Effect of addition of polyurea as an aggregate in mortars: analysis of microstructure and strength
The addition of polymers in construction is a new tendency and an important step toward the production of structures with better functional properties. This work investigates the addition of polyurea (PU) as a polymeric material in mortars. Polymer mortars were manufactured with the addition of poly...
- Autores:
-
Chacon, Hernan
CANO CUADRO, HEIDIS PATRICIA
Hernández Fernández, Joaquin
Guerra, Yoleima
Puello, Esneyder
Ríos-Rojas, John Fredy
Ruiz, Yolima
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9469
- Acceso en línea:
- https://hdl.handle.net/11323/9469
https://doi.org/10.3390/polym14091753
https://repositorio.cuc.edu.co/
- Palabra clave:
- Mortar
Polyurea
Characterization
Construction
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_40864a046ac695ca985348800aac92b3 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9469 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effect of addition of polyurea as an aggregate in mortars: analysis of microstructure and strength |
title |
Effect of addition of polyurea as an aggregate in mortars: analysis of microstructure and strength |
spellingShingle |
Effect of addition of polyurea as an aggregate in mortars: analysis of microstructure and strength Mortar Polyurea Characterization Construction |
title_short |
Effect of addition of polyurea as an aggregate in mortars: analysis of microstructure and strength |
title_full |
Effect of addition of polyurea as an aggregate in mortars: analysis of microstructure and strength |
title_fullStr |
Effect of addition of polyurea as an aggregate in mortars: analysis of microstructure and strength |
title_full_unstemmed |
Effect of addition of polyurea as an aggregate in mortars: analysis of microstructure and strength |
title_sort |
Effect of addition of polyurea as an aggregate in mortars: analysis of microstructure and strength |
dc.creator.fl_str_mv |
Chacon, Hernan CANO CUADRO, HEIDIS PATRICIA Hernández Fernández, Joaquin Guerra, Yoleima Puello, Esneyder Ríos-Rojas, John Fredy Ruiz, Yolima |
dc.contributor.author.spa.fl_str_mv |
Chacon, Hernan CANO CUADRO, HEIDIS PATRICIA Hernández Fernández, Joaquin Guerra, Yoleima Puello, Esneyder Ríos-Rojas, John Fredy Ruiz, Yolima |
dc.subject.proposal.eng.fl_str_mv |
Mortar Polyurea Characterization Construction |
topic |
Mortar Polyurea Characterization Construction |
description |
The addition of polymers in construction is a new tendency and an important step toward the production of structures with better functional properties. This work investigates the addition of polyurea (PU) as a polymeric material in mortars. Polymer mortars were manufactured with the addition of polyurea retained in different sieves (T50 and T100) and different concentrations (2% and 5%). The characterization of the, polyurea (PU)control mortar (PU0%) and manufactured polyurea mortars (PU2%T50, PU5%T50, PU2%T100, and PU5%T100) was conducted by means of morphological analysis, SEM, XRF, TGA, and a compressive strength test of hydraulic mortars. The results show that mortars with polyurea retained in sieve 100 with a particle size of 150 μm exhibit better thermal behavior and a greater resistance to compression with a concentration of 5% polyurea with respect to the other samples. The present work reveals that polyurea retained in sieve 100 can be considered as a polymeric additive for mortars, indicating that it could be a candidate for applications such as construction. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-24T13:27:57Z |
dc.date.available.none.fl_str_mv |
2022-08-24T13:27:57Z |
dc.date.issued.none.fl_str_mv |
2022-04-26 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Chacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. https://doi.org/10.3390/polym14091753 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9469 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.3390/polym14091753 |
dc.identifier.doi.spa.fl_str_mv |
10.3390/polym14091753 |
dc.identifier.eissn.spa.fl_str_mv |
2073-4360 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Chacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. https://doi.org/10.3390/polym14091753 10.3390/polym14091753 2073-4360 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9469 https://doi.org/10.3390/polym14091753 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Polymers |
dc.relation.references.spa.fl_str_mv |
1. Wu, G.; Ji, C.; Wang, X.; Gao, F.; Zhao, C.; Liu, Y.; Yang, G. Blast response of clay brick masonry unit walls unreinforced and reinforced with polyurea elastomer. Def. Technol. 2021, 18, 643–662. [CrossRef] 2. Sivan, P.P.; Gajendran, C.; Praveen, A.; Mahendran, C. Earthquake preparedness of new masonry constructions at seismically exposed regions a data driven approach. Mater. Today Proc. 2021. [CrossRef] 3. NSR-10 Titulo de Mampostería Structural. Available online: https://www.idrd.gov.co/sites/default/files/documentos/Construcciones/4titulo-d-nsr-100.pdf (accessed on 15 December 2021). 4. Rodríguez Sierra, F.A. Uso de Polímeros en la Reducción de Patologías de Origen Químico en Estructuras de Concreto. Bachelor’s Thesis, Universidad Catolica de Colombia, Bogotá, Colombia, 2014. 5. Zhang, X.; Du, M.; Fang, H.; Shi, M.; Zhang, C.; Wang, F. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges. Constr. Build. Mater. 2021, 299, 124290. [CrossRef] 6. Agavriloaie, L.; Oprea, S.; Barbuta, M.; Luca, F. Characterization of polymer concrete with epoxy polyurethane acryl matrix. Constr. Build. Mater. 2012, 37, 190–196. [CrossRef] 7. Huang, H.; Pang, H.; Huang, J.; Zhao, H.; Liao, B. Synthesis and characterization of ground glass fiber reinforced polyurethanebased polymer concrete as a cementitious runway repair material. Constr. Build. Mater. 2020, 242, 117221. [CrossRef] 8. Wang, R.; Yao, L.; Wang, P. Mechanism analysis and effect of styrene-acrylate copolymer powder on cement hydrates. Constr. Build. Mater. 2013, 41, 538–544. [CrossRef] 9. Hussain, H.K.; Liu, G.W.; Yong, Y.W. Experimental study to investigate mechanical properties of new material polyurethanecement composite (PUC). Constr. Build. Mater. 2014, 50, 200–208. [CrossRef] 10. De Souza, M.H.; de Souza, R.A. Análise de argamassas de reparo compostas por copolímero vinílico, PVA e SBR. Rev. Alconpat 2019, 9, 277–287. [CrossRef] 11. Maherzi, W.; Ennahal, I.; Benzerzour, M.; Mammindy-Pajany, Y.; Abriak, N.E. Study of the polymer mortar based on dredgedsediments and epoxy resin: Effect of the sediments on the behavior of the polymer mortar. Powder Technol. 2020, 361, 968–982. [CrossRef] 12. Mahdi, F.; Khan, A.A.; Abbas, H. Physiochemical properties of polymer mortar composites using resins derived from postconsumer PET bottles. Cem. Concr. Compos. 2007, 29, 241–248. [CrossRef] 13. Valero Luna, J.C.; NarváezYepes, L.F. Análisis de Construcción y Sistemas de Impermeabilización de Cubiertas en el Laboratorio Nacional de la Dirección de Impuestos y Aduanas Nacionales. Bachelor’s Thesis, Universidad Catolica de Colombia, Bogotá, Colombia, 2018. 14. Vásquez Suarez, L.I.; Villadiego Cárcamo, N.C. Caracterización Mecánica y Química del Sistema Mortero-Poliurea. Bachelor’s Thesis, Universidad de la Costa, Barranquilla, Colombia, 2018. 15. Osuská, L.; Hela, R. The Impact of Different Aggregate Types and Its Composition on Resulting Concrete Properties Representing the Water Impermeability Level of Concrete for the Construction of White Boxes. Civ. Eng. Archt. 2020, 8, 39–45. [CrossRef] 16. Cho, B.H.; Nam, B.H.; Seo, S.; Kim, J.; An, J.; Youn, H. Waterproofing performance of waterstop with adhesive bonding used at joints of underground concrete structures. Constr. Build. Mater. 2019, 221, 491–500. [CrossRef] 17. Hoja de Datos de Seguridad de EUCO QWIKJOINT 200. Available online: https://www.toxement.com.co/media/2966/hs-eucoqwikjoint-200.pdf (accessed on 21 July 2021). 18. Euco-Qwikjoint-200. Available online: https://www.toxement.com.co/media/2880/euco-qwikjoint-200.pdf (accessed on 19 August 2021). 19. Standard Test Method for Particle-Size Analysis of Soils (Withdrawn 2016). Available online: https://www.astm.org/DATABASE. CART/WITHDRAWN/D422.htm (accessed on 28 September 2021). 20. NTC121—Especificación de Desempeño Para Cemento Hidráulico. Available online: https://tienda.icontec.org/ (accessed on 18 August 2021). 21. ASTM C1157/C1157M-17 Standard Performance Specification for Hydraulic Cement. Available online: www.astm.org (accessed on 23 August 2021). 22. Ficha Técnica Cemento Tipo I. Available online: https://mnisaccp01.blob.core.windows.net/honduras/AF%20-%20Argos%20 Ficha%20teicnica%20Cemento%20Tipo%20I%20ultima%20version.pdf (accessed on 28 September 2021). 23. ASTM C109/C109M-21, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). Available online: http://www.astm.org/cgi-bin/resolver.cgi?C109C109M-21 (accessed on 28 September 2021). 24. Ávila, Y.; Restrepo, S.; Jiménez, J.; Castillo, M.; Parody, A. Análisis comparativo de la concentración de óxidos presentes en el cemento portland y lodos de plantas de tratamiento de agua potable. Afinidad 2017, 75, 68–73. 25. Giraldo, M.A. Evolución mineralógica del cemento Portland durante el proceso de hidratación. Dyna 2021, 73, 69–81. 26. Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef] 27. Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Patricia Arrieta, M. Films based on thermoplastic starch blended with pine resin derivatives for food packaging. Foods 2021, 10, 117. [CrossRef] [PubMed] 28. Trochez, J.J.; Torres Agredo, J.; Mejía de Gutiérrez, R. Study of hydration of cement pastes added with used catalytic cracking catalyst (FCC) from a colombian refinery. Rev. Fac. Ing. Univ. Antioq. 2010, 55, 26–34. 29. Giraldo, M.A.; Tobón, J.I. Mineralogical evolution of Portland cement during hydration process. Dyna. 2006, 73, 69–81. 30. Garcia-Lodeiro, I.; Goracci, G.; Dolado, J.S.; Blanco-Varela, M.T. Mineralogical and microstructural alterations in a portland cement paste after an accelerated decalcification process. Cem. Concr. Compos. 2021, 140, 106312. [CrossRef] 31. Norma Técnica Colombiana NTC 321. Available online: https://tienda.icontec.org/gp-especificacion-de-desempeno-paracemento-hidraulico-ntc121-2021.html (accessed on 5 September 2021). 32. Alberto, E.; Gómez, C.; Enrique, J.; Sastoque, P. Estudio Comparativo de las Características Físico-Mecánicas de Cuatro Cementos Comerciales Portland Tipo I. Bachelor’s Thesis, Universidad Militar Nueva Granada, Bogotá, Colombia, 2014. 33. Clemente, O.J.G.; Díaz, M.B.; Boadas, Z.D.V.M.; Carrera, J.M. Caracterización de las arenas y arcillas minerales de los depósitos de canal y planicie de inundación del río portuguesa, Venezuela. Investig. Geográficas Boletín Inst. Geogr. 2014, 2014, 18–32. 34. Angelin, A.F.; Miranda, E.J.P., Jr.; dos Santos, J.M.C.; Lintz, R.C.C.; Gachet-Barbosa, L.A. Rubberized mortar: The influence of aggregate granulometry in mechanical resistances and acoustic behavior. Constr. Build. Mater. 2019, 200, 248–254. [CrossRef] 35. Li, G.; Wang, Z.; Leung, C.K.; Tang, S.; Pan, J.; Huang, W.; Chen, E. Properties of rubberized concrete modified by using silane coupling agent and carboxylated SBR. J. Clean. Prod. 2016, 112, 797–807. [CrossRef] 36. Traversa, L.P.; Iloro, F.; Benito, D.E. Determination by thermal test of CO2 absorbed by cement mortars. Cienc. Tecnol. 2013, 3, 333–341. 37. Barbadillo Jove, F. Estudio Cinético de Degradación Térmica de Poliuretanos Mediante Análisis Termogravimétrico (TGA). Ph.D. Thesis, Universidad da Coruña, Galicia, Spain, 2015. 38. Won-In, K.; Boonruang, C.; Dararutana, P. Characterization of polyurea elastomer used for blast mitigation. AIP Conf. Proc. 2020, 2279, 070003. 39. Ate¸s, E. Optimization of Compression Strength by Granulometry and Change of Binder Rates in Epoxy and Polyester Resin Concrete. J. Reinf. Plast. Compos. 2009, 28, 235–246. [CrossRef] 40. Carrión, F.; Montalbán, L.; Real, J.I.; Real, T. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers. Sci. World J. 2014, 2014, 526346. [CrossRef] [PubMed] |
dc.relation.citationendpage.spa.fl_str_mv |
15 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
9 |
dc.relation.citationvolume.spa.fl_str_mv |
14 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 by the authors. Licensee MDPI, Basel, Switzerland. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI AG |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2073-4360/14/9/1753/htm |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/02ebb2c0-48fc-4328-8fda-da842264bc25/download https://repositorio.cuc.edu.co/bitstreams/a8f18813-714a-455e-ad3a-23aa79c38fb1/download https://repositorio.cuc.edu.co/bitstreams/7f23c508-40a4-43e3-8eca-cae91feecc01/download https://repositorio.cuc.edu.co/bitstreams/acba62f3-23ab-4f78-9d89-9440214f5f8d/download |
bitstream.checksum.fl_str_mv |
ce59c60c2d64be7bd1112236bfebe8a1 e30e9215131d99561d40d6b0abbe9bad 77ee077b7cbb96f543cbeef77bdd7fbe 2067f8b72d945468ae22d49ac1dddaa0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166853071994880 |
spelling |
Chacon, HernanCANO CUADRO, HEIDIS PATRICIAHernández Fernández, JoaquinGuerra, YoleimaPuello, EsneyderRíos-Rojas, John FredyRuiz, Yolima2022-08-24T13:27:57Z2022-08-24T13:27:57Z2022-04-26Chacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. https://doi.org/10.3390/polym14091753https://hdl.handle.net/11323/9469https://doi.org/10.3390/polym1409175310.3390/polym140917532073-4360Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The addition of polymers in construction is a new tendency and an important step toward the production of structures with better functional properties. This work investigates the addition of polyurea (PU) as a polymeric material in mortars. Polymer mortars were manufactured with the addition of polyurea retained in different sieves (T50 and T100) and different concentrations (2% and 5%). The characterization of the, polyurea (PU)control mortar (PU0%) and manufactured polyurea mortars (PU2%T50, PU5%T50, PU2%T100, and PU5%T100) was conducted by means of morphological analysis, SEM, XRF, TGA, and a compressive strength test of hydraulic mortars. The results show that mortars with polyurea retained in sieve 100 with a particle size of 150 μm exhibit better thermal behavior and a greater resistance to compression with a concentration of 5% polyurea with respect to the other samples. The present work reveals that polyurea retained in sieve 100 can be considered as a polymeric additive for mortars, indicating that it could be a candidate for applications such as construction.15 páginasapplication/pdfengMDPI AGSwitzerlandAtribución 4.0 Internacional (CC BY 4.0)© 2022 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Effect of addition of polyurea as an aggregate in mortars: analysis of microstructure and strengthArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.mdpi.com/2073-4360/14/9/1753/htmPolymers1. Wu, G.; Ji, C.; Wang, X.; Gao, F.; Zhao, C.; Liu, Y.; Yang, G. Blast response of clay brick masonry unit walls unreinforced and reinforced with polyurea elastomer. Def. Technol. 2021, 18, 643–662. [CrossRef]2. Sivan, P.P.; Gajendran, C.; Praveen, A.; Mahendran, C. Earthquake preparedness of new masonry constructions at seismically exposed regions a data driven approach. Mater. Today Proc. 2021. [CrossRef]3. NSR-10 Titulo de Mampostería Structural. Available online: https://www.idrd.gov.co/sites/default/files/documentos/Construcciones/4titulo-d-nsr-100.pdf (accessed on 15 December 2021).4. Rodríguez Sierra, F.A. Uso de Polímeros en la Reducción de Patologías de Origen Químico en Estructuras de Concreto. Bachelor’s Thesis, Universidad Catolica de Colombia, Bogotá, Colombia, 2014.5. Zhang, X.; Du, M.; Fang, H.; Shi, M.; Zhang, C.; Wang, F. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges. Constr. Build. Mater. 2021, 299, 124290. [CrossRef]6. Agavriloaie, L.; Oprea, S.; Barbuta, M.; Luca, F. Characterization of polymer concrete with epoxy polyurethane acryl matrix. Constr. Build. Mater. 2012, 37, 190–196. [CrossRef]7. Huang, H.; Pang, H.; Huang, J.; Zhao, H.; Liao, B. Synthesis and characterization of ground glass fiber reinforced polyurethanebased polymer concrete as a cementitious runway repair material. Constr. Build. Mater. 2020, 242, 117221. [CrossRef]8. Wang, R.; Yao, L.; Wang, P. Mechanism analysis and effect of styrene-acrylate copolymer powder on cement hydrates. Constr. Build. Mater. 2013, 41, 538–544. [CrossRef]9. Hussain, H.K.; Liu, G.W.; Yong, Y.W. Experimental study to investigate mechanical properties of new material polyurethanecement composite (PUC). Constr. Build. Mater. 2014, 50, 200–208. [CrossRef]10. De Souza, M.H.; de Souza, R.A. Análise de argamassas de reparo compostas por copolímero vinílico, PVA e SBR. Rev. Alconpat 2019, 9, 277–287. [CrossRef]11. Maherzi, W.; Ennahal, I.; Benzerzour, M.; Mammindy-Pajany, Y.; Abriak, N.E. Study of the polymer mortar based on dredgedsediments and epoxy resin: Effect of the sediments on the behavior of the polymer mortar. Powder Technol. 2020, 361, 968–982. [CrossRef]12. Mahdi, F.; Khan, A.A.; Abbas, H. Physiochemical properties of polymer mortar composites using resins derived from postconsumer PET bottles. Cem. Concr. Compos. 2007, 29, 241–248. [CrossRef]13. Valero Luna, J.C.; NarváezYepes, L.F. Análisis de Construcción y Sistemas de Impermeabilización de Cubiertas en el Laboratorio Nacional de la Dirección de Impuestos y Aduanas Nacionales. Bachelor’s Thesis, Universidad Catolica de Colombia, Bogotá, Colombia, 2018.14. Vásquez Suarez, L.I.; Villadiego Cárcamo, N.C. Caracterización Mecánica y Química del Sistema Mortero-Poliurea. Bachelor’s Thesis, Universidad de la Costa, Barranquilla, Colombia, 2018.15. Osuská, L.; Hela, R. The Impact of Different Aggregate Types and Its Composition on Resulting Concrete Properties Representing the Water Impermeability Level of Concrete for the Construction of White Boxes. Civ. Eng. Archt. 2020, 8, 39–45. [CrossRef]16. Cho, B.H.; Nam, B.H.; Seo, S.; Kim, J.; An, J.; Youn, H. Waterproofing performance of waterstop with adhesive bonding used at joints of underground concrete structures. Constr. Build. Mater. 2019, 221, 491–500. [CrossRef]17. Hoja de Datos de Seguridad de EUCO QWIKJOINT 200. Available online: https://www.toxement.com.co/media/2966/hs-eucoqwikjoint-200.pdf (accessed on 21 July 2021).18. Euco-Qwikjoint-200. Available online: https://www.toxement.com.co/media/2880/euco-qwikjoint-200.pdf (accessed on 19 August 2021).19. Standard Test Method for Particle-Size Analysis of Soils (Withdrawn 2016). Available online: https://www.astm.org/DATABASE. CART/WITHDRAWN/D422.htm (accessed on 28 September 2021).20. NTC121—Especificación de Desempeño Para Cemento Hidráulico. Available online: https://tienda.icontec.org/ (accessed on 18 August 2021).21. ASTM C1157/C1157M-17 Standard Performance Specification for Hydraulic Cement. Available online: www.astm.org (accessed on 23 August 2021).22. Ficha Técnica Cemento Tipo I. Available online: https://mnisaccp01.blob.core.windows.net/honduras/AF%20-%20Argos%20 Ficha%20teicnica%20Cemento%20Tipo%20I%20ultima%20version.pdf (accessed on 28 September 2021).23. ASTM C109/C109M-21, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). Available online: http://www.astm.org/cgi-bin/resolver.cgi?C109C109M-21 (accessed on 28 September 2021).24. Ávila, Y.; Restrepo, S.; Jiménez, J.; Castillo, M.; Parody, A. Análisis comparativo de la concentración de óxidos presentes en el cemento portland y lodos de plantas de tratamiento de agua potable. Afinidad 2017, 75, 68–73.25. Giraldo, M.A. Evolución mineralógica del cemento Portland durante el proceso de hidratación. Dyna 2021, 73, 69–81.26. Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef]27. Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Patricia Arrieta, M. Films based on thermoplastic starch blended with pine resin derivatives for food packaging. Foods 2021, 10, 117. [CrossRef] [PubMed]28. Trochez, J.J.; Torres Agredo, J.; Mejía de Gutiérrez, R. Study of hydration of cement pastes added with used catalytic cracking catalyst (FCC) from a colombian refinery. Rev. Fac. Ing. Univ. Antioq. 2010, 55, 26–34.29. Giraldo, M.A.; Tobón, J.I. Mineralogical evolution of Portland cement during hydration process. Dyna. 2006, 73, 69–81.30. Garcia-Lodeiro, I.; Goracci, G.; Dolado, J.S.; Blanco-Varela, M.T. Mineralogical and microstructural alterations in a portland cement paste after an accelerated decalcification process. Cem. Concr. Compos. 2021, 140, 106312. [CrossRef]31. Norma Técnica Colombiana NTC 321. Available online: https://tienda.icontec.org/gp-especificacion-de-desempeno-paracemento-hidraulico-ntc121-2021.html (accessed on 5 September 2021).32. Alberto, E.; Gómez, C.; Enrique, J.; Sastoque, P. Estudio Comparativo de las Características Físico-Mecánicas de Cuatro Cementos Comerciales Portland Tipo I. Bachelor’s Thesis, Universidad Militar Nueva Granada, Bogotá, Colombia, 2014.33. Clemente, O.J.G.; Díaz, M.B.; Boadas, Z.D.V.M.; Carrera, J.M. Caracterización de las arenas y arcillas minerales de los depósitos de canal y planicie de inundación del río portuguesa, Venezuela. Investig. Geográficas Boletín Inst. Geogr. 2014, 2014, 18–32.34. Angelin, A.F.; Miranda, E.J.P., Jr.; dos Santos, J.M.C.; Lintz, R.C.C.; Gachet-Barbosa, L.A. Rubberized mortar: The influence of aggregate granulometry in mechanical resistances and acoustic behavior. Constr. Build. Mater. 2019, 200, 248–254. [CrossRef]35. Li, G.; Wang, Z.; Leung, C.K.; Tang, S.; Pan, J.; Huang, W.; Chen, E. Properties of rubberized concrete modified by using silane coupling agent and carboxylated SBR. J. Clean. Prod. 2016, 112, 797–807. [CrossRef]36. Traversa, L.P.; Iloro, F.; Benito, D.E. Determination by thermal test of CO2 absorbed by cement mortars. Cienc. Tecnol. 2013, 3, 333–341.37. Barbadillo Jove, F. Estudio Cinético de Degradación Térmica de Poliuretanos Mediante Análisis Termogravimétrico (TGA). Ph.D. Thesis, Universidad da Coruña, Galicia, Spain, 2015.38. Won-In, K.; Boonruang, C.; Dararutana, P. Characterization of polyurea elastomer used for blast mitigation. AIP Conf. Proc. 2020, 2279, 070003.39. Ate¸s, E. Optimization of Compression Strength by Granulometry and Change of Binder Rates in Epoxy and Polyester Resin Concrete. J. Reinf. Plast. Compos. 2009, 28, 235–246. [CrossRef]40. Carrión, F.; Montalbán, L.; Real, J.I.; Real, T. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers. Sci. World J. 2014, 2014, 526346. [CrossRef] [PubMed]151914MortarPolyureaCharacterizationConstructionPublicationORIGINALEffect of Addition of Polyurea as an Aggregate in Mortars. Analysis of Microstructure and Strength.pdfEffect of Addition of Polyurea as an Aggregate in Mortars. Analysis of Microstructure and Strength.pdfapplication/pdf7674563https://repositorio.cuc.edu.co/bitstreams/02ebb2c0-48fc-4328-8fda-da842264bc25/downloadce59c60c2d64be7bd1112236bfebe8a1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a8f18813-714a-455e-ad3a-23aa79c38fb1/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTEffect of Addition of Polyurea as an Aggregate in Mortars. Analysis of Microstructure and Strength.pdf.txtEffect of Addition of Polyurea as an Aggregate in Mortars. Analysis of Microstructure and Strength.pdf.txttext/plain54774https://repositorio.cuc.edu.co/bitstreams/7f23c508-40a4-43e3-8eca-cae91feecc01/download77ee077b7cbb96f543cbeef77bdd7fbeMD53THUMBNAILEffect of Addition of Polyurea as an Aggregate in Mortars. Analysis of Microstructure and Strength.pdf.jpgEffect of Addition of Polyurea as an Aggregate in Mortars. Analysis of Microstructure and Strength.pdf.jpgimage/jpeg15729https://repositorio.cuc.edu.co/bitstreams/acba62f3-23ab-4f78-9d89-9440214f5f8d/download2067f8b72d945468ae22d49ac1dddaa0MD5411323/9469oai:repositorio.cuc.edu.co:11323/94692024-09-17 14:18:14.781https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |