Estudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2 , S, NH, PH), usando la teoría del funcional de la densidad

The elimination kinetics of the compounds 5-chloro 2-methylpentene, 5-chloropentan-2-imine, (5-chloropentan-2-ylidene) phosphine and 5-chloropenta2-thione compounds were studied using the electron structure methods: B3LYP, MW1PW91 and PBEPBE with the basis set 6-31++G(2d,p), respectively, belonging...

Full description

Autores:
Márquez Brazón, E. A.
Flores-Sumoza, M. C.
Cortes Gómez, E.
Puello-Polo, E.
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7688
Acceso en línea:
https://hdl.handle.net/11323/7688
https://repositorio.cuc.edu.co/
Palabra clave:
Asistencia anquimérica
energía de estabilización
estado de transición
energía libre de activación
DFT
Ion-Par íntimo
Anchimeric Assitance
Activation free energy
DFT
intimate Ion-Par
stabilization energy
Transition state
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_3c58e50ae43da40c99eed97abbb51087
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7688
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Estudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2 , S, NH, PH), usando la teoría del funcional de la densidad
dc.title.translated.spa.fl_str_mv Study of the Influence of the polarization of the neighboring group C = X, in the kinetics of hydrogen chloride removal from b- (substituted) alkyl chlorides (X = CH2 , S, NH, PH), using the density functional theory
title Estudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2 , S, NH, PH), usando la teoría del funcional de la densidad
spellingShingle Estudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2 , S, NH, PH), usando la teoría del funcional de la densidad
Asistencia anquimérica
energía de estabilización
estado de transición
energía libre de activación
DFT
Ion-Par íntimo
Anchimeric Assitance
Activation free energy
DFT
intimate Ion-Par
stabilization energy
Transition state
title_short Estudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2 , S, NH, PH), usando la teoría del funcional de la densidad
title_full Estudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2 , S, NH, PH), usando la teoría del funcional de la densidad
title_fullStr Estudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2 , S, NH, PH), usando la teoría del funcional de la densidad
title_full_unstemmed Estudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2 , S, NH, PH), usando la teoría del funcional de la densidad
title_sort Estudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2 , S, NH, PH), usando la teoría del funcional de la densidad
dc.creator.fl_str_mv Márquez Brazón, E. A.
Flores-Sumoza, M. C.
Cortes Gómez, E.
Puello-Polo, E.
dc.contributor.author.spa.fl_str_mv Márquez Brazón, E. A.
Flores-Sumoza, M. C.
Cortes Gómez, E.
Puello-Polo, E.
dc.subject.spa.fl_str_mv Asistencia anquimérica
energía de estabilización
estado de transición
energía libre de activación
DFT
Ion-Par íntimo
Anchimeric Assitance
Activation free energy
DFT
intimate Ion-Par
stabilization energy
Transition state
topic Asistencia anquimérica
energía de estabilización
estado de transición
energía libre de activación
DFT
Ion-Par íntimo
Anchimeric Assitance
Activation free energy
DFT
intimate Ion-Par
stabilization energy
Transition state
description The elimination kinetics of the compounds 5-chloro 2-methylpentene, 5-chloropentan-2-imine, (5-chloropentan-2-ylidene) phosphine and 5-chloropenta2-thione compounds were studied using the electron structure methods: B3LYP, MW1PW91 and PBEPBE with the basis set 6-31++G(2d,p), respectively, belonging to the computational package G09W. According to the elimination products, two possible reaction mechanisms were proposed: a discrete path through a four-member transition state and a intime ion-par via a 5-membered cyclic transition state, where the C = X group assists, anchimerically, the HCl elimination. With the exception of the group X = CH2, the favorable mechanism occurs through an intimate Ion-Pair type 5-membered TS, where the breaking of the C2 - Cl1 bond is the determining step of the reaction. The concept of stabilization energy by anchimeric assistance was proposed and used to determine the following order of reactivity: S> PH> NH> O; A linear relationship between the free activation energy and the molecular polarizability of the transition states was found, suggesting that this parameter plays a pivotal role in the anchimerical assistance observed in these systems.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2021-01-15T01:22:56Z
dc.date.available.none.fl_str_mv 2021-01-15T01:22:56Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0001-9704
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7688
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0001-9704
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7688
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Angelini, G.; Speran M. Direct Evidence of Neighbouring Group Participation in the Gas Phase. 1978. Journal of the chemical society. Chem. Comm. 1978, 5, 213-214.
Reid, G.; Simpson, R.J.; Richard, A.; O’Hair, J. Leaving Group and Gas Phase Neighboring Group Effects in the Side Chain Losses from Protonated Serine and its Derivatives. J. Am. Soc. Mass. Espectrom. 2000, 11, 1047–1060.
Richard, A.; O’Hair, J.; Reid, G. Neighboring group versus cis-elimination mechanisms for side chain loss from protonated methionine, methionine sulfoxide and their peptides. Eur. Mass. Spectrom. 1999, 5, 325–334.
Romero, M.; Cordova, T.; Chuchani, G. Theoretical study of neighboring group participation of methyl v-chloroesters elimination kinetics in the gas phase. J. Phys. Org. Chem. 2009, 22, 403–409.
Mora, J.; Lezama, J.; Marquez, E.; Escalante, L.; Córdova, T.; Chuchani, G. Theoretical study of neighboring carbonyl group participation in the elimination kinetics of chloroketones in the gas phase. J. Phys. Org. Chem. 2011, 24, 229–240.
Luiggi, M.; Mora, J.; Loroño, M.; Marquez, E.; Lezama, J.; Cordova, T.; Chuchani, G. Theoretical calculations on the gas-phase thermal decomposition kinetics of selected thiomethyl chloroalkanes: A new insight of the mechanism. Computational and Theoretical Chemistry, 2014, 1027, 165–172.
Yoshitake, Y.; Nakagawa, H.; Harano, K. A Theoretical Study of Neighboring-Group Participation in Thione-toThiol Rearrangement of Xanthates. Molecular Orbital Calculation Using a Conductor-Like Screening Model (COSMO) Approach. Chem. Pharm. Bull. 2001, 49, 1433-1439.
Jones, R. Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 2015, 87, 897-923.
Gill P.; Johnson, B.; Pople, J. The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets. Chem. Phys. Lett. 1992, 197, 499-505
Perdew, J.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B. 1996, 54, 16533.
Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, D. A. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2009.
Peng C.; Schlegel, B. Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States. Isr. J. Chem. 1993, 33, 449-454.
Núñez, J.; Márquez, E.; Rivas, C.; Urdaneta, N. Estudio computacional del rearreglo sigmatrópico [1,3] de la 2 (Z)-3-(4-(dimetilamino)benciliden)tiocroman-4-ona. Av. Quím. 2017, 12, 23-30.
Glendening, E.; Landis, C.; Weinhold, F.. Natural bond orbital methods. WIREs Comput Mol Sci. 2012, 2, 1–42.
Wibber, K. Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedrom, 1968, 24, 1083-1096.
Moyano, A.; Perica,M.; Valenti, E. A theoretical study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetanones (.beta.-lactones). J. Org. Chem. 1989, 54, 573.
Chuchani, G. In The Chemistry of Halides, Pseudo-Halides and Azides, Ch 19, (Eds.: S. Patai, Z. Rapopport), Wiley, New York, 1995, 1069–1119.
Kuznetsova, O.; Egorochkin,A.; Khamaletdinova, N. The Influence of the Polarizability Effect on the Activation Parameters of Reactions of Organometallic Compounds. Rus. J. Gen. Chem. 2015, 85, 2617–2628.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Afinidad: Revista de química teórica y aplicada
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/43b03730-f05c-4eca-a94a-6c3c62d40ccb/download
https://repositorio.cuc.edu.co/bitstreams/2faa391a-6a52-4b3b-a8e1-d13eb2fff625/download
https://repositorio.cuc.edu.co/bitstreams/42259c17-bd09-4884-9581-67b199167fba/download
https://repositorio.cuc.edu.co/bitstreams/241ca758-406b-459d-bcb9-f1ea6854fd3f/download
https://repositorio.cuc.edu.co/bitstreams/1356dcca-f342-4344-a1a2-d12b699e7ccb/download
bitstream.checksum.fl_str_mv 03d8e40bef8b641e1a5cf5a8533108f8
934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
157aebf79834a63de579d8861d5e1866
0152c71e9b00046a02ba82d84f17849c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166844433825792
spelling Márquez Brazón, E. A.Flores-Sumoza, M. C.Cortes Gómez, E.Puello-Polo, E.2021-01-15T01:22:56Z2021-01-15T01:22:56Z20180001-9704https://hdl.handle.net/11323/7688Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The elimination kinetics of the compounds 5-chloro 2-methylpentene, 5-chloropentan-2-imine, (5-chloropentan-2-ylidene) phosphine and 5-chloropenta2-thione compounds were studied using the electron structure methods: B3LYP, MW1PW91 and PBEPBE with the basis set 6-31++G(2d,p), respectively, belonging to the computational package G09W. According to the elimination products, two possible reaction mechanisms were proposed: a discrete path through a four-member transition state and a intime ion-par via a 5-membered cyclic transition state, where the C = X group assists, anchimerically, the HCl elimination. With the exception of the group X = CH2, the favorable mechanism occurs through an intimate Ion-Pair type 5-membered TS, where the breaking of the C2 - Cl1 bond is the determining step of the reaction. The concept of stabilization energy by anchimeric assistance was proposed and used to determine the following order of reactivity: S> PH> NH> O; A linear relationship between the free activation energy and the molecular polarizability of the transition states was found, suggesting that this parameter plays a pivotal role in the anchimerical assistance observed in these systems.La cinética de eliminación de los compuestos 5-cloro-2-metilpenteno, 5-cloropentan-2-imina, (5-cloropentan-2-iliden) fosfina y 5-cloropenta-2-tiona fue estudiada usando los métodos de estructura electrónica: B3LYP, MW1PW91 y PBEPBE con el set de bases 6-31++G(2d,p), pertenecientes al paquete computacional G09W. De acuerdo a los productos de eliminación, dos posibles mecanismos de reacción fueron propuestos: una vía discreta, a través de un estado de transición de cuatro miembros y una vía ión par-íntimo, vía un estado de transición cíclico de 5 miembros donde el grupo C=X asiste, anquiméricamente, la salida del átomo de cloro. Con la excepción del grupo X=CH2, el mecanismo favorable resulto ser el que ocurre a través de un TS de 5 miembros tipo Ion-Par íntimo, donde la ruptura del enlace C2 -Cl1 es el paso determinante de la reacción. El concepto de energía de estabilización por asistencia anquimérica fue propuesto y usado para determinar el siguiente orden de reactividad: S>PH>NH>O. Se encontró una relación lineal entre la energía libre de activación y la polarizabilidad molecular de los estados de transición, sugiriendo que este parámetro juega un rol fundamental en la asistencia anquimérica observada en estos sistemas.Márquez Brazón, E. A.Flores-Sumoza, M. C.Cortes Gómez, E.Puello-Polo, E.application/pdfspaCorporación Universidad de la CostaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Afinidad: Revista de química teórica y aplicadaAsistencia anquiméricaenergía de estabilizaciónestado de transiciónenergía libre de activaciónDFTIon-Par íntimoAnchimeric AssitanceActivation free energyDFTintimate Ion-Parstabilization energyTransition stateEstudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2 , S, NH, PH), usando la teoría del funcional de la densidadStudy of the Influence of the polarization of the neighboring group C = X, in the kinetics of hydrogen chloride removal from b- (substituted) alkyl chlorides (X = CH2 , S, NH, PH), using the density functional theoryArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAngelini, G.; Speran M. Direct Evidence of Neighbouring Group Participation in the Gas Phase. 1978. Journal of the chemical society. Chem. Comm. 1978, 5, 213-214.Reid, G.; Simpson, R.J.; Richard, A.; O’Hair, J. Leaving Group and Gas Phase Neighboring Group Effects in the Side Chain Losses from Protonated Serine and its Derivatives. J. Am. Soc. Mass. Espectrom. 2000, 11, 1047–1060.Richard, A.; O’Hair, J.; Reid, G. Neighboring group versus cis-elimination mechanisms for side chain loss from protonated methionine, methionine sulfoxide and their peptides. Eur. Mass. Spectrom. 1999, 5, 325–334.Romero, M.; Cordova, T.; Chuchani, G. Theoretical study of neighboring group participation of methyl v-chloroesters elimination kinetics in the gas phase. J. Phys. Org. Chem. 2009, 22, 403–409.Mora, J.; Lezama, J.; Marquez, E.; Escalante, L.; Córdova, T.; Chuchani, G. Theoretical study of neighboring carbonyl group participation in the elimination kinetics of chloroketones in the gas phase. J. Phys. Org. Chem. 2011, 24, 229–240.Luiggi, M.; Mora, J.; Loroño, M.; Marquez, E.; Lezama, J.; Cordova, T.; Chuchani, G. Theoretical calculations on the gas-phase thermal decomposition kinetics of selected thiomethyl chloroalkanes: A new insight of the mechanism. Computational and Theoretical Chemistry, 2014, 1027, 165–172.Yoshitake, Y.; Nakagawa, H.; Harano, K. A Theoretical Study of Neighboring-Group Participation in Thione-toThiol Rearrangement of Xanthates. Molecular Orbital Calculation Using a Conductor-Like Screening Model (COSMO) Approach. Chem. Pharm. Bull. 2001, 49, 1433-1439.Jones, R. Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 2015, 87, 897-923.Gill P.; Johnson, B.; Pople, J. The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets. Chem. Phys. Lett. 1992, 197, 499-505Perdew, J.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B. 1996, 54, 16533.Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, D. A. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2009.Peng C.; Schlegel, B. Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States. Isr. J. Chem. 1993, 33, 449-454.Núñez, J.; Márquez, E.; Rivas, C.; Urdaneta, N. Estudio computacional del rearreglo sigmatrópico [1,3] de la 2 (Z)-3-(4-(dimetilamino)benciliden)tiocroman-4-ona. Av. Quím. 2017, 12, 23-30.Glendening, E.; Landis, C.; Weinhold, F.. Natural bond orbital methods. WIREs Comput Mol Sci. 2012, 2, 1–42.Wibber, K. Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedrom, 1968, 24, 1083-1096.Moyano, A.; Perica,M.; Valenti, E. A theoretical study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetanones (.beta.-lactones). J. Org. Chem. 1989, 54, 573.Chuchani, G. In The Chemistry of Halides, Pseudo-Halides and Azides, Ch 19, (Eds.: S. Patai, Z. Rapopport), Wiley, New York, 1995, 1069–1119.Kuznetsova, O.; Egorochkin,A.; Khamaletdinova, N. The Influence of the Polarizability Effect on the Activation Parameters of Reactions of Organometallic Compounds. Rus. J. Gen. Chem. 2015, 85, 2617–2628.PublicationORIGINAL335963-Article Text-483448-1-10-20180328.pdf335963-Article Text-483448-1-10-20180328.pdfapplication/pdf970358https://repositorio.cuc.edu.co/bitstreams/43b03730-f05c-4eca-a94a-6c3c62d40ccb/download03d8e40bef8b641e1a5cf5a8533108f8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/2faa391a-6a52-4b3b-a8e1-d13eb2fff625/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/42259c17-bd09-4884-9581-67b199167fba/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL335963-Article Text-483448-1-10-20180328.pdf.jpg335963-Article Text-483448-1-10-20180328.pdf.jpgimage/jpeg62933https://repositorio.cuc.edu.co/bitstreams/241ca758-406b-459d-bcb9-f1ea6854fd3f/download157aebf79834a63de579d8861d5e1866MD54TEXT335963-Article Text-483448-1-10-20180328.pdf.txt335963-Article Text-483448-1-10-20180328.pdf.txttext/plain56177https://repositorio.cuc.edu.co/bitstreams/1356dcca-f342-4344-a1a2-d12b699e7ccb/download0152c71e9b00046a02ba82d84f17849cMD5511323/7688oai:repositorio.cuc.edu.co:11323/76882024-09-17 14:17:14.613http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==