Modelo para la planeación del surtido, asignación de espacio y localización en góndola

Introduction− A retailer's operational decisions involve satisfying demand through their assortment, achieving the greatest possible utility and making the best allowed use of their exhibition space. This article presents an integer li-near mixed programming model, the purpose of which is to ma...

Full description

Autores:
Palacios Villarraga, Nicolás Felipe
Ruiz-Cruz, Carlos Rodrigo
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5808
Acceso en línea:
https://hdl.handle.net/11323/5808
https://doi.org/10.17981/ingecuc.15.2.2019.03
https://repositorio.cuc.edu.co/
Palabra clave:
Planeación del surtido
Planeación del surtido
Asignación y localización en góndola
Comercio al detal
Modelos matemáticos
Programación lineal entera mixta
Assortment planning
Gondola assignment and location
Retail trade
Mathematical models
Mixed integer linear programming
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_70394ca41103db216fb1903bb4710436
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5808
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Modelo para la planeación del surtido, asignación de espacio y localización en góndola
dc.title.translated.spa.fl_str_mv Assortment planning, space assignment and shelf location model
title Modelo para la planeación del surtido, asignación de espacio y localización en góndola
spellingShingle Modelo para la planeación del surtido, asignación de espacio y localización en góndola
Planeación del surtido
Planeación del surtido
Asignación y localización en góndola
Comercio al detal
Modelos matemáticos
Programación lineal entera mixta
Assortment planning
Gondola assignment and location
Retail trade
Mathematical models
Mixed integer linear programming
title_short Modelo para la planeación del surtido, asignación de espacio y localización en góndola
title_full Modelo para la planeación del surtido, asignación de espacio y localización en góndola
title_fullStr Modelo para la planeación del surtido, asignación de espacio y localización en góndola
title_full_unstemmed Modelo para la planeación del surtido, asignación de espacio y localización en góndola
title_sort Modelo para la planeación del surtido, asignación de espacio y localización en góndola
dc.creator.fl_str_mv Palacios Villarraga, Nicolás Felipe
Ruiz-Cruz, Carlos Rodrigo
dc.contributor.author.spa.fl_str_mv Palacios Villarraga, Nicolás Felipe
Ruiz-Cruz, Carlos Rodrigo
dc.subject.spa.fl_str_mv Planeación del surtido
topic Planeación del surtido
Planeación del surtido
Asignación y localización en góndola
Comercio al detal
Modelos matemáticos
Programación lineal entera mixta
Assortment planning
Gondola assignment and location
Retail trade
Mathematical models
Mixed integer linear programming
dc.subject.proposal.spa.fl_str_mv Planeación del surtido
Asignación y localización en góndola
Comercio al detal
Modelos matemáticos
Programación lineal entera mixta
dc.subject.proposal.eng.fl_str_mv Assortment planning
Gondola assignment and location
Retail trade
Mathematical models
Mixed integer linear programming
description Introduction− A retailer's operational decisions involve satisfying demand through their assortment, achieving the greatest possible utility and making the best allowed use of their exhibition space. This article presents an integer li-near mixed programming model, the purpose of which is to maximize a retailer's profitability, considering the effects of dynamic substitution between items, impacts of space elas-ticity on demand, expected exhibit service levels, and buyer decisions.Objective− To propose a model that supports decision ma-king in the allocation of space, assortment planning and location in a retailer's gondola.Methodology− First, different factors affecting the deci-sions being studied are analyzed using primary and secon-dary sources. Then we develop the mathematical model and evaluate its performance using real data of a category of products in a point of sale of a supermarket chain.Results− In the test instance the optimal solution is obtai-ned in a reasonable computational time, allowing to esta-blish the best way in which to manage the assortment at the point of sale, surpassing the results of the current method.Conclusions− The proposed model allows to increase the utility of the chain through the adequate assortment, with the right exhibition spaces and the exact location of the se-lected items.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-09-13
dc.date.accessioned.none.fl_str_mv 2020-01-13T19:11:14Z
dc.date.available.none.fl_str_mv 2020-01-13T19:11:14Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv N. Palacios-Villarraga; C. Ruiz-Cruz; “Modelo para la planeación del surtido, asignación de espacio y localización en góndola” INGE CUC, vol. 15, no. 2, pp. 23-35, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.03
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5808
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.15.2.2019.03
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.15.2.2019.03
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.spa.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv N. Palacios-Villarraga; C. Ruiz-Cruz; “Modelo para la planeación del surtido, asignación de espacio y localización en góndola” INGE CUC, vol. 15, no. 2, pp. 23-35, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.03
10.17981/ingecuc.15.2.2019.03
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5808
https://doi.org/10.17981/ingecuc.15.2.2019.03
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 15, Núm. 2 (2019)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv [1] M. Karampatsa, E. Grigoroudis and N. F. Matsatsinis, “Retail Category Management: A Review on Assortment and Shelf-Space Planning Models,” in Operational Research in Business and Economics, E. Grigoroudis, M. Doumpos, Eds., Cham, Switzerland: Springer, 2017, pp. 35–67. https://doi.org/10.1007/978-3-319-33003-7_3
[2] S. Greenhouse, “How Costco Became the Anti-Wal-Mart,” The New York Times. [Online]. Available: http://www. nytimes.com/2005/07/17/business/yourmoney/how-costcobecame-the-antiwalmart.html. [Accessed: 04-Oct-2017].
[3] A. H. Hübner and H. Kuhn, “Shelf and Inventory Management with Space-Elastic Demand,” in Operations Research Proceedings 2010, Hu B., Morasch K., Pickl S., Siegle M., eds., (GOR (Gesellschaft für Operations Research e.V.)), Berlin, Heidelberg: Springer, 2011, pp. 405–410. https:// doi.org/10.1007/978-3-642-20009-0_64
[4] P. M. Reyes and G. V. Frazier, “Goal programming model for grocery shelf space allocation,” Eur. J. Oper. Res., vol. 181, no. 2, pp. 634–644, Sep. 2007. https://doi.org/10.1016/j. ejor.2006.07.004
[5] T. W. Gruen and R. H. Shah, “Determinants and outcomes of plan objectivity and implementation in category management relationships,” J. Retail., vol. 76, no. 4, pp. 483–510, Oct. 2000. https://doi.org/10.1016/S0022-4359(00)00041-5
[6] G. Chetochine, Marketing estratégico de los canales de dictribución: Trade marketing, competencia, marca propia. Buenos aires, Argentina: Granica, 1994.
[7] N. F. Palacios, “Diseño de un Modelo para la Planeación del Surtido, Asignación de Espacio y Localización en Góndola”, M. Eng. tesis, Esc. Colomb. de Ing. Julio Garavito, Bogotá, D.C., Colombia, 2017.
[8] G. P. Cachon, C. Terwiesch and y. Xu, “Retail Assortment Planning in the Presence of Consumer Search,” Manuf. Serv. Oper. Manag., vol. 7, no. 4, pp. 330–346, Oct. 2005. https://doi.org/10.1287/msom.1050.0088
[9] R. A. Russell and T. L. Urban, “The location and allocation of products and product families on retail shelves,” Ann. Oper. Res., vol. 179, no. 1, pp. 131–147, Sep. 2010. https://doi.org/10.1007/s10479-008-0450-y
[10] C. R. Ruiz Cruz, A. zamora and C. J. Vidal, “Modelo de inventarios y espacio en góndola en puntos de venta para productos de abarrotes en un cadena de supermercados (2a. parte)”, Rev. Esc. Colomb. Ing. Julio Garavito, no. 79, pp. 15–25, Abr. 2010.
[11] G. van Ryzin and S. Mahajan, “On the Relationship Between Inventory Costs and Variety Benefits in Retail Assortments,” Manage. Sci., vol. 45, no. 11, pp. 1496–1509, Nov. 1999. https://doi.org/10.1287/mnsc.45.11.1496
[12] A. H. Hübner and H. Kuhn, “Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management,” Omega, vol. 40, no. 2, pp. 199–209, Apr. 2012. https://doi.org/10.1016/j.omega.2011.05.008
[13] z. Li, “A Single-Period Assortment Optimization Model,” Prod. Oper. Manag., vol. 16, no. 3, pp. 369–380, May. 2007. https://doi.org/10.1111/j.1937-5956.2007.tb00265.x
[14] V. Gaur and D. Honhon, “Assortment Planning and Inventory Decisions Under a Locational Choice Model,” Manage. Sci., vol. 52, no. 10, pp. 1528–1543, Oct. 2006. https://doi. org/10.1287/mnsc.1060.0580
[15] A. G. Kök and M. L. Fisher, “Demand Estimation and Assortment Optimization Under Substitution: Methodology and Application,” Oper. Res., vol. 55, no. 6, pp. 1001–1021, Oct. 2007. https://doi.org/10.1287/opre.1070.0409
[16] J.-K. Chong, T.-H. Ho and C. S. Tang, “A Modeling Framework for Category Assortment Planning,” Manuf. Serv. Oper. Manag., vol. 3, no. 3, pp. 191–210, Jul. 2001. https:// doi.org/10.1287/msom.3.3.191.9891
[17] B. Maddah and E. K. Bish, “Joint pricing, assortment, and inventory decisions for a retailer’s product line,” Nav. Res. Logist., vol. 54, no. 3, pp. 315–330, Jan. 2007. https://doi. org/10.1002/nav.20209
[18] E. yücel, F. Karaesmen, F. S. Salman and M. Türkay, “Optimizing product assortment under customer-driven demand substitution,” Eur. J. Oper. Res., vol. 199, no. 3, pp. 759– 768, Dec. 2009. https://doi.org/10.1016/j.ejor.2008.08.004
[19] R. Malsagne, “La productivité de la surface de vente passe maintenant par l’ordinateur,” Travail et Methodes, no. 274, pp. 3–8. 1972.
[20] T. Monshouwer, A. Oosterom and J. Rovers, “Het Belang van Weloverwogern Assortimnentsbeheer,” Het Levensmiddelenbedriff, pp. 385–393, 1966.
[21] X. Drèze, S. J. Hoch and M. E. Purk, “Shelf management and space elasticity,” J. Retail., vol. 70, no. 4, pp. 301–326, Dec. 1994. https://doi.org/10.1016/0022-4359(94)90002-7
[22] H. Hwang, B. Choi and M.-J. Lee, “A model for shelf space allocation and inventory control considering location and inventory level effects on demand,” Int. J. Prod. Econ., vol. 97, no. 2, pp. 185–195, Aug. 2005. https://doi.org/10.1016/j. ijpe.2004.07.003
[23] T. Flamand, A. Ghoniem, M. Haouari and B. Maddah, “Integrated assortment planning and store-wide shelf space allocation: An optimization-based approach,” Omega, vol. 81, pp. 134–149, Dec. 2018. https://doi.org/10.1016/j.omega.2017.10.006
[24] J. Irion, J.-C. Lu, F. Al-Khayyal and y.-C. Tsao, “A piecewise linearization framework for retail shelf space management models,” Eur. J. Oper. Res., vol. 222, no. 1, pp. 122–136, Oct. 2012. https://doi.org/10.1016/j.ejor.2012.04.021
[25] H. Hwang, B. Choi, and M.-J. Lee, “A model for shelf space allocation and inventory control considering location and inventory level effects on demand,” Int. J. Prod. Econ., vol. 97, no. 2, pp. 185–195, Aug. 2005. https://doi.org/10.1016/j. ijpe.2004.07.003
[26] H. Abbott and U. S. Palekar, “Retail replenishment models with display-space elastic demand,” Eur. J. Oper. Res., vol. 186, no. 2, pp. 586–607, Apr. 2008. https://doi.org/10.1016/j. ejor.2006.12.067
[27] N. Borin, P. W. Farris and J. R. Freeland, “A Model for Determining Retail Product Category Assortment and Shelf Space Allocation,” Decis. Sci., vol. 25, no. 3, pp. 359– 384, May 1994. https://doi.org/10.1111/j.1540-5915.1994. tb01848.x
[28] T. L. Urban, “An inventory-theoretic approach to product assortment and shelf-space allocation,” J. Retail., vol. 74, no. 1, pp. 15–35, Mar. 1998. https://doi.org/10.1016/S00224359(99)80086-4 MODELO PARA LA PLANEACIóN DEL SURTIDO, ASIGNACIóN DE ESPACIO y LOCALIzACIóN EN GóNDOLA
[29] M. A. Hariga, A. Al-Ahmari and A.-R. A. Mohamed, “A joint optimisation model for inventory replenishment, product assortment, shelf space and display area allocation decisions,” Eur. J. Oper. Res., vol. 181, no. 1, pp. 239– 251, Aug. 2007. https://doi.org/10.1016/j.ejor.2006.06.025
[30] A. Hübner and K. Schaal, “An integrated assortment and shelf-space optimization model with demand substitution and space-elasticity effects,” Eur. J. Oper. Res., vol. 261, no. 1, pp. 302–316, Aug. 2017. https://doi.org/10.1016/j. ejor.2017.01.039
[31] E. Frontoni, F. Marinelli, R. Rosetti and P. zingaretti, “Shelf space re-allocation for out of stock reduction,” Comput. Ind. Eng., vol. 106, pp. 32–40, Apr. 2017. https://doi. org/10.1016/j.cie.2017.01.021
[32] T. Bianchi-Aguiar, E. Silva, L. Guimarães, M. A. Carravilla and J. F. Oliveira, “Allocating products on shelves under merchandising rules: Multi-level product families with display directions,” Omega, vol. 76, pp. 47–62, Apr. 2018. https://doi.org/10.1016/j.omega.2017.04.002
[33] C. H. Mowrey, P. J. Parikh and K. R. Gue, “A model to optimize rack layout in a retail store,” Eur. J. Oper. Res., vol. 271, no. 3, pp. 1100–1112, Dec. 2018. https://doi. org/10.1016/j.ejor.2018.05.062
[34] N. Agrawal and S. A. Smith, “Optimal retail assortments for substitutable items purchased in sets,” Nav. Res. Logist., vol. 50, no. 7, pp. 793–822, May. Oct. 2003. https:// doi.org/10.1002/nav.10090
dc.relation.citationendpage.none.fl_str_mv 35
dc.relation.citationstartpage.none.fl_str_mv 23
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1965
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/40319d4c-77f8-41d7-b1b7-627c744fcf55/download
https://repositorio.cuc.edu.co/bitstreams/cc94ae92-5d31-46b9-aa8e-325fbe27a9b6/download
https://repositorio.cuc.edu.co/bitstreams/a549cee9-2fe0-4ed9-bc5c-64c1499873e2/download
https://repositorio.cuc.edu.co/bitstreams/3abe2202-23e0-49c4-b92d-1d294a9224fd/download
https://repositorio.cuc.edu.co/bitstreams/880034a4-40dd-4260-a4e6-8b52762d879f/download
https://repositorio.cuc.edu.co/bitstreams/26f53687-140a-4041-a49a-8a7571bd6721/download
bitstream.checksum.fl_str_mv 0839e144501cf814c71d6f568225d397
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
387ae2eb68d2d602a6eeb34a657ff55e
dbb6932ce73ed8759708b2ebca850cf4
5838a6fa840d7140b9dcdba708b07dae
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166832517808128
spelling Palacios Villarraga, Nicolás FelipeRuiz-Cruz, Carlos Rodrigo2020-01-13T19:11:14Z2020-01-13T19:11:14Z2019-09-13N. Palacios-Villarraga; C. Ruiz-Cruz; “Modelo para la planeación del surtido, asignación de espacio y localización en góndola” INGE CUC, vol. 15, no. 2, pp. 23-35, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.03https://hdl.handle.net/11323/5808https://doi.org/10.17981/ingecuc.15.2.2019.0310.17981/ingecuc.15.2.2019.032382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction− A retailer's operational decisions involve satisfying demand through their assortment, achieving the greatest possible utility and making the best allowed use of their exhibition space. This article presents an integer li-near mixed programming model, the purpose of which is to maximize a retailer's profitability, considering the effects of dynamic substitution between items, impacts of space elas-ticity on demand, expected exhibit service levels, and buyer decisions.Objective− To propose a model that supports decision ma-king in the allocation of space, assortment planning and location in a retailer's gondola.Methodology− First, different factors affecting the deci-sions being studied are analyzed using primary and secon-dary sources. Then we develop the mathematical model and evaluate its performance using real data of a category of products in a point of sale of a supermarket chain.Results− In the test instance the optimal solution is obtai-ned in a reasonable computational time, allowing to esta-blish the best way in which to manage the assortment at the point of sale, surpassing the results of the current method.Conclusions− The proposed model allows to increase the utility of the chain through the adequate assortment, with the right exhibition spaces and the exact location of the se-lected items.Introducción: Las decisiones operativas de un minorista implican que a través de su surtido se pueda satisfacer la demanda logrando la mayor utilidad posible haciendo el mejor uso posible de su espacio de exhibición. Este artículo presenta un modelo de programación lineal entera mixta cuyo propósito es maximizar la rentabilidad de un minorista considerando los efectos de sustitución dinámica entre artículos, impactos de la elasticidad del espacio sobre la demanda, niveles de servicio esperados de la exhibición y las decisiones de los compradores. Objetivo: Proponer un modelo que soporte la toma de decisiones de asignación de espacio, planeación del surtido y localización en góndola de un minorista. Metodología: Primero se analizan diferentes factores que afectan las decisiones objeto de estudio usando fuentes primarias y secundarias. Luego se desarrolla el modelo matemático y se evalúa su desempeño utilizando datos reales de una categoría de productos en un punto de venta de una cadena de supermercados. Resultados: En la instancia de prueba se obtiene la solución óptima en un tiempo computacional razonable y esta solución permite establecer la forma en la cual gestionar de mejor manera el surtido en el punto de venta, superando los resultados del método actual. Conclusiones: El modelo propuesto permite aumentar la utilidad de la cadena a través del surtido adecuado, con los espacios de exhibición justos y con la localización exacta de los artículos seleccionados.Palacios Villarraga, Nicolás Felipe-will be generated-orcid-0000-0002-0279-7565-600Ruiz-Cruz, Carlos Rodrigo-will be generated-orcid-0000-0002-0671-7382-60013 páginasapplication/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 15, Núm. 2 (2019)INGE CUCINGE CUC[1] M. Karampatsa, E. Grigoroudis and N. F. Matsatsinis, “Retail Category Management: A Review on Assortment and Shelf-Space Planning Models,” in Operational Research in Business and Economics, E. Grigoroudis, M. Doumpos, Eds., Cham, Switzerland: Springer, 2017, pp. 35–67. https://doi.org/10.1007/978-3-319-33003-7_3[2] S. Greenhouse, “How Costco Became the Anti-Wal-Mart,” The New York Times. [Online]. Available: http://www. nytimes.com/2005/07/17/business/yourmoney/how-costcobecame-the-antiwalmart.html. [Accessed: 04-Oct-2017].[3] A. H. Hübner and H. Kuhn, “Shelf and Inventory Management with Space-Elastic Demand,” in Operations Research Proceedings 2010, Hu B., Morasch K., Pickl S., Siegle M., eds., (GOR (Gesellschaft für Operations Research e.V.)), Berlin, Heidelberg: Springer, 2011, pp. 405–410. https:// doi.org/10.1007/978-3-642-20009-0_64[4] P. M. Reyes and G. V. Frazier, “Goal programming model for grocery shelf space allocation,” Eur. J. Oper. Res., vol. 181, no. 2, pp. 634–644, Sep. 2007. https://doi.org/10.1016/j. ejor.2006.07.004[5] T. W. Gruen and R. H. Shah, “Determinants and outcomes of plan objectivity and implementation in category management relationships,” J. Retail., vol. 76, no. 4, pp. 483–510, Oct. 2000. https://doi.org/10.1016/S0022-4359(00)00041-5[6] G. Chetochine, Marketing estratégico de los canales de dictribución: Trade marketing, competencia, marca propia. Buenos aires, Argentina: Granica, 1994.[7] N. F. Palacios, “Diseño de un Modelo para la Planeación del Surtido, Asignación de Espacio y Localización en Góndola”, M. Eng. tesis, Esc. Colomb. de Ing. Julio Garavito, Bogotá, D.C., Colombia, 2017.[8] G. P. Cachon, C. Terwiesch and y. Xu, “Retail Assortment Planning in the Presence of Consumer Search,” Manuf. Serv. Oper. Manag., vol. 7, no. 4, pp. 330–346, Oct. 2005. https://doi.org/10.1287/msom.1050.0088[9] R. A. Russell and T. L. Urban, “The location and allocation of products and product families on retail shelves,” Ann. Oper. Res., vol. 179, no. 1, pp. 131–147, Sep. 2010. https://doi.org/10.1007/s10479-008-0450-y[10] C. R. Ruiz Cruz, A. zamora and C. J. Vidal, “Modelo de inventarios y espacio en góndola en puntos de venta para productos de abarrotes en un cadena de supermercados (2a. parte)”, Rev. Esc. Colomb. Ing. Julio Garavito, no. 79, pp. 15–25, Abr. 2010.[11] G. van Ryzin and S. Mahajan, “On the Relationship Between Inventory Costs and Variety Benefits in Retail Assortments,” Manage. Sci., vol. 45, no. 11, pp. 1496–1509, Nov. 1999. https://doi.org/10.1287/mnsc.45.11.1496[12] A. H. Hübner and H. Kuhn, “Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management,” Omega, vol. 40, no. 2, pp. 199–209, Apr. 2012. https://doi.org/10.1016/j.omega.2011.05.008[13] z. Li, “A Single-Period Assortment Optimization Model,” Prod. Oper. Manag., vol. 16, no. 3, pp. 369–380, May. 2007. https://doi.org/10.1111/j.1937-5956.2007.tb00265.x[14] V. Gaur and D. Honhon, “Assortment Planning and Inventory Decisions Under a Locational Choice Model,” Manage. Sci., vol. 52, no. 10, pp. 1528–1543, Oct. 2006. https://doi. org/10.1287/mnsc.1060.0580[15] A. G. Kök and M. L. Fisher, “Demand Estimation and Assortment Optimization Under Substitution: Methodology and Application,” Oper. Res., vol. 55, no. 6, pp. 1001–1021, Oct. 2007. https://doi.org/10.1287/opre.1070.0409[16] J.-K. Chong, T.-H. Ho and C. S. Tang, “A Modeling Framework for Category Assortment Planning,” Manuf. Serv. Oper. Manag., vol. 3, no. 3, pp. 191–210, Jul. 2001. https:// doi.org/10.1287/msom.3.3.191.9891[17] B. Maddah and E. K. Bish, “Joint pricing, assortment, and inventory decisions for a retailer’s product line,” Nav. Res. Logist., vol. 54, no. 3, pp. 315–330, Jan. 2007. https://doi. org/10.1002/nav.20209[18] E. yücel, F. Karaesmen, F. S. Salman and M. Türkay, “Optimizing product assortment under customer-driven demand substitution,” Eur. J. Oper. Res., vol. 199, no. 3, pp. 759– 768, Dec. 2009. https://doi.org/10.1016/j.ejor.2008.08.004[19] R. Malsagne, “La productivité de la surface de vente passe maintenant par l’ordinateur,” Travail et Methodes, no. 274, pp. 3–8. 1972.[20] T. Monshouwer, A. Oosterom and J. Rovers, “Het Belang van Weloverwogern Assortimnentsbeheer,” Het Levensmiddelenbedriff, pp. 385–393, 1966.[21] X. Drèze, S. J. Hoch and M. E. Purk, “Shelf management and space elasticity,” J. Retail., vol. 70, no. 4, pp. 301–326, Dec. 1994. https://doi.org/10.1016/0022-4359(94)90002-7[22] H. Hwang, B. Choi and M.-J. Lee, “A model for shelf space allocation and inventory control considering location and inventory level effects on demand,” Int. J. Prod. Econ., vol. 97, no. 2, pp. 185–195, Aug. 2005. https://doi.org/10.1016/j. ijpe.2004.07.003[23] T. Flamand, A. Ghoniem, M. Haouari and B. Maddah, “Integrated assortment planning and store-wide shelf space allocation: An optimization-based approach,” Omega, vol. 81, pp. 134–149, Dec. 2018. https://doi.org/10.1016/j.omega.2017.10.006[24] J. Irion, J.-C. Lu, F. Al-Khayyal and y.-C. Tsao, “A piecewise linearization framework for retail shelf space management models,” Eur. J. Oper. Res., vol. 222, no. 1, pp. 122–136, Oct. 2012. https://doi.org/10.1016/j.ejor.2012.04.021[25] H. Hwang, B. Choi, and M.-J. Lee, “A model for shelf space allocation and inventory control considering location and inventory level effects on demand,” Int. J. Prod. Econ., vol. 97, no. 2, pp. 185–195, Aug. 2005. https://doi.org/10.1016/j. ijpe.2004.07.003[26] H. Abbott and U. S. Palekar, “Retail replenishment models with display-space elastic demand,” Eur. J. Oper. Res., vol. 186, no. 2, pp. 586–607, Apr. 2008. https://doi.org/10.1016/j. ejor.2006.12.067[27] N. Borin, P. W. Farris and J. R. Freeland, “A Model for Determining Retail Product Category Assortment and Shelf Space Allocation,” Decis. Sci., vol. 25, no. 3, pp. 359– 384, May 1994. https://doi.org/10.1111/j.1540-5915.1994. tb01848.x[28] T. L. Urban, “An inventory-theoretic approach to product assortment and shelf-space allocation,” J. Retail., vol. 74, no. 1, pp. 15–35, Mar. 1998. https://doi.org/10.1016/S00224359(99)80086-4 MODELO PARA LA PLANEACIóN DEL SURTIDO, ASIGNACIóN DE ESPACIO y LOCALIzACIóN EN GóNDOLA[29] M. A. Hariga, A. Al-Ahmari and A.-R. A. Mohamed, “A joint optimisation model for inventory replenishment, product assortment, shelf space and display area allocation decisions,” Eur. J. Oper. Res., vol. 181, no. 1, pp. 239– 251, Aug. 2007. https://doi.org/10.1016/j.ejor.2006.06.025[30] A. Hübner and K. Schaal, “An integrated assortment and shelf-space optimization model with demand substitution and space-elasticity effects,” Eur. J. Oper. Res., vol. 261, no. 1, pp. 302–316, Aug. 2017. https://doi.org/10.1016/j. ejor.2017.01.039[31] E. Frontoni, F. Marinelli, R. Rosetti and P. zingaretti, “Shelf space re-allocation for out of stock reduction,” Comput. Ind. Eng., vol. 106, pp. 32–40, Apr. 2017. https://doi. org/10.1016/j.cie.2017.01.021[32] T. Bianchi-Aguiar, E. Silva, L. Guimarães, M. A. Carravilla and J. F. Oliveira, “Allocating products on shelves under merchandising rules: Multi-level product families with display directions,” Omega, vol. 76, pp. 47–62, Apr. 2018. https://doi.org/10.1016/j.omega.2017.04.002[33] C. H. Mowrey, P. J. Parikh and K. R. Gue, “A model to optimize rack layout in a retail store,” Eur. J. Oper. Res., vol. 271, no. 3, pp. 1100–1112, Dec. 2018. https://doi. org/10.1016/j.ejor.2018.05.062[34] N. Agrawal and S. A. Smith, “Optimal retail assortments for substitutable items purchased in sets,” Nav. Res. Logist., vol. 50, no. 7, pp. 793–822, May. Oct. 2003. https:// doi.org/10.1002/nav.100903523215INGE CUCCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2INGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1965Planeación del surtidoPlaneación del surtidoAsignación y localización en góndolaComercio al detalModelos matemáticosProgramación lineal entera mixtaAssortment planningGondola assignment and locationRetail tradeMathematical modelsMixed integer linear programmingModelo para la planeación del surtido, asignación de espacio y localización en góndolaAssortment planning, space assignment and shelf location modelArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALModelo para la planeación del surtido, asignación de espacio y localización en góndola.pdfModelo para la planeación del surtido, asignación de espacio y localización en góndola.pdfapplication/pdf1010547https://repositorio.cuc.edu.co/bitstreams/40319d4c-77f8-41d7-b1b7-627c744fcf55/download0839e144501cf814c71d6f568225d397MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/cc94ae92-5d31-46b9-aa8e-325fbe27a9b6/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/a549cee9-2fe0-4ed9-bc5c-64c1499873e2/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILModelo para la planeación del surtido, asignación de espacio y localización en góndola.pdf.jpgModelo para la planeación del surtido, asignación de espacio y localización en góndola.pdf.jpgimage/jpeg2696https://repositorio.cuc.edu.co/bitstreams/3abe2202-23e0-49c4-b92d-1d294a9224fd/download387ae2eb68d2d602a6eeb34a657ff55eMD54Modelo para la planeación del surtido, asignación de espacio y localización en góndola.pdf.jpgModelo para la planeación del surtido, asignación de espacio y localización en góndola.pdf.jpgimage/jpeg74058https://repositorio.cuc.edu.co/bitstreams/880034a4-40dd-4260-a4e6-8b52762d879f/downloaddbb6932ce73ed8759708b2ebca850cf4MD55THUMBNAILTEXTModelo para la planeación del surtido, asignación de espacio y localización en góndola.pdf.txtModelo para la planeación del surtido, asignación de espacio y localización en góndola.pdf.txttext/plain52886https://repositorio.cuc.edu.co/bitstreams/26f53687-140a-4041-a49a-8a7571bd6721/download5838a6fa840d7140b9dcdba708b07daeMD5611323/5808oai:repositorio.cuc.edu.co:11323/58082024-09-17 14:15:26.851http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=