Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption
A new bioadsorbent from Luffa cylindrica and cross-linked chitosan was proposed in the present study. Luffa was used as a natural support medium for chitosan crosslinked with glutaraldehyde (LCsG) and epichlorohydrin (LCsE). Biosponges were applied to remove Allura red from aqueous solutions. LCsG a...
- Autores:
-
Schio, Rejiane R.
Gonçalves, Janaína
Mallmann, Evandro S.
Pinto, Diana
Dotto, Guilherme Luiz
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8871
- Acceso en línea:
- https://hdl.handle.net/11323/8871
https://doi.org/10.1016/j.ijbiomac.2021.10.096
https://repositorio.cuc.edu.co/
- Palabra clave:
- Luffa cylindrica
Crosslinked
Chitosan
Adsorption
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_5b87846ab6a4a04f7e706727f928bc65 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8871 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption |
title |
Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption |
spellingShingle |
Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption Luffa cylindrica Crosslinked Chitosan Adsorption |
title_short |
Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption |
title_full |
Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption |
title_fullStr |
Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption |
title_full_unstemmed |
Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption |
title_sort |
Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption |
dc.creator.fl_str_mv |
Schio, Rejiane R. Gonçalves, Janaína Mallmann, Evandro S. Pinto, Diana Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
Schio, Rejiane R. Gonçalves, Janaína Mallmann, Evandro S. Pinto, Diana Dotto, Guilherme Luiz |
dc.subject.spa.fl_str_mv |
Luffa cylindrica Crosslinked Chitosan Adsorption |
topic |
Luffa cylindrica Crosslinked Chitosan Adsorption |
description |
A new bioadsorbent from Luffa cylindrica and cross-linked chitosan was proposed in the present study. Luffa was used as a natural support medium for chitosan crosslinked with glutaraldehyde (LCsG) and epichlorohydrin (LCsE). Biosponges were applied to remove Allura red from aqueous solutions. LCsG and LCsE were produced using different concentrations of chitosan (1%, 3% and 5% (m v−1)) and crosslinking agents (0.5%, 1.0% and 1.5% (v v−1)). Based on the FT-IR spectra, functional groups characteristic of chitosan crosslinked with glutaraldehyde and epichlorohydrin confirmed the crosslinking. In addition, the biosorbent revealed highly efficient functional groups and morphology with irregularities favorable for adsorption. It was found that the increase in the percentage of glutaraldehyde and epichlorohydrin increased the sample's swelling degree, and the degree of cross-linking was greater than 80% for all LCsG. The results regarding the degree of swelling and degree of crosslinking corroborated with the evaluation of the biosponge's adsorptive potential. The Sips model predicted the equilibrium isotherms, with a maximum adsorption capacity of 89.05 mg g−1 for LCsG and 60.91 mg g−1 for LCsE. The new procedure was successful. Luffa was excellent support for chitosan, resulting in an attractive, low-cost bioadsorbent, preventing renewable sources. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-17T16:28:19Z |
dc.date.available.none.fl_str_mv |
2021-11-17T16:28:19Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.embargoEnd.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0141-8130 1879-0003 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8871 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.ijbiomac.2021.10.096 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0141-8130 1879-0003 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8871 https://doi.org/10.1016/j.ijbiomac.2021.10.096 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] A. Dhanola, A.S. Bisht, A. Kumar, A. Kumar Influence of natural fillers on physicomechanical properties of luffa cylindrica/polyester composites Mater. Today Proc., 5 (2018), pp. 17021-17029 [2] M. Alhijazi, B. Safaei, Q. Zeeshan, M. Asmael, A. Eyvazian, Z. Qin Recent developments in luffa natural fiber composites: review Sustainability, 12 (2020), p. 7683 [3] A.A. Maamoun, R.H. El-akkad, M.A. Farag Mapping metabolome changes in Luffa aegyptiaca mill fruits at different maturation stages via MS-based metabolomics and chemometrics J. Adv. Res., 29 (2021), pp. 179-189 [4] V.K. Patel, A. Dhanola Influence of CaCO3, Al2O3, and TiO2 microfillers on physicomechanical properties of Luffa cylindrica/polyester composites Int. J. Eng. Sci. Technol., 19 (2016), pp. 676-683 [5] Y. Chen, F. Yuan, Q. Su, C. Yu, K. Zhang, P. Luo, D. Hu, Y. Guo A novel sound absorbing material comprising discarded luffa scraps and polyester fibers J. Clean. Prod., 245 (2020), Article 118917 ArticleDownload PDFView Record in ScopusGoogle Scholar [6] F.J. Amaku, F. Onwu Kinetic studies on the effect of Pb (II), Ni (II) and Cd (II) ions on biosorption of Cr (III) ion from aqueous solutions by Luffa cylindrica fibre Adv. Appl. Sci. Res., 6 (2015), pp. 180-188 [7] M. Salimi, Z. Salehi, H. Heidari, F. Vahabzadeh Production of activated biochar from Luffa cylindrica and its application for adsorption of 4-nitrophenol J. Environ. Chem., 9 (2021), Article 105403 [8] A.U. Emene, R. Edyvean Removal of Pb (II) ions from solution using chemically modified Luffa cylindrica as a method of sustainable water treatment Int. J. Eng. Res., 10 (2019), pp. 344-364 [9] Q. Kong, Y. Wang, L. Shu, M. Miao Isotherm, kinetic, and thermodynamic equations for cefalexin removal from liquids using activated carbon synthesized from loofah sponge Desalin. Water Treat., 57 (2016), pp. 7933-7942 [10] F. Xiao, J. Cheng, W. Cao, C. Yang, J. Chen, Z. Luo Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars J. Colloid Interface Sci., 540 (2019), pp. 579-584 [11] A.H. Gedam, R.S. Dongre Activated carbon from Luffa cylindrica doped chitosan for mitigation of lead(II) from an aqueous solution RSC Adv., 6 (2016), pp. 22639-22652 [12] J.M.N. Dos Santos, C.R. Pereira, E.L. Foletto, G.L. Dotto Alternative synthesis for ZnFe2O4/chitosan magnetic particles to remove diclofenac from water by adsorption Int. J. Biol. Macromol., 131 (2019), pp. 301-308 [13] Z. Li, S. Yahyaoui, M. Bouzid, A. Erto, G.L. Dotto Interpretation of diclofenac adsorption onto ZnFe2O4/chitosan magnetic composite via BET modified model by using statistical physics formalism J. Mol. Liq., 114858 (2020) [14] J.O. Gonçalves, G.L. Dotto, L.A.A. Pinto Cyanoguanidine-crosslinked chitosan to adsorption of food dyes in the aqueous binary system J. Mol. Liq., 211 (2015), pp. 425-430 [15] D.C.S. Alves, J.O. Gonçalves, B.B. Coseglio, T.A.L. Burgo, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadavaral Jr Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon nanotubes J. Environ. Chem. Eng., 7 (6) (2019), Article 103460 [16] S. Abraham, D. Rajamanick, B. Srinivasan Preparation, characterization and cross-linking of chitosan by microwave assisted synthesis Sci. Int., 6 (1) (2018), pp. 18-30 [17] B. Zhang, R. Hu, D. Sun, T. Wu, Y. Li Fabrication of chitosan/magnetite-graphene oxide composites as a novel bioadsorbent for adsorption and detoxification of Cr(VI) from aqueous solution Sci. Rep., 8 (1) (2018), pp. 1-12 [18] I.O. Saheed, O.W. Da, F.B.M. Suah Chitosan modifications for adsorption of pollutants - a review J. Hazard. Mater., 408 (2020), Article 124889 [19] J.M. Moura, B.S. Farias, D.A.S. Rodrigues, C.M. Moura, G.L. Dotto, L.A.A. Pinto Preparation of chitosan with different characteristics and its application for biofilms production J. Polym. Environ., 23 (2015), pp. 470-477 [20] H. Koseoglu Biotemplated Luffa cylindrical for the oil spill clean-up from seawater Desalin. Water Treat., 1–9 (2016) [21] A.H. Chen, S.C. Liu, C.Y. Chen, C.Y. Chen Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin J. Hazard. Mater., 154 (1–3) (2008), pp. 184-191 [22] J.O. Gonçalves, J.P. Santos, E.C. Rios, M.M. Crispim, G.L. Dotto, L.A.A. Pinto Development of chitosan based hybrid hydrogels for dyes removal from aqueous binary system J. Mol. Liq., 225 (2017), pp. 265-270 [23] R.M. Silverstein, F.X. Webster, D.J. Kiemle Spectrometric Identification of Organic Compounds John Wiley & Sons, New York (2007) [24] R. Dash, M. Foston, A.J. Ragauskas Improving the mechanical and thermal properties of gelatin hydrogels crosslinked by cellulose nanowhiskers Carbohydr. Polym., 91 (2) (2013), pp. 638-645 [25] H.Z. Freundlich Over the adsorption in solution J. Phys. Chem., 57 (1906), p. 385 [26] I. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum J. Am. Chem. Soc., 40 (1918), pp. 1361-1403 [27] R. Sips On the structure of a catalyst surface J. Chem. Phys., 16 (1948), pp. 490-495 [28] G. Martínez-Mejíaa, N.A. Vázquez-Torres, A. Castell-Rodríguez, J.M. Río, M.C.R. Jiménez-Juárez Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions Colloids Surf. A Physicochem. Eng. Asp., 579 (2019) [29] Q. Liu, N. Ji, L. Xiong, Q. Sun Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dynamic covalent crosslinking Carbohydr. Polym., 246 (2020) [30] V.N. Tirtom, A. Dinçer, S. Becerik, T. Aydemir, A. Çelik Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution Chem. Eng. Sci., 197 (2012), pp. 379-386 [31] A.H. Jawad, A.S. Abdulhameed, A. Reghioua, Z.M. Yaseen Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes Int. J. Biol. Macromol., 163 (2020), pp. 756-765 [32] V.B. Gavalyan Synthesis and characterization of new chitosan-based Schiff base compounds Carbohydr. Polym., 145 (2016), pp. 37-47 [33] N. Nematidil, M. Sadeghi, S. Nezami, H. Sadeghi Synthesis and characterization of Schiff-base based chitosan-g-glutaraldehyde/NaMMTNPs-APTES for removal Pb2+ and Hg2+ ions Carbohydr. Polym., 222 (2019) [34] H.F.G. Barbosa, D.S. Francisco, A.P.G. Ferreira, E.T.G. Cavalheiro A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR Carbohydr. Polym., 255 (2019) [35] D. Pathania, A. Sharma, V. Sethi Microwave induced graft copolymerization of binary monomers onto luffa cylindrica fiber: removal of congo red Procedia Eng., 200 (2017), pp. 408-415 [36] Y. Wang, X. Wang, Y. Xiong, J. Fan, Z. Zheng, Y. Li, L. Dong, Z. Zhao Extraction optimization, separation and antioxidant activity of Luffa cylindrica polysaccharides Food Bioprod. Process., 116 (2019), pp. 98-104 [37] A. Khadir, M. Negarestani, A. Mollahosseini Sequestration of a non-steroidal anti-inflammatory drug from aquatic media by lignocellulosic material (Luffa cylindrica) reinforced with polypyrrole: study of parameters, kinetics, and equilibrium J. Environ Chem. Eng., 8 (3) (2020) [38] L. Poon, L.D. Wilson, J.V. Headley Chitosan–glutaraldehyde copolymers and their sorption properties Carbohydr. Polym., 109 (2014), pp. 92-101 [39] R.R. Schio, B.C. Rosa, J.O. Gonçalves, L.A.A. Pinto, E.S. Mallmann, G.L. Dotto Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye Int. J. Biol. Macromol., 121 (2019), pp. 373-380 [40] G.L. Dotto, J.M.N. Santos, E.H. Tanabe, D.A. Bertuol, E.L. Foletto, E.C. Lima, F.A. Pavan Chitosan/polyamide nanofibers prepared by Forcespinning® technology: a new adsorbent to remove anionic dyes from aqueous solutions J. Clean. Prod., 144 (2017), pp. 120-129 [41] C.P. Pinheiro, L.M.K. Moreira, S.S. Alves, T.R.S. Cadaval Jr, L.A.A. Pinto Anthocyanins concentration by adsorption onto chitosan and alginate beads: isotherms, kinetics and thermodynamics parameters Int. J. Biol. Macromol., 166 (2021), pp. 934-939 [42] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A.Ben Lamine Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon Fluid Phase Equil., 387 (2015), pp. 103-110 [43] A. Gómez-Avilés, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, J. Bédia, C. Bélver Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modeling Chem. Eng. J., 404 (2021), Article 126601 [44] Y. Feng, Q. Liu, Y. Yu, Q. Kong, L. Zhou, Y. Du, X. Wang Norfloxacin removal from aqueous solution using biochar derived from luffa sponge J. Water Supply Res Technol., 67 (2018), pp. 703-714 [45] S. Li, M. Tao, Y. Xie Reduced graphene oxide modified luffa sponge as a biocomposite adsorbent for effective removal of cationic dyes from aqueous solution Desalin. Water Treat., 1–9 (2015) [46] Y. Wang, Q. Liu, L. Shu, M. Miao, Y. Liu, Q. Kong Removal of Cr(VI) from aqueous solution using Fe-modified activated carbon prepared from luffa sponge: kinetic, thermodynamic, and isotherm studies Desalin. Water Treat., 1–12 (2016) [47] H. Nadaroglu, S. Cicek, A.A. Gungor Removing Trypan blue dye using nano-Zn modified Luffa sponge Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 172 (2016), pp. 2-8 [48] A. Shahidi, N. Jalilnejad, E. Jalilnejad A study on adsorption of cadmium(II) ions from aqueous solution using Luffa cylindrica Desalin. Water Treat., 53 (2015), pp. 3570-3579 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
International Journal of Biological Macromolecules |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0141813021022534#! |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/13d80fbb-3ba7-404a-95e2-01a30364f6f9/download https://repositorio.cuc.edu.co/bitstreams/993ba2da-4a09-4d56-a4f6-8d8fbff70a4f/download https://repositorio.cuc.edu.co/bitstreams/fd24464b-6f59-4c42-8cd6-84d04053b446/download https://repositorio.cuc.edu.co/bitstreams/d0f14e9b-d7a2-4698-ac29-5d364e592c8a/download https://repositorio.cuc.edu.co/bitstreams/6e171d9c-857d-453b-b32b-0aa2fbdd010b/download |
bitstream.checksum.fl_str_mv |
db6a380c7f91a0222e4cfcd9f33924f9 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 04f4449c9a83d6b04d063ab06797d91e cee02794a9c1fecfe9a8e7e2abd6faaf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166883925295104 |
spelling |
Schio, Rejiane R.Gonçalves, JanaínaMallmann, Evandro S.Pinto, DianaDotto, Guilherme Luiz2021-11-17T16:28:19Z2021-11-17T16:28:19Z202120220141-81301879-0003https://hdl.handle.net/11323/8871https://doi.org/10.1016/j.ijbiomac.2021.10.096Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A new bioadsorbent from Luffa cylindrica and cross-linked chitosan was proposed in the present study. Luffa was used as a natural support medium for chitosan crosslinked with glutaraldehyde (LCsG) and epichlorohydrin (LCsE). Biosponges were applied to remove Allura red from aqueous solutions. LCsG and LCsE were produced using different concentrations of chitosan (1%, 3% and 5% (m v−1)) and crosslinking agents (0.5%, 1.0% and 1.5% (v v−1)). Based on the FT-IR spectra, functional groups characteristic of chitosan crosslinked with glutaraldehyde and epichlorohydrin confirmed the crosslinking. In addition, the biosorbent revealed highly efficient functional groups and morphology with irregularities favorable for adsorption. It was found that the increase in the percentage of glutaraldehyde and epichlorohydrin increased the sample's swelling degree, and the degree of cross-linking was greater than 80% for all LCsG. The results regarding the degree of swelling and degree of crosslinking corroborated with the evaluation of the biosponge's adsorptive potential. The Sips model predicted the equilibrium isotherms, with a maximum adsorption capacity of 89.05 mg g−1 for LCsG and 60.91 mg g−1 for LCsE. The new procedure was successful. Luffa was excellent support for chitosan, resulting in an attractive, low-cost bioadsorbent, preventing renewable sources.Schio, Rejiane R.Gonçalves, Janaína-will be generated-orcid-0000-0003-2152-464X-600Mallmann, Evandro S.Pinto, Diana-will be generated-orcid-0000-0002-5958-6216-600Dotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Biological Macromoleculeshttps://www.sciencedirect.com/science/article/pii/S0141813021022534#!Luffa cylindricaCrosslinkedChitosanAdsorptionDevelopment of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorptionPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] A. Dhanola, A.S. Bisht, A. Kumar, A. Kumar Influence of natural fillers on physicomechanical properties of luffa cylindrica/polyester composites Mater. Today Proc., 5 (2018), pp. 17021-17029[2] M. Alhijazi, B. Safaei, Q. Zeeshan, M. Asmael, A. Eyvazian, Z. Qin Recent developments in luffa natural fiber composites: review Sustainability, 12 (2020), p. 7683[3] A.A. Maamoun, R.H. El-akkad, M.A. Farag Mapping metabolome changes in Luffa aegyptiaca mill fruits at different maturation stages via MS-based metabolomics and chemometrics J. Adv. Res., 29 (2021), pp. 179-189[4] V.K. Patel, A. Dhanola Influence of CaCO3, Al2O3, and TiO2 microfillers on physicomechanical properties of Luffa cylindrica/polyester composites Int. J. Eng. Sci. Technol., 19 (2016), pp. 676-683[5] Y. Chen, F. Yuan, Q. Su, C. Yu, K. Zhang, P. Luo, D. Hu, Y. Guo A novel sound absorbing material comprising discarded luffa scraps and polyester fibers J. Clean. Prod., 245 (2020), Article 118917 ArticleDownload PDFView Record in ScopusGoogle Scholar[6] F.J. Amaku, F. Onwu Kinetic studies on the effect of Pb (II), Ni (II) and Cd (II) ions on biosorption of Cr (III) ion from aqueous solutions by Luffa cylindrica fibre Adv. Appl. Sci. Res., 6 (2015), pp. 180-188[7] M. Salimi, Z. Salehi, H. Heidari, F. Vahabzadeh Production of activated biochar from Luffa cylindrica and its application for adsorption of 4-nitrophenol J. Environ. Chem., 9 (2021), Article 105403[8] A.U. Emene, R. Edyvean Removal of Pb (II) ions from solution using chemically modified Luffa cylindrica as a method of sustainable water treatment Int. J. Eng. Res., 10 (2019), pp. 344-364[9] Q. Kong, Y. Wang, L. Shu, M. Miao Isotherm, kinetic, and thermodynamic equations for cefalexin removal from liquids using activated carbon synthesized from loofah sponge Desalin. Water Treat., 57 (2016), pp. 7933-7942[10] F. Xiao, J. Cheng, W. Cao, C. Yang, J. Chen, Z. Luo Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars J. Colloid Interface Sci., 540 (2019), pp. 579-584[11] A.H. Gedam, R.S. Dongre Activated carbon from Luffa cylindrica doped chitosan for mitigation of lead(II) from an aqueous solution RSC Adv., 6 (2016), pp. 22639-22652[12] J.M.N. Dos Santos, C.R. Pereira, E.L. Foletto, G.L. Dotto Alternative synthesis for ZnFe2O4/chitosan magnetic particles to remove diclofenac from water by adsorption Int. J. Biol. Macromol., 131 (2019), pp. 301-308[13] Z. Li, S. Yahyaoui, M. Bouzid, A. Erto, G.L. Dotto Interpretation of diclofenac adsorption onto ZnFe2O4/chitosan magnetic composite via BET modified model by using statistical physics formalism J. Mol. Liq., 114858 (2020)[14] J.O. Gonçalves, G.L. Dotto, L.A.A. Pinto Cyanoguanidine-crosslinked chitosan to adsorption of food dyes in the aqueous binary system J. Mol. Liq., 211 (2015), pp. 425-430[15] D.C.S. Alves, J.O. Gonçalves, B.B. Coseglio, T.A.L. Burgo, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadavaral Jr Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon nanotubes J. Environ. Chem. Eng., 7 (6) (2019), Article 103460[16] S. Abraham, D. Rajamanick, B. Srinivasan Preparation, characterization and cross-linking of chitosan by microwave assisted synthesis Sci. Int., 6 (1) (2018), pp. 18-30[17] B. Zhang, R. Hu, D. Sun, T. Wu, Y. Li Fabrication of chitosan/magnetite-graphene oxide composites as a novel bioadsorbent for adsorption and detoxification of Cr(VI) from aqueous solution Sci. Rep., 8 (1) (2018), pp. 1-12[18] I.O. Saheed, O.W. Da, F.B.M. Suah Chitosan modifications for adsorption of pollutants - a review J. Hazard. Mater., 408 (2020), Article 124889[19] J.M. Moura, B.S. Farias, D.A.S. Rodrigues, C.M. Moura, G.L. Dotto, L.A.A. Pinto Preparation of chitosan with different characteristics and its application for biofilms production J. Polym. Environ., 23 (2015), pp. 470-477[20] H. Koseoglu Biotemplated Luffa cylindrical for the oil spill clean-up from seawater Desalin. Water Treat., 1–9 (2016)[21] A.H. Chen, S.C. Liu, C.Y. Chen, C.Y. Chen Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin J. Hazard. Mater., 154 (1–3) (2008), pp. 184-191[22] J.O. Gonçalves, J.P. Santos, E.C. Rios, M.M. Crispim, G.L. Dotto, L.A.A. Pinto Development of chitosan based hybrid hydrogels for dyes removal from aqueous binary system J. Mol. Liq., 225 (2017), pp. 265-270[23] R.M. Silverstein, F.X. Webster, D.J. Kiemle Spectrometric Identification of Organic Compounds John Wiley & Sons, New York (2007)[24] R. Dash, M. Foston, A.J. Ragauskas Improving the mechanical and thermal properties of gelatin hydrogels crosslinked by cellulose nanowhiskers Carbohydr. Polym., 91 (2) (2013), pp. 638-645[25] H.Z. Freundlich Over the adsorption in solution J. Phys. Chem., 57 (1906), p. 385[26] I. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum J. Am. Chem. Soc., 40 (1918), pp. 1361-1403[27] R. Sips On the structure of a catalyst surface J. Chem. Phys., 16 (1948), pp. 490-495[28] G. Martínez-Mejíaa, N.A. Vázquez-Torres, A. Castell-Rodríguez, J.M. Río, M.C.R. Jiménez-Juárez Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions Colloids Surf. A Physicochem. Eng. Asp., 579 (2019)[29] Q. Liu, N. Ji, L. Xiong, Q. Sun Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dynamic covalent crosslinking Carbohydr. Polym., 246 (2020)[30] V.N. Tirtom, A. Dinçer, S. Becerik, T. Aydemir, A. Çelik Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution Chem. Eng. Sci., 197 (2012), pp. 379-386[31] A.H. Jawad, A.S. Abdulhameed, A. Reghioua, Z.M. Yaseen Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes Int. J. Biol. Macromol., 163 (2020), pp. 756-765[32] V.B. Gavalyan Synthesis and characterization of new chitosan-based Schiff base compounds Carbohydr. Polym., 145 (2016), pp. 37-47[33] N. Nematidil, M. Sadeghi, S. Nezami, H. Sadeghi Synthesis and characterization of Schiff-base based chitosan-g-glutaraldehyde/NaMMTNPs-APTES for removal Pb2+ and Hg2+ ions Carbohydr. Polym., 222 (2019)[34] H.F.G. Barbosa, D.S. Francisco, A.P.G. Ferreira, E.T.G. Cavalheiro A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR Carbohydr. Polym., 255 (2019)[35] D. Pathania, A. Sharma, V. Sethi Microwave induced graft copolymerization of binary monomers onto luffa cylindrica fiber: removal of congo red Procedia Eng., 200 (2017), pp. 408-415[36] Y. Wang, X. Wang, Y. Xiong, J. Fan, Z. Zheng, Y. Li, L. Dong, Z. Zhao Extraction optimization, separation and antioxidant activity of Luffa cylindrica polysaccharides Food Bioprod. Process., 116 (2019), pp. 98-104[37] A. Khadir, M. Negarestani, A. Mollahosseini Sequestration of a non-steroidal anti-inflammatory drug from aquatic media by lignocellulosic material (Luffa cylindrica) reinforced with polypyrrole: study of parameters, kinetics, and equilibrium J. Environ Chem. Eng., 8 (3) (2020)[38] L. Poon, L.D. Wilson, J.V. Headley Chitosan–glutaraldehyde copolymers and their sorption properties Carbohydr. Polym., 109 (2014), pp. 92-101[39] R.R. Schio, B.C. Rosa, J.O. Gonçalves, L.A.A. Pinto, E.S. Mallmann, G.L. Dotto Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye Int. J. Biol. Macromol., 121 (2019), pp. 373-380[40] G.L. Dotto, J.M.N. Santos, E.H. Tanabe, D.A. Bertuol, E.L. Foletto, E.C. Lima, F.A. Pavan Chitosan/polyamide nanofibers prepared by Forcespinning® technology: a new adsorbent to remove anionic dyes from aqueous solutions J. Clean. Prod., 144 (2017), pp. 120-129[41] C.P. Pinheiro, L.M.K. Moreira, S.S. Alves, T.R.S. Cadaval Jr, L.A.A. Pinto Anthocyanins concentration by adsorption onto chitosan and alginate beads: isotherms, kinetics and thermodynamics parameters Int. J. Biol. Macromol., 166 (2021), pp. 934-939[42] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A.Ben Lamine Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon Fluid Phase Equil., 387 (2015), pp. 103-110[43] A. Gómez-Avilés, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, J. Bédia, C. Bélver Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modeling Chem. Eng. J., 404 (2021), Article 126601[44] Y. Feng, Q. Liu, Y. Yu, Q. Kong, L. Zhou, Y. Du, X. Wang Norfloxacin removal from aqueous solution using biochar derived from luffa sponge J. Water Supply Res Technol., 67 (2018), pp. 703-714[45] S. Li, M. Tao, Y. Xie Reduced graphene oxide modified luffa sponge as a biocomposite adsorbent for effective removal of cationic dyes from aqueous solution Desalin. Water Treat., 1–9 (2015)[46] Y. Wang, Q. Liu, L. Shu, M. Miao, Y. Liu, Q. Kong Removal of Cr(VI) from aqueous solution using Fe-modified activated carbon prepared from luffa sponge: kinetic, thermodynamic, and isotherm studies Desalin. Water Treat., 1–12 (2016)[47] H. Nadaroglu, S. Cicek, A.A. Gungor Removing Trypan blue dye using nano-Zn modified Luffa sponge Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 172 (2016), pp. 2-8[48] A. Shahidi, N. Jalilnejad, E. Jalilnejad A study on adsorption of cadmium(II) ions from aqueous solution using Luffa cylindrica Desalin. Water Treat., 53 (2015), pp. 3570-3579PublicationORIGINALDevelopment of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption.pdfDevelopment of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption.pdfapplication/pdf84327https://repositorio.cuc.edu.co/bitstreams/13d80fbb-3ba7-404a-95e2-01a30364f6f9/downloaddb6a380c7f91a0222e4cfcd9f33924f9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/993ba2da-4a09-4d56-a4f6-8d8fbff70a4f/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/fd24464b-6f59-4c42-8cd6-84d04053b446/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILDevelopment of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption.pdf.jpgDevelopment of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption.pdf.jpgimage/jpeg53644https://repositorio.cuc.edu.co/bitstreams/d0f14e9b-d7a2-4698-ac29-5d364e592c8a/download04f4449c9a83d6b04d063ab06797d91eMD54TEXTDevelopment of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption.pdf.txtDevelopment of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption.pdf.txttext/plain1682https://repositorio.cuc.edu.co/bitstreams/6e171d9c-857d-453b-b32b-0aa2fbdd010b/downloadcee02794a9c1fecfe9a8e7e2abd6faafMD5511323/8871oai:repositorio.cuc.edu.co:11323/88712024-09-17 14:21:48.625http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |