Process Engineering, Volume 49, 2022, 102988, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2022.102988.https://hdl.handle.net/11323/133582214-714410.1016/j.jwpe.2022.102988The present review analyzed papers using adsorption that explore the removal of paraquat herbicide from aqueous effluents. Contamination and toxicology aspects of the paraquat are tackled as well. Analysis regarding the effects of process variables and textural proprieties on the paraquat adsorption is presented. The reported works found that the best adsorbent was those of silicate and carbon nature, which presented adsorption capacities above 400 mg g−1. Unfortunately, most works do not report the paraquat solution's pH or perform adsorption conditions optimization. Regarding the adsorption kinetics, it was found that the pseudo-second-order is the proper model to represent several paraquat systems; however, mass transfer investigations are not presented. Classical isotherm models are the most employed, such as Langmuir and Freundlich. In addition, the paraquat adsorption systems are of any thermic nature (endothermic/exothermic), with the paraquat molecules binding due to physisorption. Last, common mistakes in the reports, knowledge gaps, and future perspectives are discussed, focusing on improving the adsorption works.14 páginasapplication/pdfengElsevier LtdUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S2214714422004329?via%3DihubAdvances made in removing paraquat herbicide by adsorption technology: a reviewArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Water Process Engineering[1] T. Tongur, E. Ayranci, Adsorption and electrosorption of paraquat, diquat, and difenzoquat from aqueous solutions onto activated carbon cloth as monitored by in-situ UV-visible spectroscopy, J. Environ. Chem. Eng. 9 (2021), 105566, https://doi.org/10.1016/j.jece.2021.105566.[2] S. Mostafalou, M. Abdollahi, Pesticides, and human chronic diseases: evidences, mechanisms, and perspectives, Toxicol. Appl. Pharmacol. 268 (2013) 157–177, https://doi.org/10.1016/j.taap.2013.01.025[3] M. Arias-Est´evez, E. Lopez-Periago, ´ E. Martínez-Carballo, J. Simal-G´ andara, J. C. Mejuto, L. García-Río, The mobility and degradation of pesticides in soils and the pollution of groundwater resources, Agric. Ecosyst. Environ. 123 (2008) 247–260, https://doi.org/10.1016/j.agee.2007.07.011.[4] M.S.F. Santos, G. Schaule, A. Alves, L.M. Madeira, Adsorption of paraquat herbicide on deposits from drinking water networks, Chem. Eng. J. 229 (2013) 324–333, https://doi.org/10.1016/j.cej.2013.06.008[5] O. Núnez, ˜ J.B. Kim, E. Moyano, M.T. Galceran, S. Terabe, Analysis of the herbicides paraquat, diquat, and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation-selective exhaustive injection, J. Chromatogr. A 961 (2002) 65–75, https://doi.org/10.1016/S0021- 9673(02)00031-6.[6] H.J. Beckie, Herbicide-resistant weed management: focus on glyphosate, Pest Manag. Sci. 67 (2011) 1037–1048, https://doi.org/10.1002/ps.2195.[7] R.H. Bromilow, Paraquat, and sustainable agriculture, Pest Manag. Sci. 60 (2004) 340–349, https://doi.org/10.1002/ps.823.[8] A. Walsh, R. Kingwell, Economic implications of the loss of glyphosate and paraquat on australian mixed enterprise farms, Agric. Syst. 193 (2021), 103207, https://doi.org/10.1016/j.agsy.2021.103207.[9] N. Chamkasem, T. Harmon, Direct determination of glyphosate, glufosinate, and AMPA in soybean and corn by liquid chromatography/tandem mass spectrometry, Anal. Bioanal. Chem. 408 (2016) 4995–5004, https://doi.org/ 10.1007/s00216-016-9597-6.[10] M. Brigante, P.C. Schulz, Adsorption of paraquat on mesoporous silica modified with titania: effects of pH, ionic strength and temperature, J. Colloid Interface Sci. 363 (2011) 355–361, https://doi.org/10.1016/j.jcis.2011.07.061.[11] T.R. Roberts, J.S. Dyson, M.C.G. Lane, Deactivation of the biological activity of paraquat in the soil environment: a review of long-term environmental fate, J. Agric. Food Chem. 50 (2002) 3623–3631, https://doi.org/10.1021/jf011323x.[12] M. Fernandez, ´ M. Ib´ anez, ˜ Y. Pico, ´ J. Manes, ˜ Spatial and temporal trends of paraquat, diquat, and difenzoquat contamination in water from marsh areas of the valencian community (Spain), Arch. Environ. Contam. Toxicol. 35 (1998) 377–384, https://doi.org/10.1007/s002449900391.[13] M.S.F. Santos, L.M. Madeira, A. Alves, Paraquat quantification in deposits from drinking water networks, Anal. Methods 6 (2014) 3791–3798, https://doi.org/ 10.1039/c4ay00121d.[14] R. Grillo, A.E.S. Pereira, C.S. Nishisaka, R. De Lima, K. Oehlke, R. Greiner, L. F. Fraceto, Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control, J. Hazard. Mater. 278 (2014) 163–171, https://doi.org/10.1016/j.jhazmat.2014.05.079.[15] M.P. Leite, L.G.T. dos Reis, N.F. Robaina, W.F. Pacheco, R.J. Cassella, Adsorption of paraquat from aqueous medium by amberlite XAD-2 and XAD-4 resins using dodecylsulfate as a counter ion, Chem. Eng. J. 215–216 (2013) 691–698, https:// doi.org/10.1016/j.cej.2012.10.087[16] C.F. Huang, C.W. Tu, R.H. Lee, C.H. Yang, W.C. Hung, K.Y.Andrew Lin, Study of various diameter and functionality of TEMPO-oxidized cellulose nanofibers on paraquat adsorptions, Polym. Degrad. Stab. 161 (2019) 206–212, doi:10.1016/j. polymdegradstab. 2019.01.023.[17] M.G.A. Vieira, A.F.A. Neto, M.L. Gimenes, M.G.C. da Silva, Sorption kinetics and equilibrium for the removal of nickel ions from the aqueous phase on calcined bofe bentonite clay, J. Hazard. Mater. 177 (2010) 362–371, https://doi.org/ 10.1016/j.jhazmat.2009.12.040.[18] H.S. Lee, K.S. Lee, K. Yu, S.Y. Hong, Expression of genes related to Parkinson's disease after paraquat treatment in Drosophila melanogaster, Pestic. Biochem. Physiol. 92 (2008) 19–23, https://doi.org/10.1016/j.pestbp.2008.05.002.[19] D. Melchiorri, R.J. Reiter, E. Sewerynek, M. Hara, L. Chen, G. Nistico, ` Paraquat toxicity, and oxidative damage: reduction by melatonin, Biochem. Pharmacol. 51 (1996) 1095–1099, https://doi.org/10.1016/0006-2952(96)00055-X.[20] R. Brown, M. Clapp, J. Dyson, D. Scott, I. Wheals, M. Wilks, Paraquat in perspective, Outlooks Pest Manag. 15 (2004) 259–267, https://doi.org/10.1564/ 15dec09.[21] C.M. Tanner, F. Kame, G.W. Ross, J.A. Hoppin, S.M. Goldman, M. Korell, C. Marras, G.S. Bhudhikanok, M. Kasten, A.R. Chade, K. Comyns, M.B. Richards, C. Meng, B. Priestley, H.H. Fernandez, F. Cambi, D.M. Umbach, A. Blair, D. P. Sandler, J.W. Langston, Rotenone, paraquat, and Parkinson's disease, Environ. Health Perspect. 119 (2011) 866–872, https://doi.org/10.1289/ehp.1002839.[22] S. Costello, M. Cockburn, J. Bronstein, X. Zhang, B. Ritz, Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California, Am. J. Epidemiol. 169 (2009) 919–926, https://doi. org/10.1093/aje/kwp006.[23] H.M. Cochem´e, M.P. Murphy, Complex I is the major site of mitochondrial superoxide production by paraquat, J. Biol. Chem. 283 (2008) 1786–1798, https://doi.org/10.1074/jbc.M708597200.[24] P.R. Castello, D.A. Drechsel, M. Patel, Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain, J. Biol. Chem. 282 (2007) 14186–14193, https://doi.org/10.1074/jbc.M700827200.[25] V. Tatjana, S. Domitille, S. Jean-Charles, Paraquat-induced cholesterol biosynthesis proteins dysregulation in human brain microvascular endothelial cells, Sci. Rep. 11 (2021) 1–10, https://doi.org/10.1038/s41598-021-97175-w.[26] A.B. Manning-Bog, A.L. McCormack, J. Li, V.N. Uversky, A.L. Fink, D.A. Di Monte, The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein, J. Biol. Chem. 277 (2002) 1641–1644, https:// doi.org/10.1074/jbc.C100560200[27] B. Dinham, Why paraquat should be banned, Outlooks Pest Manag. 15 (2004) 268–271, https://doi.org/10.1564/15dec10.[28] C. Wesseling, B.V.W. De Joode, C. Ruepert, C. Leon, ´ P. Monge, H. Hermosillo, L. J. Partanen, Paraquat in developing countries, Int. J. Occup. Environ. Health 7 (2001) 275–286, https://doi.org/10.1179/107735201800339209.[29] R.A. Mendes, R.G. de Freitas, A. Brown, G.L.C. de Souza, Exploring ground and low-lying excited states for diquat, paraquat, and dipyridyl isomers, J. Photochem. Photobiol. A Chem. 402 (2020), 112817, https://doi.org/10.1016/ j.jphotochem.2020.112817[30] W.T. Tsai, C.W. Lai, K.J. Hsien, Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth, Chemosphere 55 (2004) 829–837, https://doi.org/10.1016/j.chemosphere.2003.11.043.[31] T. Ahmad, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim, A. Ahmad, Removal of pesticides from water and wastewater by different adsorbents: a review, J. Environ. Sci. Health., Part C Environ. Carcinog. Ecotoxicol. Rev. 28 (2010) 231–271, https://doi.org/10.1080/10590501.2010.525782.[32] W. Khongthon, G. Jovanovic, A. Yokochi, P. Sangvanich, V. Pavarajarn, Degradation of diuron via an electrochemical advanced oxidation process in a microscale-based reactor, Chem. Eng. J. 292 (2016) 298–307, https://doi.org/ 10.1016/j.cej.2016.02.042[33] S. Meephon, T. Rungrotmongkol, S. Puttamat, S. Praserthdam, V. Pavarajarn, Heterogeneous photocatalytic degradation of diuron on zinc oxide: influence of surface-dependent adsorption on kinetics, degradation pathway, and toxicity of intermediates, J. Environ. Sci. (China) 84 (2019) 97–111, https://doi.org/ 10.1016/j.jes.2019.04.016[34] P.A.C. Bonn´e, E.F. Beerendonk, J.P. Van Der Hoek, J.A.M.H. Hofman, Retention of herbicides and pesticides in relation to aging of RO membranes, Desalination 132 (2000) 189–193, https://doi.org/10.1016/S0011-9164(00)00148-X.[35] R. Mehta, H. Brahmbhatt, N.K. Saha, A. Bhattacharya, Removal of substituted phenyl urea pesticides by reverse osmosis membranes: laboratory scale study for field water application, Desalination 358 (2015) 69–75, https://doi.org/ 10.1016/j.desal.2014.12.019[36] P. Sharma, A. Chopra, S.S. Cameotra, C.R. Suri, Efficient biotransformation of herbicide diuron by bacterial strain micrococcus sp. PS-1, Biodegradation 21 (2010) 979–987, https://doi.org/10.1007/s10532-010-9357-9.[37] B. Perissini-Lopes, T.C. Egea, D.A. Monteiro, A.C. Vici, D.G.H. Da Silva, D.C.D. O. Lisboa, E.A. De Almeida, J.R. Parsons, R. Da Silva, E. Gomes, Evaluation of diuron tolerance and biotransformation by fungi from a sugar cane plantation Sandy-loam soil, J. Agric. Food Chem. 64 (2016) 9268–9275, https://doi.org/ 10.1021/acs.jafc.6b03247[38] J. Georgin, D.S.P. Franco, M. Schadeck Netto, D. Allasia, E.L. Foletto, L.F. S. Oliveira, G.L. Dotto, Transforming shrub waste into a high-efficiency adsorbent: application of physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide, J. Environ Chem. Eng. 9 (2021), 104574, https://doi.org/10.1016/j.jece.2020.104574.[39] Y.L.D.O.de O. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E. L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ. Chem. Eng. 9 (2021), 104911, https://doi.org/10.1016/j.jece.2020.104911.[40] J.O. Ighalo, O.J. Ajala, G. Umenweke, S. Ogunniyi, C.A. Adeyanju, C.A. Igwegbe, A.G. Adeniyi, Mitigation of clofibric acid pollution by adsorption: a review of recent developments, J. Environ. Chem. Eng. 8 (2020), 104264, https://doi.org/ 10.1016/j.jece.2020.104264.[41] C. Keawkumay, W. Rongchapo, N. Sosa, S. Suthirakun, I.Z. Koleva, H. A. Aleksandrov, G.N. Vayssilov, J. Wittayakun, Paraquat adsorption on NaY zeolite at various Si/Al ratios: a combined experimental and computational study, Mater. Chem. Phys. 238 (2019), 121824, https://doi.org/10.1016/j. matchemphys.2019.121824[42] H. Li, H. Qi, M. Yin, Y. Chen, Q. Deng, S. Wang, Carbon tubes from biomass with prominent adsorption performance for paraquat, Chemosphere 262 (2021), 127797, https://doi.org/10.1016/j.chemosphere.2020.127797.[43] G.C. Schmitt, C. Paniz, D. Grotto, J. Valentini, K.L. Schott, V.J. Pomblum, S. C. Garcia, General aspects and clinical laboratorial diagnostic of poisoning by paraquat | aspectos gerais e diagnostico ´ clinicolaboratorial da intoxicaç˜ ao por paraquat, J. Bras. Patol. Med. Lab. 42 (2006) 235–243.[44] R.J. Dinis-Oliveira, J.A. Duarte, A. S´ anchez-Navarro, F. Remiao, ˜ M.L. Bastos, F. Carvalho, Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment, Crit. Rev. Toxicol. 38 (2008) 13–71, https://doi.org/10.1080/ 10408440701669959[45] M. Pateiro-Moure, C. P´erez-Novo, M. Arias-Est´evez, R. Rial-Otero, J. SimalG´ andara, Effect of organic matter and iron oxides on quaternary herbicide sorption-desorption in vineyard-devoted soils, J. Colloid Interface Sci. 333 (2009) 431–438, https://doi.org/10.1016/j.jcis.2009.02.019.[46] W. Amondham, P. Parkpian, C. Polprasert, R. DeLaune, A. Jugsujinda, Paraquat adsorption, degradation, and remobilization in tropical soils of Thailand, J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 41 (2006) 485–507, https://doi.org/10.1080/03601230600701635.[47] W.T. Tsai, C.W. Lai, Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth, J. Hazard. Mater. 134 (2006) 144–148, https://doi.org/10.1016/j.jhazmat.2005.10.045.[48] G. Yuan, R. Li, Q. Zhao, X. Kong, Y. Wang, X. Wang, R. Guo, Simultaneous determination of paraquat and diquat in human plasma by HPLC-DAD: its application in acute poisoning patients induced by these two herbicides, J. Clin. Lab. Anal. 35 (2021) 1–8, https://doi.org/10.1002/jcla.23669.[49] Pesticides Action Network Europe, Banned and hazardous pesticides in European. 2020. https://www.pan-europe.info/resources/reports/2020/09/banned-and -hazardous-pesticides-european-food, 2020.[50] European Parliament, The Use of Pesticides in Developing Countries and Their Impact on Health and the Right to Food, 2021.[51] Y.F. Zhang, Z.H. Wang, X.Q. Yao, Y.M. Zhang, T.B. Wei, H. Yao, Q. Lin, Novel tripodal-pillar[5]arene-based chemical sensor for efficient detection and removal paraquat by synergistic effect, Sensors Actuators B Chem. 327 (2021), 128885, https://doi.org/10.1016/j.snb.2020.128885.[52] F. Laghrib, M. Bakasse, S. Lahrich, M.A. El Mhammedi, Electrochemical sensors for improved detection of paraquat in food samples: a review, Mater. Sci. Eng. C. 107 (2020), 110349, https://doi.org/10.1016/j.msec.2019.110349.[53] R.F.T. Tagne, N.G. Ndifor-Angwagor, R.C.T. Temgoua, D.R.T. Tchuifon, T. Vintila, A.S. Ngueabouo, S.G. Anagho, Development of an electroanalytical method using activated rice husk-derived carbon for the detection of a paraquat herbicide, Carbon Trends 4 (2021), 100060, https://doi.org/10.1016/j. cartre.2021.100060.[54] R. Botta, P. Eiamchai, M. Horprathum, S. Limwichean, C. Chananonnawathorn, V. Patthanasettakul, R. Maezono, A. Jomphoak, N. Nuntawong, 3D structured laser engraves decorated with gold nanoparticle SERS chips for paraquat herbicide detection in environments, Sensors Actuators B Chem. 304 (2020), 127327, https://doi.org/10.1016/j.snb.2019.127327.[55] F. Du, L. Sun, Q. Zen, W. Tan, Z. Cheng, G. Ruan, J. Li, A highly sensitive and selective "on-off-on" fluorescent sensor based on nitrogen-doped graphene quantum dots for the detection of Hg2+ and paraquat, Sensors Actuators B Chem. 288 (2019) 96–103, https://doi.org/10.1016/j.snb.2019.02.109.[56] H. Zhang, K.T. Huang, L. Ding, J. Yang, Y.W. Yang, F. Liang, Electrochemical determination of paraquat using a glassy carbon electrode decorated with pillararene-coated nitrogen-doped carbon dots, Chin. Chem. Lett. (2021), https:// doi.org/10.1016/j.cclet.2021.09.002.[57] K. Charoenkitamorn, C. Chotsuwan, S. Chaiyo, W. Siangproh, O. Chailapakul, A new ready-to-use gel-based electrolyte for paraquat sensor, Sensors Actuators B Chem. 315 (2020), 128089, https://doi.org/10.1016/j.snb.2020.128089.[58] P.A. Raymundo-Pereira, N.O. Gomes, F.M. Shimizu, S.A.S. Machado, O. N. Oliveira, Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors, Chem. Eng. J. 408 (2021), https://doi.org/10.1016/j.cej.2020.127279.[59] M. Majdinasab, M. Daneshi, J. Louis Marty, Recent developments in nonenzymatic (bio)sensors for detection of pesticide residues: focusing on an antibody, aptamer and molecularly imprinted polymer, Talanta 232 (2021), 122397, https://doi.org/10.1016/j.talanta.2021.122397.[60] E. Stavra, P.S. Petrou, G. Koukouvinos, C. Kiritsis, I. Pirmettis, M. Papadopoulos, D. Goustouridis, A. Economou, K. Misiakos, I. Raptis, S.E. Kakabakos, Simultaneous determination of paraquat and atrazine in water samples with a white light reflectance spectroscopy biosensor, J. Hazard. Mater. 359 (2018) 67–75, https://doi.org/10.1016/j.jhazmat.2018.07.029.[61] H. Du, Y. Xie, J. Wang, Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications, TrAC - Trends Anal. Chem. 135 (2021), 116178, https://doi.org/10.1016/j.trac.2020.116178.[62] R. Gao, N. Choi, S.I. Chang, S.H. Kang, J.M. Song, S.I. Cho, D.W. Lim, J. Choo, Highly sensitive trace analysis of paraquat using a surface-enhanced raman scattering microdroplet sensor, Anal. Chim. Acta 681 (2010) 87–91, https://doi. org/10.1016/j.aca.2010.09.036.[63] D. Singh, A. Yadav, C. Singh, Autonomous regulation of inducible nitric oxide synthase and cytochrome P450 2E1-mediated oxidative stress in maneb- and paraquat-treated rat polymorphs, Pestic. Biochem. Physiol. 178 (2021), 104944, https://doi.org/10.1016/j.pestbp.2021.104944[64] E.A. Awadalla, Efficacy of vitamin C against liver and kidney damage induced by paraquat toxicity, Exp. Toxicol. Pathol. 64 (2012) 431–434, https://doi.org/ 10.1016/j.etp.2010.10.009.[65] L. Sun, P.B. Yan, Y. Zhang, L.Q. Wei, G.Q. Li, Effect of activated charcoal hemoperfusion on renal function in patients with paraquat poisoning, Exp. Ther. Med. 15 (2018) 2688–2692, https://doi.org/10.3892/etm.2018.5712.[66] A. Das, N.S. Neera, F.U.H. Chowdhury, M.A. Kahhar, Acute lung fibrosis following paraquat poisoning, Bangladesh J. Med. 29 (2018) 41–44, https://doi.org/ 10.3329/bjmed.v29i1.35407.[67] M. Thiruchelvam, A. McCormack, E.K. Richfield, R.B. Baggs, A.W. Tank, D.A. Di Monte, D.A. Cory-Slechta, Age-related irreversible, progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype, Eur. J. Neurosci. 18 (2003) 589–600, https://doi.org/ 10.1046/j.1460-9568.2003.02781.x.[68] C. Berry, C. La Vecchia, P. Nicotera, Paraquat and Parkinson's disease, Cell Death Differ. 17 (2010) 1115–1125, https://doi.org/10.1038/cdd.2009.217.[69] W. Yang, E. Tiffany-Castiglioni, The bipyridyl herbicide paraquat produces oxidative stress-mediated toxicity in human neuroblastoma SH-SY5Y cells: relevance to the dopaminergic pathogenesis, J. Toxic. Environ. Health A 68 (2005) 1939–1961, https://doi.org/10.1080/15287390500226987.[70] M. Khwaja, A. McCormack, J.M. McIntosh, D.A. Di Monte, M. Quik, Nicotine partially protects against paraquat-induced nigrostriatal damage in mice; link to α6β2* nAChRs, J. Neurochem. 100 (2007) 180–190, https://doi.org/10.1111/ j.1471-4159.2006.04177.x.[71] M.G. Purisai, A.L. McCormack, S. Cumine, J. Li, M.Z. Isla, D.A. Di Monte, Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration, Neurobiol. Dis. 25 (2007) 392–400, https://doi. org/10.1016/j.nbd.2006.10.008.[72] L.K. Chao, T.C. Fang, Dialysis catheter-related pulmonary embolism in a patient with paraquat intoxication, Tzu Chi Med. J. 28 (2016) 166–169, https://doi.org/ 10.1016/j.tcmj.2015.05.005.[73] M.J. Fallahi, B. Dalfardi, Early lung fibrosis after accidental ingestion of paraquat herbicide, Vis. J. Emerg. Med. 13 (2018) 66–67, https://doi.org/10.1016/j. visj.2018.09.008.[74] D.A. Feinfeld, J.W. Rosenberg, J.F. Winchester, Three controversial issues in extracorporeal toxin removal, Semin. Dial. 19 (2006) 358–362, https://doi.org/ 10.1111/j.1525-139X.2006.00187_1.x.[75] T.J. Meredith, J.A. Vale, Treatment of paraquat poisoning in man: methods to prevent absorption, Hum. Exp. Toxicol. 6 (1987) 49–55, https://doi.org/ 10.1177/096032718700600108.[76] A. Figueiredo-Fernandes, A. Fontaínhas-Fernandes, E. Rocha, M.A. ReisHenriques, The effect of paraquat on hepatic EROD activity, liver, and gonadal histology in males and females of Nile tilapia, Oreochromis niloticus, exposed at different temperatures, Arch. Environ. Contam. Toxicol. 51 (2006) 626–632, https://doi.org/10.1007/s00244-005-0208-3.[77] M. Saint-Pierre, M.E. Tremblay, A. Sik, R.E. Gross, F. Cicchetti, Temporal effects of paraquat/maneb on microglial activation and dopamine neuronal loss in older rats, J. Neurochem. 98 (2006) 760–772, https://doi.org/10.1111/j.1471- 4159.2006.03923.x.[78] F. Zhao, H. Zhang, Salt, and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice, Plant Cell Tissue O[79] D. Litteljohn, E. Nelson, C. Bethune, S. Hayley, The effects of paraquat on regional brain neurotransmitter activity, hippocampal BDNF and behavioural function in female mice, Neurosci. Lett. 502 (2011) 186–191, https://doi.org/10.1016/j. neulet.2011.07.041.[80] Q. Li, H. Xiao, Y. Shao, X. Chang, Y. Zhang, Z. Zhou, Paraquat increases interleukin-1β in hippocampal dentate gyrus to impair hippocampal neurogenesis in adult mice, Ecotoxicol. Environ. Saf. 200 (2020), 110733, https://doi.org/ 10.1016/j.ecoenv.2020.110733.[81] Z. Dwyer, C. Rudyk, K. Farmer, S. Beauchamp, P. Shail, A. Derksen, T. Fortin, K. Ventura, C. Torres, K. Ayoub, S. Hayley, Characterizing the protracted neurobiological and neuroanatomical effects of paraquat in a murine model of Parkinson's disease, Neurobiol. Aging 100 (2021) 11–21, https://doi.org/ 10.1016/j.neurobiolaging.2020.11.013[82] N.F. Naspolini, C.E. Heinz Rieg, V.H. Cenci, D. Cattani, A. Zamoner, Paraquat induces redox imbalance and disrupts glutamate and energy metabolism in the hippocampus of prepubertal rats, Neurotoxicology 85 (2021) 121–132, https:// doi.org/10.1016/j.neuro.2021.05.010.[83] F. Amin, A. Roohbakhsh, A. Memarzia, H.R. Kazerani, M.H. Boskabady, Immediate and late systemic and lung effects of inhaled paraquat in rats, J. Hazard. Mater. 415 (2021), 125633, https://doi.org/10.1016/j. jhazmat.2021.125633.[84] Q. Hamdaoui, Y. Zekri, S. Richard, D. Aubert, R. Guyot, S. Markossian, K. Gauthier, F. Gaie-Levrel, A. Bencsik, F. Flamant, Prenatal exposure to paraquat and nanoscaled TiO2 aerosols alters the gene expression of the developing brain, Chemosphere 287 (2022), https://doi.org/10.1016/j.chemosphere.2021.132253.[85] Y. Zhang, D. Yuan, Y. Li, F. Yang, L. Hou, Y. Yu, C. Sun, G. Duan, C. Meng, H. Yan, D. Li, Y. Gao, T. Sun, C. Zhu, Paraquat promotes acute lung injury in rats by regulating alveolar macrophage polarization through glycolysis, Ecotoxicol. Environ. Saf. 223 (2021), https://doi.org/10.1016/j.ecoenv.2021.112571.[86] T.M. Wijerathna, F. Mohamed, I.B. Gawarammana, K. Wunnapuk, D. M. Dissanayake, F. Shihana, N.A. Buckley, Cellular injury leading to oxidative stress in acute poisoning with potassium permanganate/oxalic acid, paraquat, and glyphosate surfactant herbicide, Environ. Toxicol. Pharmacol. 80 (2020), 103510, https://doi.org/10.1016/j.etap.2020.103510.[87] H. Li, Q. Zhu, S. Wang, T. Huang, X. Li, C. Ni, Y. Fang, L. Li, Q. Lian, R.S. Ge, Paraquat exposure delays stem/progenitor leydig cell regeneration in the adult rat testis, Chemosphere 231 (2019) 60–71, https://doi.org/10.1016/j. chemosphere.2019.05.104.[88] M.H. Ahmad, M. Fatima, M. Ali, M.A. Rizvi, A.C. Mondal, Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson's disease, Neuropharmacology 201 (2021), 108831, https://doi.org/ 10.1016/j.neuropharm.2021.108831.[89] H. Li, T. Hong, Q. Zhu, S. Wang, T. Huang, X. Li, Q. Lian, R.S. Ge, Paraquat exposure delays late-stage leydig cell differentiation in rats during puberty, Environ. Pollut. 255 (2019), 113316, https://doi.org/10.1016/j. envpol.2019.113316.[90] Y. Gao, L. Hou, Y. Wang, S. Guo, D. Yuan, Y. Jiang, G. Duan, Y. Zhang, Z. Xu, L. Che, C. Sun, S. Li, S. Zhang, T. Sun, Y. Li, Octreotide alleviates pancreatic damage caused by paraquat in rats by reducing inflammatory responses and oxidative stress, Environ. Toxicol. Pharmacol. 80 (2020), https://doi.org/ 10.1016/j.etap.2020.103456.[91] X. Hu, L. Chen, T. Li, M. Zhao, TLR3 is involved in a paraquat-induced acute renal injury, Life Sci. 223 (2019) 102–109, https://doi.org/10.1016/j.lfs.2019.03.029.[92] J. Ma, Y. Li, W. Li, X. Li, Hepatotoxicity of paraquat on common carp (Cyprinus Carpio L.), Sci. Total Environ. 616–617 (2018) 889–898, https://doi.org/ 10.1016/j.scitotenv.2017.10.231.[93] R. Soni, C. Haldar, C.M. Chaturvedi, Paraquat induced impaired reproductive function and modulation of retinal and extra-retinal photoreceptors in japanese quail (Coturnix coturnix japonica), Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 224 (2019), 108568, https://doi.org/10.1016/j.cbpc.2019.108568.[94] A. Czerniczyniec, A.G. Karadayian, J. Bustamante, R.A. Cutrera, S. Lores-Arnaiz, Paraquat induces behavioral changes and cortical and striatal mitochondrial dysfunction, Free Radic. Biol. Med. 51 (2011) 1428–1436, https://doi.org/ 10.1016/j.freeradbiomed.2011.06.034.[95] S. Bora, G.S.H. Vardhan, N. Deka, L. Khataniar, D. Gogoi, A. Baruah, Paraquat exposure over generation affects lifespan and reproduction through mitochondrial disruption in C. Elegans, Toxicology 447 (2021), 152632, https:// doi.org/10.1016/j.tox.2020.152632.[96] X.H. Wang, C.L. Souders, Y.H. Zhao, C.J. Martyniuk, Paraquat Affects Mitochondrial Bioenergetics, Dopamine System expression, and Locomotor Activity in Zebrafish (Danio rerio), Elsevier Ltd, 2018, https://doi.org/10.1016/j. chemosphere.2017.10.032.[97] J. Chen, Y. Su, F. Lin, M. Iqbal, K. Mehmood, H. Zhang, D. Shi, Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: a review of mechanisms and ecological implications, Ecotoxicol. Environ. Saf. 224 (2021), 112711, https://doi.org/10.1016/j.ecoenv.2021.112711[98] Z. Dehgani, M. Sedghi Asl, M. Ghaedi, M.M. Sabzehmeidani, E. Adhami, Removal of paraquat from aqueous solutions by bentonite modified zero-valent iron adsorbent, New J. Chem. 44 (2020) 13368–13376, https://doi.org/10.1039/ d0nj02259d[99] H. Li, Q. Miao, Y. Chen, M. Yin, H. Qi, M. Yang, Q. Deng, S. Wang, Modified carbon spheres as universal materials for adsorption of cationic harmful substances (paraquat and dyes) in water, Microporous Mesoporous Mater. 297 (2020), 110040, https://doi.org/10.1016/j.micromeso.2020.110040.[100] A. Iglesias, R. Lopez, ´ D. Gondar, J. Antelo, S. Fiol, F. Arce, Adsorption of paraquat on goethite and humic acid-coated goethite, J. Hazard. Mater. 183 (2010) 664–668, https://doi.org/10.1016/j.jhazmat.2010.07.077.[101] S.T. Hsu, L.C. Chen, C.C. Lee, T.C. Pan, B.X. You, Q.F. Yan, Preparation of methacrylic acid-modified rice husk improved by an experimental design and application for paraquat adsorption, J. Hazard. Mater. 171 (2009) 465–470, https://doi.org/10.1016/j.jhazmat.2009.06.144.[102] S.T. Hsu, T.C. Pan, Adsorption of paraquat using methacrylic acid-modified rice husk, Bioresour. Technol. 98 (2007) 3617–3621, https://doi.org/10.1016/j. biortech.2006.11.060.[103] N. Mueanpun, N. Srisuk, N. Chaiammart, G. Panomsuwan, Nanoporous activated carbons derived from water ferns as an adsorbent for removal of paraquat from contaminated water, Materialia 15 (2021), https://doi.org/10.1016/j. mtla.2020.100986.[104] W.T. Tsai, K.J. Hsien, Y.M. Chang, C.C. Lo, Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth, Bioresour. Technol. 96 (2005) 657–663, https://doi.org/10.1016/j. biortech.2004.06.023.[105] A. Rasaie, M.M. Sabzehmeidani, M. Ghaedi, M. Ghane-Jahromi, A. SedaratianJahromi, Removal of herbicide paraquat from aqueous solutions by bentonite modified with mesoporous silica, Mater. Chem. Phys. 262 (2021), 124296, https://doi.org/10.1016/j.matchemphys.2021.124296.[106] N.K. Hamadi, S. Swaminathan, X.D. Chen, Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires, J. Hazard. Mater. 112 (2004) 133–141, https://doi.org/10.1016/j.jhazmat.2004.04.011.[107] N. Osakoo, C. Pansakdanon, N. Sosa, K. Deekamwong, C. Keawkumay, W. Rongchapo, N. Chanlek, J. Jitcharoen, S. Prayoonpokarach, J. Wittayakun, Characterization and comprehension of zeolite NaY/mesoporous SBA-15 composite as adsorbent for paraquat, Mater. Chem. Phys. 193 (2017) 470–476, https://doi.org/10.1016/j.matchemphys.2017.03.002.[108] W. Rongchapo, O. Sophiphun, K. Rintramee, S. Prayoonpokarach, J. Wittayakun, Paraquat adsorption on porous materials synthesized from rice husk silica, Water Sci. Technol. 68 (2013) 863–869, https://doi.org/10.2166/wst.2013.311.[109] M.G. Kamble, S.K. Deokar, S.P. Tajane, S.A. Mandavgane, Groundnut plant ash: characterisation and adsorption efficacy study for removal of paraquat dichloride, Indian J. Chem. Technol. 27 (2020) 35–42.[110] D.S. Cocenza, M.A. De Moraes, M.M. Beppu, L.F. Fraceto, Use of biopolymeric membranes for adsorption of paraquat herbicide from water, Water Air Soil Pollut. 223 (2012) 3093–3104, https://doi.org/10.1007/s11270-012-1092-x.[111] D. Shetty, S. Boutros, T. Skorjanc, B. Garai, Z. Asfari, J. Raya, A. Trabolsi, Fast and efficient removal of paraquat in water by porous polycalix[: N] arenes (n = 4, 6, and 8), J. Mater. Chem. A 8 (2020) 13942–13945, https://doi.org/10.1039/ d0ta01907k.[112] Y. Seki, K. Yurdakoç, Paraquat adsorption onto clays and organoclays from aqueous solution, J. Colloid Interface Sci. 287 (2005) 1–5, https://doi.org/ 10.1016/j.jcis.2004.10.072.[113] S. Rodriguez-Cruz, M.S. Andrades, M. Sanchez-, M.J. Sanchez-martin, I. De Recursos, C. Apdo, Relationship between the adsorption capacity of pesticides pesticides, Environ. Sci. Technol. 41 (2007) 1–5.[114] M. Zbair, Z. Anfar, H. Ait Ahsaine, H. Khallok, Kinetics, equilibrium, statistical surface modeling and cost analysis of paraquat removal from aqueous solution using carbonated jujube seed, RSC Adv. 9 (2019) 1084–1094, https://doi.org/ 10.1039/c8ra09337g.[115] J. Junthip, W. Promma, S. Sonsupap, C. Boonyanusith, Adsorption of paraquat from water by insoluble cyclodextrin polymer crosslinked with 1,2,3,4-butane tetracarboxylic acid, Iran, Polym. J. (English Ed. 28 (2019) 213–223, https://doi. org/10.1007/s13726-019-00692-9.[116] P. Kumari, Alka, S. Kumar, K. Nisa, D.Kumar Sharma, Efficient system for encapsulation and removal of paraquat and diquat from aqueous solution: 4- Sulfonatocalix[n]arenes and its magnetite modified nanomaterials, J. Environ. Chem. Eng. 7 (2019), https://doi.org/10.1016/j.jece.2019.103130.[117] J. Junthip, Water-insoluble cyclodextrin polymer crosslinked with citric acid for paraquat removal from water, J. Macromol. Sci. Part A 56 (2019) 555–563, https://doi.org/10.1080/10601325.2019.1586444.[118] J. Junthip, Coating of PET textiles with anionic cyclodextrin polymer for paraquat removal from aqueous solution, Fibers Polym. 19 (2018) 2335–2343, https://doi. org/10.1007/s12221-018-8557-5.[119] A. Ebrahimi, M. Mansour Lakouraj, V. Hasantabar, Synthesis and characterization of amphiphilic star copolymer of polyaniline and polyacrylic acid-based on calix [4]resorcinarene as an efficient adsorbent for removal of paraquat herbicide from water, Mater. Today Commun. 25 (2020), 101523, https://doi.org/10.1016/j. mtcomm.2020.101523[120] J. Junthip, N. Jumrernsuk, P. Klongklaw, W. Promma, S. Sonsupap, Removal of paraquat herbicide from water by textile coated with anionic cyclodextrin polymer, SN Appl. Sci. 1 (2019), https://doi.org/10.1007/s42452-018-0102-z.[121] E. Martwong, S. Chuetor, J. Junthip, Adsorption of paraquat by Poly(Vinyl Alcohol)-cyclodextrin nanosponges, Polymers (Basel) 13 (2021) 4110, https:// doi.org/10.3390/polym13234110.[122] E. Martwong, S. Chuetor, J. Junthip, Adsorption of cationic contaminants by cyclodextrin nanosponges cross-linked with 1,2,3,4-butanetetracarboxylic acid and Poly(vinyl alcohol), Polymers (Basel) 14 (2022) 342, https://doi.org/ 10.3390/polym14020342.[123] E. Martwong, N. Sukhawipat, J. Junthip, Adsorption of cationic pollutants from water by cotton rope coated with cyclodextrin polymers, Polymers (Basel) 14 (2022) 2312, https://doi.org/10.3390/polym14122312.[124] E. Martwong, N. Sukhawipat, J. Junthip, Cotton cord coated with cyclodextrin polymers for paraquat removal from water, Polymers (Basel) 14 (2022) 2199, https://doi.org/10.3390/polym14112199.[125] S. Iftekhar, D.L. Ramasamy, V. Srivastava, M.B. Asif, M. Sillanpa¨a, ¨ Understanding the factors affecting the adsorption of lanthanum using different adsorbents: a critical review, Chemosphere 20[126] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, F. Caroline, D. Patrícia, G. Dison, F. Guilherme, L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove gentian violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703, https://doi.org/10.2166/wst.2018.448.[127] J. Georgin, D.S.P. Franco, P. Grassi, D. Tonato, D.G.A. Piccilli, L. Meili, G.L. Dotto, Potential of cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents, Environ. Sci. Pollut. Res. 26 (2019) 19207–19219, https://doi.org/10.1007/s11356-019-05321-9.[128] C.M. Kerkhoff, K. da Boit Martinello, D.S.P.P. Franco, M.S. Netto, J. Georgin, E. L. Foletto, D.G.A.A. Piccilli, L.F.O.O. Silva, G.L. Dotto, K. da Boit Martinello, D.S. P.P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A.A. Piccilli, L.F.O.O. Silva, G.L. Dotto, Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp, J. Mol. Liq. 339 (2021), 117184, https://doi.org/10.1016/j.molliq.2021.117184.[129] C.O. Aniagor, M.C. Menkiti, Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate, J. Environ. Chem. Eng. 6 (2018) 2105–2118, https://doi.org/10.1016/j. jece.2018.01.070[130] N.T.H. Ha, N.C. Toan, P. Kajitvichyanukul, Enhanced paraquat removal from contaminated water using cell-immobilized biochar, Clean Techn. Environ. Policy (2021), https://doi.org/10.1007/s10098-020-01996-8.[131] W.T. Tsai, H.R. Chen, Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar, Int. J. Environ. Sci. Technol. 10 (2013) 1349–1356, https://doi.org/10.1007/s13762- 012-0174-z.[132] D.S.P. Franco, J.L.S. Fagundes, J. Georgin, N.P.G. Salau, G.L. Dotto, A mass transfer study considering intraparticle diffusion and axial dispersion for fixedbed adsorption of crystal violet on pecan pericarp (Carya illinoensis), Chem. Eng. J. 397 (2020), 125423, https://doi.org/10.1016/j.cej.2020.125423.[133] M. Suzuki, Adsorption Engineering, 1st ed., Elsevier, 1990.[134] M. Brigante, M. Avena, Synthesis, characterization, and application of hexagonal mesoporous silica for pesticide removal from aqueous solution, Microporous Mesoporous Mater. 191 (2014) 1–9, https://doi.org/10.1016/j. micromeso.2014.02.035.[135] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Pirajan, ´ I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.[136] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (2010) 2–10, https://doi.org/10.1016/j. cej.2009.09.013.[137] A.M. Awad, S.M.R. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor, S. Adham, Adsorption of organic pollutants by natural and modified clays: a comprehensive review, Sep. Purif. Technol. 228 (2019), 115719, https://doi.org/ 10.1016/J.SEPPUR.2019.115719.[138] J.P. Maity, C.M. Hsu, T.J. Lin, W.C. Lee, P. Bhattacharya, J. Bundschuh, C. Y. Chen, Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: adsorption isotherm, adsorption kinetic and adsorption thermodynamics, Environ. Nanotechnology, Monit. Manag. 9 (2018) 18–28, https://doi.org/10.1016/j. enmm.2017.11.001.[139] S. Hong, C. Wen, J. He, F. Gan, Y.S. Ho, Adsorption thermodynamics of methylene blue onto bentonite, J. Hazard. Mater. 167 (2009) 630–633, https://doi.org/ 10.1016/J.JHAZMAT.2009.01.014.[140] S.S. Lyubchik, A. Lyubchik, O. Lygina, S.S. Lyubchik, I. Fonsec, Comparison of the thermodynamic parameters estimation for the adsorption process of the metals from liquid phase on activated carbons, in: Thermodyn. - Interact. Stud. - Solids, Liq. Gases, InTech, 2011, p. 13, https://doi.org/10.5772/19514.[141] O.S. Bello, K.A. Adegoke, O.O. Sarumi, O.S. Lameed, Functionalized locust bean pod (Parkia biglobosa) activated carbon for rhodamine B dye removal, Heliyon 5 (2019), e02323, https://doi.org/10.1016/j.heliyon.2019.e02323.[142] Z. Dehghani, M. Sedghi-Asl, M. Ghaedi, M.M. Sabzehmeidani, E. Adhami, Ultrasound-assisted adsorption of paraquat herbicide from aqueous solution by graphene oxide/ mesoporous silica, J. Environ. Chem. Eng. 9 (2021), 105043, https://doi.org/10.1016/j.jece.2021.105043.[143] E.C. ´ Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran, Adsorption: fundamental aspects and applications of adsorption for effluent treatment, in: M. Hadi Dehghani, R. Karri, E. Lima (Eds.), Green Technol. Defluoridation Water, Elsevier, 2021, pp. 41–88, https://doi.org/10.1016/b978- 0-323-85768-0.00004-x.[144] C.O. Aniagor, C.A. Igwegbe, J.O. Ighalo, S.N. Oba, Adsorption of doxycycline from aqueous media: a review, J. Mol. Liq. 334 (2021), 116124, https://doi.org/ 10.1016/J.MOLLIQ.2021.116124.[145] R. Leyva-Ramos, C.J. Geankoplis, Model simulation and analysis of surface diffusion of liquids in porous solids, Chem. Eng. Sci. 40 (1985) 799–807, https:// doi.org/10.1016/0009-2509(85)85032-6.[146] D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G. L. Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (2021), 105927, https://doi.org/10.1016/j. jece.2021.105927.[147] L. Hevira, Rahmayeni Zilfa, J.O. Ighalo, R. Zein, Biosorption of indigo carmine from aqueous solution by terminalia catappa shell, J. Environ Chem. Eng. 8 (2020), 104290, https://doi.org/10.1016/J.JECE.2020.104290.[148] C. Alvarez-Esmorís, ´ M. Conde-Cid, D. Fernandez-Calvi ´ no, ˜ M.J. Fernandez- ´ Sanjurjo, A. Núnez-Delgado, ˜ E. Alvarez-Rodríguez, ´ M. Arias-Est´evez, Adsorptiondesorption of doxycycline in agricultural soils: batch and stirred-flow-chamber experiments, Environ. Res. 186 (2020), https://doi.org/10.1016/J. ENVRES.2020.109565.[149] H.N. Tran, S.J. You, A. Hosseini-Bandegharaei, H.P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res. 120 (2017) 88–116, https://doi.org/10.1016/j. watres.2017.04.014.[150] G. Cassol, R. Gallon, M. Schwaab, E. Barbosa-Coutinho, J. Júnior, J. Pinto, Statistical evaluation of nonlinear parameter estimation procedures for adsorption equilibrium models, Adsorpt. Sci. Technol. 32 (2014) 257–274, https://doi.org/10.1260/0263-6174.32.4.257.[151] M. Jafari, M.R. Rahimi, A. Asfaram, M. Ghaedi, H. Javadian, Experimental design for the optimization of paraquat removal from aqueous media using a fixed-bed column packed with pinus eldarica stalks activated carbon, Chemosphere (2021), 132670, https://doi.org/10.1016/j.chemosphere.2021.132670.[152] M.S.F. Santos, A. Alves, L.M. Madeira, Paraquat removal from water by oxidation with Fenton's reagent, Chem. Eng. J. 175 (2011) 279–290, https://doi.org/ 10.1016/j.cej.2011.09.106.[153] N.M. Nghia, N. Negishi, N.T. Hue, Enhanced adsorption and photocatalytic activities of co-doped TiO2 immobilized on silica for paraquat, J. Electron. Mater. 47 (2018) 692–700, https://doi.org/10.1007/s11664-017-5838-5.[154] S. Kruanetr, R. Wanchanthuek, Enhancing the photocatalytic degradation of fe-ti over SiO2 nanocomposite material for paraquat removal, Mater. Res. Express. 5 (2018), https://doi.org/10.1088/2053-1591/aabe69.[155] S. Vigneshwaran, J. Preethi, S. Meenakshi, Interface engineering of ultrathin multi-functional 2D draped chitosan for efficient charge separation on the degradation of paraquat a' ˆ a mechanistic study, J. Environ. Chem. Eng. 8 (2020), 104446, https://doi.org/10.1016/j.jece.2020.104446.[156] C. Oliveira, M.S.F. Santos, F.J. Maldonado-Hodar, ´ G. Schaule, A. Alves, L. M. Madeira, Use of pipe deposits from water networks as novel catalysts in paraquat peroxidation, Chem. Eng. J. 210 (2012) 339–349, https://doi.org/ 10.1016/j.cej.2012.09.001.[157] E.M. Diaz Kirmser, D.O. M´ artire, M.C. Gonzalez, J.A. Rosso, Degradation of the herbicides clomazone, paraquat, and glyphosate by thermally activated peroxydisulfate, J. Agric. Food Chem. 58 (2010) 12858–12862, https://doi.org/ 10.1021/jf103054h.[158] A. Dhaouadi, N. Adhoum, Degradation of paraquat herbicide by electrochemical advanced oxidation methods, J. Electroanal. Chem. 637 (2009) 33–42, https:// doi.org/10.1016/j.jelechem.2009.09.027.[159] M.A.M. Cartaxo, C.M. Borges, M.I.S. Pereira, M.H. Mendonça, Electrochemical oxidation of paraquat in neutral medium, Electrochim. Acta 176 (2015) 1010–1018, https://doi.org/10.1016/j.electacta.2015.07.099.[160] S. Vigneshwaran, J. Preethi, S. Meenakshi, Interface engineering of ultrathin multi-functional 2D draped chitosan for efficient charge separation on the degradation of paraquat – a mechanistic study, J. Environ. Chem. Eng. 8 (2020), 104446, https://doi.org/10.1016/j.jece.2020.104446.[161] H. Zhang, S.K. Khanal, Y. Jia, S. Song, H. Lu, Fundamental insights into ciprofloxacin adsorption by sulfate-reducing bacteria sludge: mechanisms and thermodynamics, Chem. Eng. J. 378 (2019), 122103, https://doi.org/10.1016/j. cej.2019.122103.14149AdsorptionParaquatEcotoxicologyContaminationPublicationf2872e80-7316-4a56-b020-995de6547b54virtual::1534-1f2872e80-7316-4a56-b020-995de6547b54virtual::1534-10000-0001-7678-9130virtual::1534-1ORIGINALAdvances made in removing paraquat herbicide by adsorption technology.pdfAdvances made in removing paraquat herbicide by adsorption technology.pdfapplication/pdf2661242https://repositorio.cuc.edu.co/bitstreams/e68417e2-58e2-497b-950e-3a1d173f9b5c/downloadcc1d07eccb91ccc2b2c82f5e3f1a1617MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/67cce31a-7ab1-4373-ab0e-e89c37df4ffd/download73a5432e0b76442b22b026844140d683MD52TEXTAdvances made in removing paraquat herbicide by adsorption technology.pdf.txtAdvances made in removing paraquat herbicide by adsorption technology.pdf.txtExtracted texttext/plain100453https://repositorio.cuc.edu.co/bitstreams/912c2341-986a-48c8-b65c-919f30fdcf1c/download393d9e151cad2cf5453478ccd8704756MD53THUMBNAILAdvances made in removing paraquat herbicide by adsorption technology.pdf.jpgAdvances made in removing paraquat herbicide by adsorption technology.pdf.jpgGenerated Thumbnailimage/jpeg14685https://repositorio.cuc.edu.co/bitstreams/dc703b9c-f63c-4cfd-b184-822eec5e1f36/download62b6eae97231cd133240fce226d9c87bMD5411323/13358oai:repositorio.cuc.edu.co:11323/133582025-06-20 11:30:44.571https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier Ltd. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K