Pronóstico de viento local con alta resolución y amplio horizonte mediante modelación híbrida: heurística y estadística multivariada
Esta tesis presenta un modelo híbrido para el pronóstico de la velocidad del viento con alta resolución temporal y horizonte de largo plazo, diseñado para abordar fenómenos atmosféricos locales en una región costera tropical. La metodología combina transformadas armónicas (Fourier), análisis estadís...
- Autores:
-
Vega Zúñiga, Samuel José
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2025
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/14338
- Acceso en línea:
- https://hdl.handle.net/11323/14338
https://repositorio.cuc.edu.co/
- Palabra clave:
- Pronóstico
Regresión lineal
Heurística
Velocidad del viento
Energía eólica teórica
Fourier
DOE-ANOVA
PSO
Forecasting
Linear regression
Heuristic
Wind speed
Theorical wind energy
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_37243a14fe32c33ece6901dc144ad322 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/14338 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Pronóstico de viento local con alta resolución y amplio horizonte mediante modelación híbrida: heurística y estadística multivariada |
title |
Pronóstico de viento local con alta resolución y amplio horizonte mediante modelación híbrida: heurística y estadística multivariada |
spellingShingle |
Pronóstico de viento local con alta resolución y amplio horizonte mediante modelación híbrida: heurística y estadística multivariada Pronóstico Regresión lineal Heurística Velocidad del viento Energía eólica teórica Fourier DOE-ANOVA PSO Forecasting Linear regression Heuristic Wind speed Theorical wind energy |
title_short |
Pronóstico de viento local con alta resolución y amplio horizonte mediante modelación híbrida: heurística y estadística multivariada |
title_full |
Pronóstico de viento local con alta resolución y amplio horizonte mediante modelación híbrida: heurística y estadística multivariada |
title_fullStr |
Pronóstico de viento local con alta resolución y amplio horizonte mediante modelación híbrida: heurística y estadística multivariada |
title_full_unstemmed |
Pronóstico de viento local con alta resolución y amplio horizonte mediante modelación híbrida: heurística y estadística multivariada |
title_sort |
Pronóstico de viento local con alta resolución y amplio horizonte mediante modelación híbrida: heurística y estadística multivariada |
dc.creator.fl_str_mv |
Vega Zúñiga, Samuel José |
dc.contributor.advisor.none.fl_str_mv |
Ospino Castro, Adalberto Jose Rueda Bayona, Juan Gabriel |
dc.contributor.author.none.fl_str_mv |
Vega Zúñiga, Samuel José |
dc.contributor.jury.none.fl_str_mv |
Peña Gallardo, Rafael Sousa Santos, Vladimir Balbis Morejon, Milen |
dc.subject.proposal.spa.fl_str_mv |
Pronóstico Regresión lineal Heurística Velocidad del viento Energía eólica teórica |
topic |
Pronóstico Regresión lineal Heurística Velocidad del viento Energía eólica teórica Fourier DOE-ANOVA PSO Forecasting Linear regression Heuristic Wind speed Theorical wind energy |
dc.subject.proposal.eng.fl_str_mv |
Fourier DOE-ANOVA PSO Forecasting Linear regression Heuristic Wind speed Theorical wind energy |
description |
Esta tesis presenta un modelo híbrido para el pronóstico de la velocidad del viento con alta resolución temporal y horizonte de largo plazo, diseñado para abordar fenómenos atmosféricos locales en una región costera tropical. La metodología combina transformadas armónicas (Fourier), análisis estadístico multivariable (DOE–ANOVA) y optimización heurística mediante Enjambre de Partículas (PSO), permitiendo construir una función pronosticadora físicamente coherente y computacionalmente replicable. El estudio se fundamenta en tres objetivos específicos: (i) analizar la influencia de temperatura, presión y humedad sobre la velocidad del viento mediante DOE-ANOVA, (ii) caracterizar armónicos relevantes a partir de su atenuación, amplificación y desfase, y (iii) optimizar parámetros armónicos con PSO para construir una serie pronosticada. Se utilizaron más de 40 años de datos horarios del conjunto ERA5 y datos in situ de la estación meteorológica de la Universidad de la Costa, Barranquilla. El modelo logró un MAE de 1.586, un MSE de 2.014 y un coeficiente de correlación cercano a 0.70 en un horizonte de pronóstico de cuatro años. A partir de esta serie se estimó el potencial energético teórico del viento, con una potencia promedio de 160.78 W/m² y una energía total acumulada de 5633.58 kWh/m². Estos resultados refuerzan la aplicabilidad del modelo como herramienta preliminar para estudios de viabilidad energética en regiones no instrumentadas. La aproximación propuesta prioriza la trazabilidad metodológica, la interpretación física del fenómeno y el enfoque energético, contribuyendo a la planificación sostenible de recursos eólicos. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-07-28T16:18:49Z |
dc.date.available.none.fl_str_mv |
2025-07-28T16:18:49Z |
dc.date.issued.none.fl_str_mv |
2025-06-24 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/14338 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/14338 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Abbasipour, M., Igder, M. A., & Liang, X. (2021). Data-Driven Wind Speed Forecasting Techniques Using Hybrid Neural Network Methods. Canadian Conference on Electrical and Computer Engineering, 2021-September. https://doi.org/10.1109/CCECE53047.2021.9569032 Adewumi, I. O., & Azeez, A. A. (2023). Optimization of Biofuel Production Process Using Design of Experiments (Doe). Petro Chem Indus Intern, 6(2), 75–85. https://www.researchgate.net/publication/370132014 Aguilar, S., Santos, D. R. Dos, & Souza, R. C. (2018). Long-term forecasting of wind speed in Brazil using GAS modelling. 7th International IEEE Conference on Renewable Energy Research and Applications, ICRERA 2018, 5, 727–731. https://doi.org/10.1109/ICRERA.2018.8566731 Ahmadi, A., Nabipour, M., Mohammadi-Ivatloo, B., Amani, A. M., Rho, S., & Piran, M. J. (2020). Long-Term Wind Power Forecasting Using Tree-Based Learning Algorithms. IEEE Access, 8, 151511–151522. https://doi.org/10.1109/ACCESS.2020.3017442 Akash, R., Rangaraj, A. G., Meenal, R., & Lydia, M. (2020). Machine Learning Based Univariate Models for Long Term Wind Speed Forecasting. Proceedings of the 5th International Conference on Inventive Computation Technologies, ICICT 2020, 779–784. https://doi.org/10.1109/ICICT48043.2020.9112534 Antonio, P., & Ortiz, M. (n.d.). Modelos armónicos no lineales para series temporales geodéticas Non-linear harmonic models for geodetic time series. Arslan Tuncar, E., Sağlam, Ş., & Oral, B. (2024). A review of short-term wind power generation forecasting methods in recent technological trends. In Energy Reports (Vol. 12, pp. 197– 209). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2024.06.006 Arvanitidis, A. I., Kontogiannis, D., Vontzos, G., Laitsos, V., & Bargiotas, D. (2022). Stochastic Heuristic Optimization of Machine Learning Estimators for Short-Term Wind Power Forecasting. 2022 57th International Universities Power Engineering Conference: Big Data and Smart Grids, UPEC 2022 - Proceedings. https://doi.org/10.1109/UPEC55022.2022.9917957 Asociación Empresarial Eólica (AEE). (2024). La eólica en el mundo. https://aeeolica.org/sobre-la- eolica/la-eolica-en-el-mundo/ Assaf. (n.d.). XI Signal-to-Noise (SNR) Lecture notes by Assaf Tal. Azad, H. B., Mekhilef, S., & Ganapathy, V. G. (2014). Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Transactions on Sustainable Energy, 5(2), 546–553. https://doi.org/10.1109/TSTE.2014.2300150 Babu Y, N., & Padhy, N. P. (2023). An Approach to Improve Harmonic Attenuation and Stability Performance in Multi-Parallel Inverter System. IEEE Transactions on Power Delivery, 38(5), 3634–3646. https://doi.org/10.1109/TPWRD.2023.3287761 Bai, W., Zhu, X., & Lee, K. Y. (2021). Dynamic Optimal Power Flow Based on a Spatio-Temporal Wind Speed Forecast Model. 2021 IEEE Congress on Evolutionary Computation, CEC 2021 - Proceedings, 136–143. https://doi.org/10.1109/CEC45853.2021.9504847 Baldemar, J., & Villegas, G. (n.d.). Aplicación de diseño de experimentos para el análisis de secado de un producto (Experiment design application for analysis of the drying a product). DOE Factorial InnOvaciOnes de NegOciOs, 10, 145–158. Barbounis, T. G., Theocharis, J. B., Alexiadis, M. C., & Dokopoulos, P. S. (2006). Long-term wind speed and power forecasting using local recurrent neural network models. IEEE Transactions on Energy Conversion, 21(1), 273–284. https://doi.org/10.1109/TEC.2005.847954 Benavides Ballesteros, H. O., Simbaqueva Fonseca, O., & Zapata Lesmes, H. J. (2017). Atlas de radiación solar, ultravioleta y ozono de Colombia. Ideam-Upme. Blanco Leon, J. D. (2021). Potencial de energía solar offshore en la región del caribe Colombiano. Universidad Militar Nueva Granada. Bramer, L. (2013). Methods for modeling and forecasting wind characteristics. CAPITULO III: Mezcla de Gaussianas para clasificación 3.1 Modelos de Mezcla. (n.d.). Características, B., Mercado, D., & El, B. 1. (n.d.). ENERGÍA EÓLICA OFFSHORE EN COLOMBIA. Carrillo González, C. J. (2003). Fundamentos del Análisis de Fourier. Chamizo, F. (n.d.). Aplicaciones del análisis armónico (análisis armónico y de todo un poco). Chaurasiya, P. K., Ahmed, S., & Warudkar, V. (2018). Comparative analysis of Weibull parameters for wind data measured from met-mast and remote sensing techniques. Renewable Energy, 115, 1153–1165. https://doi.org/10.1016/j.renene.2017.08.014 Chen, G., Li, L., Zhang, Z., & Li, S. (2020). Short-term wind speed forecasting with principle- subordinate predictor based on Conv-LSTM and improved BPNN. IEEE Access, 8, 67955– 67973. https://doi.org/10.1109/ACCESS.2020.2982839 Chent, C. F. (n.d.). A New Approach to Fourier Coefficient Evaluation*. Colorado State University. (n.d.). Numerical Weather Prediction. Retrieved February 26, 2025, from https://rammb.cira.colostate.edu/wmovl/vrl/tutorials/euromet/courses/spanish/nwp/n7200/n 7200006.htm COMPARISON OF THE EFFECTIVITY Doctor of Philosophy ( PhD ) Primary Supervisor : Tek Tjing Lie Abstract. (2015). Cuevas, E., Fausto, F., Gálvez, J., & Rodriguez, A. (2021). MATLAB Computación metaheuristica y bio-inspirada (Alpha Editorial, Alphaomega Colombiana S.A., & RC Libros, Eds.; Alpha Editorial). Damiani, R. (2016). Uncertainty and Risk Assessment in the Design Process for Wind. www.nrel.gov/publications. Dong, Q., & Li, J. (2022). Short-term Wind Power Forecasting Through Combined DWT-SOM and MEEFIS Method. Proceedings - 2022 4th International Conference on Electrical Engineering and Control Technologies, CEECT 2022, 230–235. https://doi.org/10.1109/CEECT55960.2022.10030677 Elbanna, N., Nofal, A., Hussein, A., & Tash, M. (2020). Mechanical properties of thin wall ductile iron: Experimental correlation using ANOVA and DOE. Key Engineering Materials, 835 KEM, 171–177. https://doi.org/10.4028/www.scientific.net/KEM.835.171 entrega3-EDEM-MD16-17. (n.d.). EP Radio Ferrol. (2024, September 19). Iberdrola inaugura el parque de Saint-Brieuc, con plataformas y pilotes ejecutados por Navantia y Windar. https://cadenaser.com/galicia/2024/09/19/iberdrola-inaugura-el-parque-de-saint-brieuc-con- plataformas-y-pilotes-ejecutados-por-navantia-y-windar-radio- ferrol/?utm_source=chatgpt.com ESCUELA POLITÉCNICA NACIONAL ESCUELA DE INGENIERÍA. (n.d.). ESTUDIO DEL POTENCIAL EÓLICO OFFSHORE DE LA ZONA COSTERA CARIBE DE COLOMBIA. (n.d.). Euscategui, C., & Hurtado, G. (2010). ANÁLISIS DEL IMPACTO DEL FENÓMENO "LA NIÑA 2010-2011 EN LA HIDROCLIMATOLOGÍA DEL PAÍS (Issue 571). www.ideam.gov.co Figueroa, I., Isabel, D., Navarro, B., Carolina, E., & Gómez, A. (n.d.). ENERGÍA EÓLICA OFFSHORE EN COLOMBIA: VACÍOS JURÍDICOS PARA LA PROTECCIÓN DE LA DIVERSIDAD CULTURAL Y AMBIENTAL DEL PAÍS OFFSHORE WIND ENERGY IN COLOMBIA: LEGAL GAPS FOR PROTECTING THE COUNTRY’S CULTURAL AND ENVIRONMENTAL DIVERSITY ENERGIA EÓLICA OFFSHORE NA COLÔMBIA: VAZIOS JURÍDICOS PARA A PROTEÇÃO DA DIVERSIDADE CULTURAL E AMBIENTAL DO PAÍS Palavras-chave.Frecuencia de Nyquist. (n.d.). Fumi, A., Pepe, A., Scarabotti, L., & Schiraldi, M. M. (2013). Fourier analysis for demand forecasting in a fashion company. International Journal of Engineering Business Management, 5(SPL.ISSUE). https://doi.org/10.5772/56839 Gabriel, J., Bayona, R., Judith, C., Pérez, E., Humberto, E., Cotte, S., León, Á., Ariza, G., Daniel, G., & Ospina, R. (2016). Identificación de patrones de variabilidad climática a partir de Análisis de Componentes Principales, Fourier y Clúster k-medias. Tecnura, 20(50), 55–68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a04 García-Nieto, J. M., Alba, E., & Olivera, A. C. (n.d.). Particle Swarm Optimization Aplicado a la Programación de los Ciclos de Semáforos en Bahía Blanca. Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., & Draxl, C. (2011). The State-of-the- Art in Short-Term Prediction of Wind Power. Gurba-Bryśkiewicz, L., Maruszak, W., Smuga, D. A., Dubiel, K., & Wieczorek, M. (2023). Quality by Design (QbD) and Design of Experiments (DOE) as a Strategy for Tuning Lipid Nanoparticle Formulations for RNA Delivery. In Biomedicines (Vol. 11, Issue 10). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/biomedicines11102752 Gutiérrez Pulido, H., & de la Vara Salazar, R. (n.d.). Análisis y diseño de experimentos. www.FreeLibros.org Hafez, A., Aboul-Seoud, K., El-Din Sayed Hafez, A., Abd El-latif, M., & Abou-Raya, A. (2012). Wind Speed Behavioral Modeling for Economical Energy Generation using Windmills. International Journal of Scientific & Engineering Research, 3(7). http://www.ijser.org Heuristics and Methodology of Science. (n.d.). Hmeda Musbah, Mo El-Hawary, & Hamed Aly. (2019). Identifying Seasonality in Time Series by Applying Fast Fourier Transform . IEEE Electrical Power Conference (EPEC). Holmes, D. S., & Mergen, A. E. (n.d.). SIGNAL TO NOISE RATIO-WHAT IS THE RIGHT SIZE? Hong, Y. Y., & Santos, J. B. D. (2023). Day-Ahead Spatiotemporal Wind Speed Forecasting Based on a Hybrid Model of Quantum and Residual Long Short-Term Memory Optimized by Particle Swarm Algorithm. IEEE Systems Journal, 17(4), 6081–6092. https://doi.org/10.1109/JSYST.2023.3265982 Hossain, E. (n.d.). Application of Gaussian Mixture Regression Model for Short-Term Wind Speed Forecasting. Huang, C. J., & Kuo, P. H. (2018). A short-term wind speed forecasting model by using artificial neural networks with stochastic optimization for renewable energy systems. Energies, 11(10). https://doi.org/10.3390/en11102777 Huang, C., Luo, X., Yang, H., Wang, W., Wang, L., & Bensoussan, A. (n.d.). Data-driven stochastic diffusion process for wind speed modelling and forecasting. http://midcdmz.nrel.gov/nwtc_m2/ Ibrahim, A., Mirjalili, S., El-Said, M., Ghoneim, S. S. M., Al-Harthi, M. M., Ibrahim, T. F., & El- Kenawy, E. S. M. (2021). Wind Speed Ensemble Forecasting Based on Deep Learning Using Adaptive Dynamic Optimization Algorithm. IEEE Access, 9, 125787–125804. https://doi.org/10.1109/ACCESS.2021.3111408 IEEE Industrial Electronics Society., IEEE Singapore Section. Industrial Electronics Chapter, Wuhan ke ji da xue, IEEE Singapore Section, & Institute of Electrical and Electronics Engineers. (n.d.). Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA 2018) : 31 May - 2 June 2018, Wuhan, China. Ilhami Colak, Seref Sagiroglu, Mehmet Yesilbudak, Ersan Kabalci, H. I. B. (2015). Multi-Time Series and -Time Scale Modeling for Wind Speed and Wind Power Forecasting. 4yh International Conference on Renewable Energy Research and Aplication Informe de gestión XM 2022 - Carta de la gerente. (n.d.). informe-politica-monetaria-octubre-2023-recuadro2. (n.d.). Institut Teknologi dan Bisnis, Institute of Electrical and Electronics Engineers. Indonesia Section, & Institute of Electrical and Electronics Engineers. (n.d.). 2019 1st International Conference on Cybernetics and Intelligent System (ICORIS) : Institut Teknologi dan Bisnis (ITB) STIKOM Bali, Indonesia, 22nd-23rd August 2019. Institute of Electrical and Electronics Engineers. (n.d.). 2019 Radiation and Scattering of Electromagnetic Waves, RSEMW : conference proceedings : Divnomorskoe, Krasnodar Region, Russia, June 24-28, 2019. Institute of Electrical and Electronics Engineers. (2012). 2012 Second Iranian Conference on Renewable Energy and Distributed Generation. IEEE. Institute of Electrical and Electronics Engineers., & IEEE Systems, M. (2012). Proceedings 2012, IEEE International Conference on Systems, Man and Cybernetics (SMC) : October 14-17 2012, COEX, Seoul, Korea. IEEE. Institute of Electrical and Electronics Engineers. Kerala Section, IEEE Region 10, & Institute of Electrical and Electronics Engineers. (n.d.). Proceedings of the TENCON 2019 : Technology, Knowledge, and Society : 17-20 October 2019, Grand Hyatt Kochi Bolgatti, Kerala, India. Institute of Electrical and Electronics Engineers, World Congress on Intelligent Control and Automation 11 2014.06.29-07.04 Shenyang, & WCICA 11 2014.06.29-07.04 Shenyang. (n.d.). 11th World Congress on Intelligent Control and Automation (WCICA), 2014 June 29, 2014 - July 4, 2014, Shenyang, China. Jiao, J. (2018). A Hybrid Forecasting Method for Wind Speed. MATEC Web of Conferences, 232. https://doi.org/10.1051/matecconf/201823203013 Karaku, O. (n.d.). Polinom Özba ˘ glanımlı Model ile Uzun Süreli Rüzgar Hızı Öngörüsü Long Term Wind Speed Prediction with Polynomial Autoregressive Model. 18–21. Kreyszig, E. (n.d.). Matemáticas Avanzadas para Ingeniería Vol. 2, 3ra Edición. www.FreeLibros.com Kuehl, R. O. (n.d.). Principios estadisticos para el diseño y analisis de investigaciones. Kundu, A., Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers. Kolkata Section. PES Chapter, & Institute of Electrical and Electronics Engineers. Kolkata Section. (n.d.). 2020 IEEE International Conference for Convergence in Engineering : proceedings : 5-6 September, Kolkata, India. Lecture 24: Butterworth filters. (n.d.). Lee, C. H., Chou, C. C., Chung, X. H., & Zeng, P. W. (2016). Applying Climate Big-Data to Analysis of the Correlation between Regional Wind Speed and Wind Energy Generation. Proceedings - 3rd International Conference on Green Technology and Sustainable Development, GTSD 2016, 173–177. https://doi.org/10.1109/GTSD.2016.49 Lee, D., Ahn, J., & Oh, S. Y. (2014). Response surface smoothing for wind tunnel testing based on design of experiment with subspace partitioning. International Conference on Control, Automation and Systems, 207–211. https://doi.org/10.1109/ICCAS.2014.6987987 Li, H., Eseye, A. T., Zhang, J., & Zheng, D. (2017). A Double-Stage Hierarchical Hybrid PSO- ANFIS Model for Short-Term Wind Power Forecasting. IEEE Green Technologies Conference, 342–349. https://doi.org/10.1109/GreenTech.2017.56 Manual de Energía Eólica IDAE. (n.d.). Maragatham, G., & Kadhirvel, B. (2021). Long-Term Wind Speed Forecasting — A Review. January. https://doi.org/10.1007/978-981-15-5329-5 Marović, I., Sušanj, I., & Ožanić, N. (2017). Development of ANN model for wind speed prediction as a support for early warning system. Complexity, 2017(1996). https://doi.org/10.1155/2017/3418145 medida_b. (n.d.). Melo, O. O., Luis, M., López, A., Sandra, P., & Melo, E. (n.d.). Diseño de Experimentos Métodos y Aplicaciones. Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., & Jalilvand, M. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108, 322–335. https://doi.org/10.1016/j.enconman.2015.11.015 Moharm, K., Eltahan, M., & Elsaadany, E. (2020). Wind speed forecast using LSTM and Bi-LSTM algorithms over gabal el-zayt wind farm. Proceedings - 2020 International Conference on Smart Grids and Energy Systems, SGES 2020, 922–927. https://doi.org/10.1109/SGES51519.2020.00169 Montealegre Bocanegra, E. J. (2014). Actualización del componente Meteorológico del modelo institucional del IDEAM sobre el efecto climático de los fenómenos El Niño y La Niña en Colombia INFORME FINAL. Montgomery, D. C. (2003a). Diseño y análisis de experimentos. Limusa Wiley. Montgomery, D. C. (2003b). Diseño y análisis de experimentos. Limusa Wiley. Mouthón, L. (2019). Minminas promueve inversiones extranjeras en el sector de energías renovables. El potencial de la Costa Atlántica es alto. Elheraldo.Com. https://www.elheraldo.co/economia/daneses-analizan-proyecto-eolico-offshore-en-atlantico- 671759 Mukhopadhyay, S., Dash, D., Mitra, A., & Bhattacharya, P. (2014). A comparative study between seasonal wind speed by Fourier and Wavelet analysis. http://arxiv.org/abs/1407.8476 Nina Effenberger, & Nicole Ludwig. (2022, February 17). Una colección y categorización de conjuntos de datos eólicos y de energía eólica de código abierto. Patil, M. D., Biradar, H., & Vyawahare, V. (n.d.). Design of Fractional-order Analog Type-I Chebyshev Filter. Perr-Sauer, J., Tripp, C., Optis, M., & King, J. (2020). Short-term wind forecasting using statistical models with a fully observable wind flow. Journal of Physics: Conference Series, 1452(1). https://doi.org/10.1088/1742-6596/1452/1/012083 Pian, ) A, Verhoef, J. P., De Vries, L. J., & Gonzalez-Aparicio, I. (2021). Measuring and visualizing environmental and social impacts of wind energy projects. www.tno.nl Pourhabib, A., Huang, J. Z., & Ding, Y. (2016). Short-term wind speed forecast using measurements from multiple turbines in a wind farm. Technometrics, 58(1), 138–147. https://doi.org/10.1080/00401706.2014.988291 Proakis, J. , & Manolakis, D. (2007). Digital Signal Processing. Pryor, S. C., Barthelmie, R. J., Bukovsky, M. S., Leung, L. R., & Sakaguchi, K. (2020). Climate change impacts on wind power generation. Nature Reviews Earth & Environment, 1(12), 627–643. https://doi.org/10.1038/s43017-020-0101-7 Quezada Aguilar, V., Quezada Quezada, J. C., Coronado Meneses, M., Rodríguez Torres, J., & Flores García, E. (2019). PSO PSO, Herramienta de Optimización en el Área Turística. Boletín Científico INVESTIGIUM de La Escuela Superior de Tizayuca, 5(9), 1–5. https://doi.org/10.29057/est.v5i9.3883 Renewable Consulting Group, & ERM. (2022). Hoja de ruta para el despliegue de la energía eólica costa afuera en Colombia Reporte para consulta. Rueda-Bayona, J. G., Cabello, J. J., & Schneider, I. L. (2018). Wind-Speed Modelling Using Fourier Analysis and Nonlinear Autoregressive Neural Network (NAR). In 7th International Workshop | Advances in Cleaner Production – Academic Work. http://www.advancesincleanerproduction.net/7th/files/sessoes/6A/8/rueda- bayona_et_al_academic.pdf Rueda-Bayona, J. G., Eras, J. J. C., & Gutiérrez, A. S. (2021a). Modeling Wind Speed with a Long- Term Horizon and High-Time Interval with a Hybrid Fourier-Neural Network Model. Mathematical Modelling of Engineering Problems, 8(3), 431–440. https://doi.org/10.18280/mmep.080313 Rueda-Bayona, J. G., Eras, J. J. C., & Gutiérrez, A. S. (2021b). Modeling Wind Speed with a Long- Term Horizon and High-Time Interval with a Hybrid Fourier-Neural Network Model. Mathematical Modelling of Engineering Problems, 8(3), 431–440. https://doi.org/10.18280/mmep.080313 Rueda-Bayona, J. G., García Vélez, J. L., & Parrado-Vallejo, D. M. (2023). Effect of Sea Level Rise and Access Channel Deepening on Future Tidal Power Plants in Buenaventura Colombia. Infrastructures, 8(3). https://doi.org/10.3390/infrastructures8030051 Rueda-Bayona, J. G., Guzmán, A., & Eras, J. J. C. (2019). Wind and power density data of strategic offshore locations in the Colombian Caribbean coast. Data in Brief. https://doi.org/10.1016/j.dib.2019.104720 Rueda-Bayona, J. G., Guzmán, A., Eras, J. J. C., Silva-Casarín, R., Bastidas-Arteaga, E., & Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. In Journal of Cleaner Production (Vol. 220, pp. 529–543). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2019.02.174 Rueda-Bayona, J. G., Guzmán, A., & Osorio, A. F. (2022). DOE-ANOVA for Identifying the Effect of Extreme Sea-States over the Structural Dynamic Parameters of a Floating Structure. Mathematical Modelling of Engineering Problems, 9(3), 839–848. https://doi.org/10.18280/mmep.090334 Rueda-Bayona, J. G., Paez, N., Eras, J. J. C., & Gutiérrez, A. S. (2022). DOE-ANOVA to Optimize Hydrokinetic Turbines for Low Velocity Conditions. Mathematical Modelling of Engineering Problems, 9(4), 979–988. https://doi.org/10.18280/mmep.090415 Rueda-Bayona, J., Guzmán, A., Eras, J., Silva-Casarín, R., Bastidas-Arteaga, E., & Horrillo- Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. In Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.02.174 Sánchez Giralda, T. (2007). UNIÓN. Revista Iberoamericana de Educación Matemática. Siebert, N. (2008). Development of Methods for Regional Wind Power Forecasting. Soman, S. S., Zareipour, H., Malik, O., & Mandal, P. (2010). A review of wind power and wind speed forecasting methods with different time horizons. North American Power Symposium 2010, NAPS 2010. https://doi.org/10.1109/NAPS.2010.5619586 Soto Gutierrez, J. J. (2016). DESARROLLO DE LA ENERGÍA EÓLICA EN COLOMBIA [UNIVERSIDAD DE AMÉRICA]. http://52.0.229.99/bitstream/20.500.11839/624/1/5082005-2016-2-GA.pdf Sri Sairam Engineering College. Department of Electrical and Electronics Engineering, Institute of Electrical and Electronics Engineers. Madras Section, IEEE Power & Energy Society, & Institute of Electrical and Electronics Engineers. (n.d.). Proceedings of the International Conference on Power, Energy, Control and Transmission Systems (ICPECTS- 2018) : 22nd & 23rd February, 2018, Department of Electrical and Electronics Engineering, Sri Sairam Engineering College, Chennai. Statgraphics Technologies, Inc. (n.d.). Statgraphics Centurión XVI. Sunaina, S., Shivahare, B. D., Kumar, V., Gupta, S. K., Singh, P., & Diwakar, M. (2023). Metaheuristic Optimization Algorithms and recent applications: A comprehensive survey. 2023 International Conference on Computational Intelligence, Communication Technology and Networking, CICTN 2023, 506–511. https://doi.org/10.1109/CICTN57981.2023.10140511 Tahavorgar, A., & Quaicoe, J. E. (2013). Estimation of wake effect in wind farms using design of experiment methodology. 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, 3317–3324. https://doi.org/10.1109/ECCE.2013.6647136 Tastu, J., Madsen, H., & Pinson, P. (2013). Short-term wind power forecasting: probabilistic and space-time aspects. Ph.D Thesis, Technical University of Denmark. Techn, O. (n.d.). IDENTIFICACIÓN DE LA INFLUENCIA DE LAS VARIACIONES CONVECTIVAS EN LA GENERACIÓN DE CARGAS TRANSITORIAS Y SU EFECTO HIDROMECÁNICO EN LAS ESTRUCTURAS OFFSHORE IDENTIFICATION OF THE INFLUENCE OF CONVECTIVE VARIATIONS IN THE GENERATION OF TRANSIENT LOADS AND THEIR HYDROMECHANICAL EFFECT OVER THE OFFSHORE STRUCTURES. TEMA 3 APROXIMACIÓN DE FILTROS 3.1 Teoría de la aproximación. (n.d.). The 7th International Conference on Wireless Communications, Networking and Mobile Computing : Sep. 23-25, 2011, Wuhan, China. (n.d.). Therán Nieto, K. R., Potes, L. R., Celedon, S. M., & De León, J. M. (2019). Microclimate And Urban Thermal Comfort. Modulo Arquitectura CUC, 23(1), 49–88. https://doi.org/10.17981/mod.arq.cuc.23.1.2019.04 Treiber, N. A., Heinermann, J., & Kramer, O. (2016). Wind Power Prediction with Machine Learning BT - Computational Sustainability. September, 13–29. Tripp-Barba, C. (2020). Revisión de literatura de modelos computacionales para la predicción de la velocidad del viento de 2004 a 2016. Revista de Investigación En Tecnologías de La Información, 8(15), 27–40. https://doi.org/10.36825/riti.08.15.004 Trnka, P., Západočeská univerzita v Plzni. Faculty of Electrical Engineering. Department of Technologies and Measurement, IEEE Czechoslovakia Section, Západočeská univerzita v Plzni, & Institute of Electrical and Electronics Engineers. (n.d.). 2018 International Conference on Diagnostics in Electrical Engineering (Diagnostika) : Parkhotel Pilsen, September 4-7, 2018. Türkan, Y. S., Yumurtacı Aydoğmuş, H., & Erdal, H. (2016). The prediction of the wind speed at different heights by machine learning methods. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 6(2), 179–187. https://doi.org/10.11121/ijocta.01.2016.00315 Vega-Zuñiga, S., Rueda-Bayona, J. G., & Ospino-Castro, A. (2022). Evaluation of Eleven Numerical Methods for Determining Weibull Parameters for Wind Energy Generation in the Caribbean Region of Colombia. Mathematical Modelling of Engineering Problems, 9(1), 194–199. https://doi.org/10.18280/mmep.090124 Vidya, S., Srie, E., & Janani, V. (2019). A Review On The Hybrid Approaches For Wind Speed Forecasting. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 8(09). www.ijstr.org Vijayvargia, A., Sharma, K. C., & Bhakar, R. (n.d.). A Comparative Study of Short-Term Wind Speed Forecasting Models. Wang, X. (2017). Forecasting short-Term wind speed using support vector machine with particle swarm optimization. Proceedings - 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2017, 2017-December, 241–245. https://doi.org/10.1109/SDPC.2017.53 Wang, X. (2017). Forecasting short-Term wind speed using support vector machine with particle swarm optimization. Proceedings - 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2017, 2017-December, 241–245. https://doi.org/10.1109/SDPC.2017.53 Xie, L., Yuan, X., Ruan, X., & Ji, Q. (2020). Harmonic Analysis in PWM Converters Using Short- Time Fourier Series. 2020 IEEE 9th International Power Electronics and Motion Control Conference, IPEMC 2020 ECCE Asia, 2812–2818. https://doi.org/10.1109/IPEMC- ECCEAsia48364.2020.9368081 Xu, B., Mou, K., Institute of Electrical and Electronics Engineers. Beijing Section, & Institute of Electrical and Electronics Engineers. (n.d.). Proceedings of 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC 2019) : December 20-22, 2019, Chengdu, China. Yang, B., Dai, K., Yang, C., Luo, H., He, K., & Dai, Z. (2021). Improvement of Recursive DFT for APF With Higher Switching Frequency to Suppress Wideband Harmonics. IEEE Access, 9, 144300–144312. https://doi.org/10.1109/ACCESS.2021.3121735 Yserentant, H. (2010). Fourier analysis. In Lecture Notes in Mathematics (Vol. 2000, pp. 13–26). Springer Verlag. https://doi.org/10.1007/978-3-642-12248-4_2 Zedan, Y., Songmene, V., Samuel, A. M., Samuel, F. H., & Doty, H. W. (2022). Assessment of the Influence of Additives on the Mechanical Properties and Machinability of Al-11%Si Cast Alloys: Application of DOE and ANOVA Methods. Materials, 15(9). https://doi.org/10.3390/ma15093297 Zhao, Z., Nan, H., Qiao, J., & Yu, Y. (n.d.). Research on Combination Forecast of Ultra-short- term Wind Speed Based on CEEMDAN-PSO-NNCT Multi-model. Zill, De. G., & Dewar, J. M. (2008). Calculo vectorial, analisis de Fourier y Analisis Complejo (M. Á. Toledo Castellanos, R. A. del Bosque Alayón, P. E. Roig Vázquez, L. Campa Rojas, & Z. Garc.ía García, Eds.; Tercera Edición, Vol. 2). McGraw-Hill Interamericana. de Mattos Neto, P. S. G., de Oliveira, J. F. L., de Oliveira Santos Júnior, D. S., Siqueira, H. V., da Nóbrega Marinho, M. H., & Madeiro, F. (2020). A hybrid nonlinear combination system for monthly wind speed forecasting. IEEE Access, 8, 191365–191377. https://doi.org/10.1109/ACCESS.2020.3032070 Desai, V. A., & Rathore, S. (2016, March). Harmonic detection using Kalman filter. Conference: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). Gilpavas, E., Medina, J., Dobrosz-Gómez, I., & Gómez, M. (2016). Degradación de Colorante Amarillo 12 de Aguas Residuales Industriales utilizando Hierro Cero Valente, Peróxido de Hidrógeno y Radiación Ultravioleta. Informacion Tecnologica, 27(3), 23–34. https://doi.org/10.4067/S0718-07642016000300004 |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
169 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Corporacion Universidad de la Costa |
dc.publisher.department.none.fl_str_mv |
Energia |
dc.publisher.place.none.fl_str_mv |
Barranquilla, Colombia |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingenieria Energética |
dc.publisher.branch.none.fl_str_mv |
Corporación Universidad de la Costa |
publisher.none.fl_str_mv |
Corporacion Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/568ea0a9-f687-42fe-9cbd-ee9f42168bd1/download https://repositorio.cuc.edu.co/bitstreams/f482e866-7e3b-46ab-9e8a-a6ab0af2ad53/download https://repositorio.cuc.edu.co/bitstreams/d2fb8eb2-5c3b-494d-b463-1bc016ed1331/download https://repositorio.cuc.edu.co/bitstreams/d7275dd0-6f7d-4275-bce6-a69e281549ba/download |
bitstream.checksum.fl_str_mv |
73a5432e0b76442b22b026844140d683 275e30661597f39087cc1546538def1a e7d55a076a873d443de043d5c7e350ea 8715cad28ca10bd76f14275627e521a6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1841804338315395072 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ospino Castro, Adalberto JoseRueda Bayona, Juan GabrielVega Zúñiga, Samuel JoséPeña Gallardo, RafaelSousa Santos, VladimirBalbis Morejon, Milen2025-07-28T16:18:49Z2025-07-28T16:18:49Z2025-06-24https://hdl.handle.net/11323/14338Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Esta tesis presenta un modelo híbrido para el pronóstico de la velocidad del viento con alta resolución temporal y horizonte de largo plazo, diseñado para abordar fenómenos atmosféricos locales en una región costera tropical. La metodología combina transformadas armónicas (Fourier), análisis estadístico multivariable (DOE–ANOVA) y optimización heurística mediante Enjambre de Partículas (PSO), permitiendo construir una función pronosticadora físicamente coherente y computacionalmente replicable. El estudio se fundamenta en tres objetivos específicos: (i) analizar la influencia de temperatura, presión y humedad sobre la velocidad del viento mediante DOE-ANOVA, (ii) caracterizar armónicos relevantes a partir de su atenuación, amplificación y desfase, y (iii) optimizar parámetros armónicos con PSO para construir una serie pronosticada. Se utilizaron más de 40 años de datos horarios del conjunto ERA5 y datos in situ de la estación meteorológica de la Universidad de la Costa, Barranquilla. El modelo logró un MAE de 1.586, un MSE de 2.014 y un coeficiente de correlación cercano a 0.70 en un horizonte de pronóstico de cuatro años. A partir de esta serie se estimó el potencial energético teórico del viento, con una potencia promedio de 160.78 W/m² y una energía total acumulada de 5633.58 kWh/m². Estos resultados refuerzan la aplicabilidad del modelo como herramienta preliminar para estudios de viabilidad energética en regiones no instrumentadas. La aproximación propuesta prioriza la trazabilidad metodológica, la interpretación física del fenómeno y el enfoque energético, contribuyendo a la planificación sostenible de recursos eólicos.This doctoral thesis presents a hybrid model for wind speed forecasting with high temporal resolution and a long-term horizon, designed to address local atmospheric phenomena in a tropical coastal region. The methodology integrates harmonic transforms (Fourier), multivariable statistical analysis (DOE–ANOVA), and heuristic optimization via Particle Swarm Optimization (PSO), enabling the construction of a physically consistent and computationally replicable forecasting function. The research is guided by three specific objectives: (i) to analyze the influence of temperature, pressure, and humidity on wind speed through DOE–ANOVA; (ii) to characterize relevant harmonics by their attenuation, amplification, and phase shift; and (iii) to optimize harmonic parameters using PSO to generate a forecast series. Over 40 years of hourly ERA5 reanalysis data and in situ records from the Universidad de la Costa meteorological station in Barranquilla were used to train and validate the model. The model achieved a MAE of 1.586, an MSE of 2.014, and a correlation coefficient close to 0.70 over a four-year forecasting horizon. Based on the forecasted series, the theoretical wind energy potential was estimated, yielding an average power of 160.78 W/m² and a total accumulated energy of 5633.58 kWh/m². These findings support the model's usefulness as a preliminary tool for energy feasibility studies in non-instrumented regions. The proposed approach emphasizes methodological traceability, physical interpretation of the phenomenon, and an energy-oriented perspective, contributing to sustainable wind resource planning.Lista de tablas y figuras 10--Introducción 13--Planteamiento del problema 13--Justificación 16--Objetivo general 19--Objetivos específicos 19--Aporte del trabajo 20--Estado del arte y marco teórico 21--Estado del arte 22--Tipos de modelos: horizontes de pronóstico y aplicaciones 22--Aplicación de DOE–ANOVA en el estudio del comportamiento del viento 30--Modelos híbridos basados en heurísticas para el pronóstico del viento 32--Integración de heurística y estadística multivariada 37--Fundamentos teóricos 42--Diseño de experimento y análisis de varianza 42--Fundamentos del análisis de fourier 43--Filtro de butterworth 54--Filtro de chebyshev Tipo I 56--Filtro de chebyshev tipo II 58--Función exponencial decreciente 61--Función relación señal a ruido (SNR) 62--Función por tramos con un factor de amplificación – 65--Función por tramos con un factor de amplificación logarítmica 66--Función de cambio de fase senoidal 69--Función de cambio de fase cosenoidal 69--Función de cambio de fase logarítmica 70--Fundamentos de la heurística PSO para modelación híbrida 70--Potencial energético del viento 72--Metodología 74--Análisis de fourier 77--Construcción del modelo híbrido 79--Validación del modelo 82--Estimación del potencial energético a partir del pronóstico 83--Resultados y discusión 85--Resultados del diseño de experimentos y análisis de varianza 86--DOE-ANOVA 86--Regresión múltiple 96--Resultados del modelado matemático en la atenuación, cambio de fase y amplificación de armónicos de fourier 99--Atenuación 99-Amplificación 107--Cambio de fase 112--Resultados del pronóstico de la velocidad del viento 115--Datos del pronóstico 115--Espectros de frecuencias y variabilidad climática 120--Modelación 124--Pronóstico 125--Validación 134--Estimación del potencial energético Teórico 139--Discusión, conclusiones finales y recomendaciones 140--Discusión general de los resultados 141--Análisis estadístico mediante DOE-ANOVA 141--Modelado matemático armónico 142--Pronóstico de la velocidad del viento con PSO 143--Conclusiones del estudio 144--Recomendaciones para investigaciones futuras 146--Referencias 147Doctor(a) en Ingenieria EnergéticaDoctorado169 páginasapplication/pdfspaCorporacion Universidad de la CostaEnergiaBarranquilla, ColombiaDoctorado en Ingenieria EnergéticaCorporación Universidad de la CostaPronóstico de viento local con alta resolución y amplio horizonte mediante modelación híbrida: heurística y estadística multivariadaTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttp://purl.org/redcol/resource_type/TDinfo:eu-repo/semantics/acceptedVersionAbbasipour, M., Igder, M. A., & Liang, X. (2021). Data-Driven Wind Speed Forecasting Techniques Using Hybrid Neural Network Methods. Canadian Conference on Electrical and Computer Engineering, 2021-September. https://doi.org/10.1109/CCECE53047.2021.9569032Adewumi, I. O., & Azeez, A. A. (2023). Optimization of Biofuel Production Process Using Design of Experiments (Doe). Petro Chem Indus Intern, 6(2), 75–85. https://www.researchgate.net/publication/370132014Aguilar, S., Santos, D. R. Dos, & Souza, R. C. (2018). Long-term forecasting of wind speed in Brazil using GAS modelling. 7th International IEEE Conference on Renewable Energy Research and Applications, ICRERA 2018, 5, 727–731. https://doi.org/10.1109/ICRERA.2018.8566731Ahmadi, A., Nabipour, M., Mohammadi-Ivatloo, B., Amani, A. M., Rho, S., & Piran, M. J. (2020). Long-Term Wind Power Forecasting Using Tree-Based Learning Algorithms. IEEE Access, 8, 151511–151522. https://doi.org/10.1109/ACCESS.2020.3017442Akash, R., Rangaraj, A. G., Meenal, R., & Lydia, M. (2020). Machine Learning Based Univariate Models for Long Term Wind Speed Forecasting. Proceedings of the 5th International Conference on Inventive Computation Technologies, ICICT 2020, 779–784. https://doi.org/10.1109/ICICT48043.2020.9112534Antonio, P., & Ortiz, M. (n.d.). Modelos armónicos no lineales para series temporales geodéticas Non-linear harmonic models for geodetic time series.Arslan Tuncar, E., Sağlam, Ş., & Oral, B. (2024). A review of short-term wind power generation forecasting methods in recent technological trends. In Energy Reports (Vol. 12, pp. 197– 209). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2024.06.006Arvanitidis, A. I., Kontogiannis, D., Vontzos, G., Laitsos, V., & Bargiotas, D. (2022). Stochastic Heuristic Optimization of Machine Learning Estimators for Short-Term Wind Power Forecasting. 2022 57th International Universities Power Engineering Conference: Big Data and Smart Grids, UPEC 2022 - Proceedings. https://doi.org/10.1109/UPEC55022.2022.9917957Asociación Empresarial Eólica (AEE). (2024). La eólica en el mundo. https://aeeolica.org/sobre-la- eolica/la-eolica-en-el-mundo/Assaf. (n.d.). XI Signal-to-Noise (SNR) Lecture notes by Assaf Tal.Azad, H. B., Mekhilef, S., & Ganapathy, V. G. (2014). Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Transactions on Sustainable Energy, 5(2), 546–553. https://doi.org/10.1109/TSTE.2014.2300150Babu Y, N., & Padhy, N. P. (2023). An Approach to Improve Harmonic Attenuation and Stability Performance in Multi-Parallel Inverter System. IEEE Transactions on Power Delivery, 38(5), 3634–3646. https://doi.org/10.1109/TPWRD.2023.3287761Bai, W., Zhu, X., & Lee, K. Y. (2021). Dynamic Optimal Power Flow Based on a Spatio-Temporal Wind Speed Forecast Model. 2021 IEEE Congress on Evolutionary Computation, CEC 2021 - Proceedings, 136–143. https://doi.org/10.1109/CEC45853.2021.9504847Baldemar, J., & Villegas, G. (n.d.). Aplicación de diseño de experimentos para el análisis de secado de un producto (Experiment design application for analysis of the drying a product). DOE Factorial InnOvaciOnes de NegOciOs, 10, 145–158.Barbounis, T. G., Theocharis, J. B., Alexiadis, M. C., & Dokopoulos, P. S. (2006). Long-term wind speed and power forecasting using local recurrent neural network models. IEEE Transactions on Energy Conversion, 21(1), 273–284. https://doi.org/10.1109/TEC.2005.847954Benavides Ballesteros, H. O., Simbaqueva Fonseca, O., & Zapata Lesmes, H. J. (2017). Atlas de radiación solar, ultravioleta y ozono de Colombia. Ideam-Upme.Blanco Leon, J. D. (2021). Potencial de energía solar offshore en la región del caribe Colombiano. Universidad Militar Nueva Granada.Bramer, L. (2013). Methods for modeling and forecasting wind characteristics. CAPITULO III: Mezcla de Gaussianas para clasificación 3.1 Modelos de Mezcla. (n.d.). Características, B., Mercado, D., & El, B. 1. (n.d.). ENERGÍA EÓLICA OFFSHORE EN COLOMBIA.Carrillo González, C. J. (2003). Fundamentos del Análisis de Fourier.Chamizo, F. (n.d.). Aplicaciones del análisis armónico (análisis armónico y de todo un poco).Chaurasiya, P. K., Ahmed, S., & Warudkar, V. (2018). Comparative analysis of Weibull parameters for wind data measured from met-mast and remote sensing techniques. Renewable Energy, 115, 1153–1165. https://doi.org/10.1016/j.renene.2017.08.014Chen, G., Li, L., Zhang, Z., & Li, S. (2020). Short-term wind speed forecasting with principle- subordinate predictor based on Conv-LSTM and improved BPNN. IEEE Access, 8, 67955– 67973. https://doi.org/10.1109/ACCESS.2020.2982839Chent, C. F. (n.d.). A New Approach to Fourier Coefficient Evaluation*.Colorado State University. (n.d.). Numerical Weather Prediction. Retrieved February 26, 2025, from https://rammb.cira.colostate.edu/wmovl/vrl/tutorials/euromet/courses/spanish/nwp/n7200/n 7200006.htmCOMPARISON OF THE EFFECTIVITY Doctor of Philosophy ( PhD ) Primary Supervisor : Tek Tjing Lie Abstract. (2015).Cuevas, E., Fausto, F., Gálvez, J., & Rodriguez, A. (2021). MATLAB Computación metaheuristica y bio-inspirada (Alpha Editorial, Alphaomega Colombiana S.A., & RC Libros, Eds.; Alpha Editorial).Damiani, R. (2016). Uncertainty and Risk Assessment in the Design Process for Wind. www.nrel.gov/publications.Dong, Q., & Li, J. (2022). Short-term Wind Power Forecasting Through Combined DWT-SOM and MEEFIS Method. Proceedings - 2022 4th International Conference on Electrical Engineering and Control Technologies, CEECT 2022, 230–235. https://doi.org/10.1109/CEECT55960.2022.10030677Elbanna, N., Nofal, A., Hussein, A., & Tash, M. (2020). Mechanical properties of thin wall ductile iron: Experimental correlation using ANOVA and DOE. Key Engineering Materials, 835 KEM, 171–177. https://doi.org/10.4028/www.scientific.net/KEM.835.171 entrega3-EDEM-MD16-17. (n.d.).EP Radio Ferrol. (2024, September 19). Iberdrola inaugura el parque de Saint-Brieuc, con plataformas y pilotes ejecutados por Navantia y Windar. https://cadenaser.com/galicia/2024/09/19/iberdrola-inaugura-el-parque-de-saint-brieuc-con- plataformas-y-pilotes-ejecutados-por-navantia-y-windar-radio- ferrol/?utm_source=chatgpt.comESCUELA POLITÉCNICA NACIONAL ESCUELA DE INGENIERÍA. (n.d.). ESTUDIO DEL POTENCIAL EÓLICO OFFSHORE DE LA ZONA COSTERA CARIBE DE COLOMBIA. (n.d.).Euscategui, C., & Hurtado, G. (2010). ANÁLISIS DEL IMPACTO DEL FENÓMENO "LA NIÑA 2010-2011 EN LA HIDROCLIMATOLOGÍA DEL PAÍS (Issue 571). www.ideam.gov.coFigueroa, I., Isabel, D., Navarro, B., Carolina, E., & Gómez, A. (n.d.). ENERGÍA EÓLICA OFFSHORE EN COLOMBIA: VACÍOS JURÍDICOS PARA LA PROTECCIÓN DE LA DIVERSIDAD CULTURAL Y AMBIENTAL DEL PAÍS OFFSHORE WIND ENERGY IN COLOMBIA: LEGAL GAPS FOR PROTECTING THE COUNTRY’S CULTURAL AND ENVIRONMENTAL DIVERSITY ENERGIA EÓLICA OFFSHORE NA COLÔMBIA: VAZIOS JURÍDICOS PARA A PROTEÇÃO DA DIVERSIDADE CULTURAL E AMBIENTAL DO PAÍS Palavras-chave.Frecuencia de Nyquist. (n.d.).Fumi, A., Pepe, A., Scarabotti, L., & Schiraldi, M. M. (2013). Fourier analysis for demand forecasting in a fashion company. International Journal of Engineering Business Management, 5(SPL.ISSUE). https://doi.org/10.5772/56839Gabriel, J., Bayona, R., Judith, C., Pérez, E., Humberto, E., Cotte, S., León, Á., Ariza, G., Daniel, G., & Ospina, R. (2016). Identificación de patrones de variabilidad climática a partir de Análisis de Componentes Principales, Fourier y Clúster k-medias. Tecnura, 20(50), 55–68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a04García-Nieto, J. M., Alba, E., & Olivera, A. C. (n.d.). Particle Swarm Optimization Aplicado a la Programación de los Ciclos de Semáforos en Bahía Blanca.Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., & Draxl, C. (2011). The State-of-the- Art in Short-Term Prediction of Wind Power.Gurba-Bryśkiewicz, L., Maruszak, W., Smuga, D. A., Dubiel, K., & Wieczorek, M. (2023). Quality by Design (QbD) and Design of Experiments (DOE) as a Strategy for Tuning Lipid Nanoparticle Formulations for RNA Delivery. In Biomedicines (Vol. 11, Issue 10). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/biomedicines11102752Gutiérrez Pulido, H., & de la Vara Salazar, R. (n.d.). Análisis y diseño de experimentos. www.FreeLibros.orgHafez, A., Aboul-Seoud, K., El-Din Sayed Hafez, A., Abd El-latif, M., & Abou-Raya, A. (2012). Wind Speed Behavioral Modeling for Economical Energy Generation using Windmills. International Journal of Scientific & Engineering Research, 3(7). http://www.ijser.org Heuristics and Methodology of Science. (n.d.).Hmeda Musbah, Mo El-Hawary, & Hamed Aly. (2019). Identifying Seasonality in Time Series by Applying Fast Fourier Transform . IEEE Electrical Power Conference (EPEC).Holmes, D. S., & Mergen, A. E. (n.d.). SIGNAL TO NOISE RATIO-WHAT IS THE RIGHT SIZE?Hong, Y. Y., & Santos, J. B. D. (2023). Day-Ahead Spatiotemporal Wind Speed Forecasting Based on a Hybrid Model of Quantum and Residual Long Short-Term Memory Optimized by Particle Swarm Algorithm. IEEE Systems Journal, 17(4), 6081–6092. https://doi.org/10.1109/JSYST.2023.3265982Hossain, E. (n.d.). Application of Gaussian Mixture Regression Model for Short-Term Wind Speed Forecasting.Huang, C. J., & Kuo, P. H. (2018). A short-term wind speed forecasting model by using artificial neural networks with stochastic optimization for renewable energy systems. Energies, 11(10). https://doi.org/10.3390/en11102777Huang, C., Luo, X., Yang, H., Wang, W., Wang, L., & Bensoussan, A. (n.d.). Data-driven stochastic diffusion process for wind speed modelling and forecasting. http://midcdmz.nrel.gov/nwtc_m2/Ibrahim, A., Mirjalili, S., El-Said, M., Ghoneim, S. S. M., Al-Harthi, M. M., Ibrahim, T. F., & El- Kenawy, E. S. M. (2021). Wind Speed Ensemble Forecasting Based on Deep Learning Using Adaptive Dynamic Optimization Algorithm. IEEE Access, 9, 125787–125804. https://doi.org/10.1109/ACCESS.2021.3111408IEEE Industrial Electronics Society., IEEE Singapore Section. Industrial Electronics Chapter, Wuhan ke ji da xue, IEEE Singapore Section, & Institute of Electrical and Electronics Engineers. (n.d.). Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA 2018) : 31 May - 2 June 2018, Wuhan, China.Ilhami Colak, Seref Sagiroglu, Mehmet Yesilbudak, Ersan Kabalci, H. I. B. (2015). Multi-Time Series and -Time Scale Modeling for Wind Speed and Wind Power Forecasting. 4yh International Conference on Renewable Energy Research and AplicationInforme de gestión XM 2022 - Carta de la gerente. (n.d.). informe-politica-monetaria-octubre-2023-recuadro2. (n.d.).Institut Teknologi dan Bisnis, Institute of Electrical and Electronics Engineers. Indonesia Section, & Institute of Electrical and Electronics Engineers. (n.d.). 2019 1st International Conference on Cybernetics and Intelligent System (ICORIS) : Institut Teknologi dan Bisnis (ITB) STIKOM Bali, Indonesia, 22nd-23rd August 2019.Institute of Electrical and Electronics Engineers. (n.d.). 2019 Radiation and Scattering of Electromagnetic Waves, RSEMW : conference proceedings : Divnomorskoe, Krasnodar Region, Russia, June 24-28, 2019.Institute of Electrical and Electronics Engineers. (2012). 2012 Second Iranian Conference on Renewable Energy and Distributed Generation. IEEE.Institute of Electrical and Electronics Engineers., & IEEE Systems, M. (2012). Proceedings 2012, IEEE International Conference on Systems, Man and Cybernetics (SMC) : October 14-17 2012, COEX, Seoul, Korea. IEEE.Institute of Electrical and Electronics Engineers. Kerala Section, IEEE Region 10, & Institute of Electrical and Electronics Engineers. (n.d.). Proceedings of the TENCON 2019 : Technology, Knowledge, and Society : 17-20 October 2019, Grand Hyatt Kochi Bolgatti, Kerala, India.Institute of Electrical and Electronics Engineers, World Congress on Intelligent Control and Automation 11 2014.06.29-07.04 Shenyang, & WCICA 11 2014.06.29-07.04 Shenyang. (n.d.). 11th World Congress on Intelligent Control and Automation (WCICA), 2014 June 29, 2014 - July 4, 2014, Shenyang, China.Jiao, J. (2018). A Hybrid Forecasting Method for Wind Speed. MATEC Web of Conferences, 232. https://doi.org/10.1051/matecconf/201823203013Karaku, O. (n.d.). Polinom Özba ˘ glanımlı Model ile Uzun Süreli Rüzgar Hızı Öngörüsü Long Term Wind Speed Prediction with Polynomial Autoregressive Model. 18–21.Kreyszig, E. (n.d.). Matemáticas Avanzadas para Ingeniería Vol. 2, 3ra Edición. www.FreeLibros.comKuehl, R. O. (n.d.). Principios estadisticos para el diseño y analisis de investigaciones.Kundu, A., Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers. Kolkata Section. PES Chapter, & Institute of Electrical and Electronics Engineers. Kolkata Section. (n.d.). 2020 IEEE International Conference for Convergence in Engineering : proceedings : 5-6 September, Kolkata, India.Lecture 24: Butterworth filters. (n.d.).Lee, C. H., Chou, C. C., Chung, X. H., & Zeng, P. W. (2016). Applying Climate Big-Data to Analysis of the Correlation between Regional Wind Speed and Wind Energy Generation. Proceedings - 3rd International Conference on Green Technology and Sustainable Development, GTSD 2016, 173–177. https://doi.org/10.1109/GTSD.2016.49Lee, D., Ahn, J., & Oh, S. Y. (2014). Response surface smoothing for wind tunnel testing based on design of experiment with subspace partitioning. International Conference on Control, Automation and Systems, 207–211. https://doi.org/10.1109/ICCAS.2014.6987987Li, H., Eseye, A. T., Zhang, J., & Zheng, D. (2017). A Double-Stage Hierarchical Hybrid PSO- ANFIS Model for Short-Term Wind Power Forecasting. IEEE Green Technologies Conference, 342–349. https://doi.org/10.1109/GreenTech.2017.56Manual de Energía Eólica IDAE. (n.d.).Maragatham, G., & Kadhirvel, B. (2021). Long-Term Wind Speed Forecasting — A Review. January. https://doi.org/10.1007/978-981-15-5329-5Marović, I., Sušanj, I., & Ožanić, N. (2017). Development of ANN model for wind speed prediction as a support for early warning system. Complexity, 2017(1996). https://doi.org/10.1155/2017/3418145 medida_b. (n.d.).Melo, O. O., Luis, M., López, A., Sandra, P., & Melo, E. (n.d.). Diseño de Experimentos Métodos y Aplicaciones.Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., & Jalilvand, M. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108, 322–335. https://doi.org/10.1016/j.enconman.2015.11.015Moharm, K., Eltahan, M., & Elsaadany, E. (2020). Wind speed forecast using LSTM and Bi-LSTM algorithms over gabal el-zayt wind farm. Proceedings - 2020 International Conference on Smart Grids and Energy Systems, SGES 2020, 922–927. https://doi.org/10.1109/SGES51519.2020.00169Montealegre Bocanegra, E. J. (2014). Actualización del componente Meteorológico del modelo institucional del IDEAM sobre el efecto climático de los fenómenos El Niño y La Niña en Colombia INFORME FINAL.Montgomery, D. C. (2003a). Diseño y análisis de experimentos. Limusa Wiley.Montgomery, D. C. (2003b). Diseño y análisis de experimentos. Limusa Wiley.Mouthón, L. (2019). Minminas promueve inversiones extranjeras en el sector de energías renovables. El potencial de la Costa Atlántica es alto. Elheraldo.Com. https://www.elheraldo.co/economia/daneses-analizan-proyecto-eolico-offshore-en-atlantico- 671759Mukhopadhyay, S., Dash, D., Mitra, A., & Bhattacharya, P. (2014). A comparative study between seasonal wind speed by Fourier and Wavelet analysis. http://arxiv.org/abs/1407.8476Nina Effenberger, & Nicole Ludwig. (2022, February 17). Una colección y categorización de conjuntos de datos eólicos y de energía eólica de código abierto.Patil, M. D., Biradar, H., & Vyawahare, V. (n.d.). Design of Fractional-order Analog Type-I Chebyshev Filter.Perr-Sauer, J., Tripp, C., Optis, M., & King, J. (2020). Short-term wind forecasting using statistical models with a fully observable wind flow. Journal of Physics: Conference Series, 1452(1). https://doi.org/10.1088/1742-6596/1452/1/012083Pian, ) A, Verhoef, J. P., De Vries, L. J., & Gonzalez-Aparicio, I. (2021). Measuring and visualizing environmental and social impacts of wind energy projects. www.tno.nlPourhabib, A., Huang, J. Z., & Ding, Y. (2016). Short-term wind speed forecast using measurements from multiple turbines in a wind farm. Technometrics, 58(1), 138–147. https://doi.org/10.1080/00401706.2014.988291Proakis, J. , & Manolakis, D. (2007). Digital Signal Processing.Pryor, S. C., Barthelmie, R. J., Bukovsky, M. S., Leung, L. R., & Sakaguchi, K. (2020). Climate change impacts on wind power generation. Nature Reviews Earth & Environment, 1(12), 627–643. https://doi.org/10.1038/s43017-020-0101-7Quezada Aguilar, V., Quezada Quezada, J. C., Coronado Meneses, M., Rodríguez Torres, J., & Flores García, E. (2019). PSO PSO, Herramienta de Optimización en el Área Turística. Boletín Científico INVESTIGIUM de La Escuela Superior de Tizayuca, 5(9), 1–5. https://doi.org/10.29057/est.v5i9.3883Renewable Consulting Group, & ERM. (2022). Hoja de ruta para el despliegue de la energía eólica costa afuera en Colombia Reporte para consulta.Rueda-Bayona, J. G., Cabello, J. J., & Schneider, I. L. (2018). Wind-Speed Modelling Using Fourier Analysis and Nonlinear Autoregressive Neural Network (NAR). In 7th International Workshop | Advances in Cleaner Production – Academic Work. http://www.advancesincleanerproduction.net/7th/files/sessoes/6A/8/rueda- bayona_et_al_academic.pdfRueda-Bayona, J. G., Eras, J. J. C., & Gutiérrez, A. S. (2021a). Modeling Wind Speed with a Long- Term Horizon and High-Time Interval with a Hybrid Fourier-Neural Network Model. Mathematical Modelling of Engineering Problems, 8(3), 431–440. https://doi.org/10.18280/mmep.080313Rueda-Bayona, J. G., Eras, J. J. C., & Gutiérrez, A. S. (2021b). Modeling Wind Speed with a Long- Term Horizon and High-Time Interval with a Hybrid Fourier-Neural Network Model. Mathematical Modelling of Engineering Problems, 8(3), 431–440. https://doi.org/10.18280/mmep.080313Rueda-Bayona, J. G., García Vélez, J. L., & Parrado-Vallejo, D. M. (2023). Effect of Sea Level Rise and Access Channel Deepening on Future Tidal Power Plants in Buenaventura Colombia. Infrastructures, 8(3). https://doi.org/10.3390/infrastructures8030051Rueda-Bayona, J. G., Guzmán, A., & Eras, J. J. C. (2019). Wind and power density data of strategic offshore locations in the Colombian Caribbean coast. Data in Brief. https://doi.org/10.1016/j.dib.2019.104720Rueda-Bayona, J. G., Guzmán, A., Eras, J. J. C., Silva-Casarín, R., Bastidas-Arteaga, E., & Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. In Journal of Cleaner Production (Vol. 220, pp. 529–543). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2019.02.174Rueda-Bayona, J. G., Guzmán, A., & Osorio, A. F. (2022). DOE-ANOVA for Identifying the Effect of Extreme Sea-States over the Structural Dynamic Parameters of a Floating Structure. Mathematical Modelling of Engineering Problems, 9(3), 839–848. https://doi.org/10.18280/mmep.090334Rueda-Bayona, J. G., Paez, N., Eras, J. J. C., & Gutiérrez, A. S. (2022). DOE-ANOVA to Optimize Hydrokinetic Turbines for Low Velocity Conditions. Mathematical Modelling of Engineering Problems, 9(4), 979–988. https://doi.org/10.18280/mmep.090415Rueda-Bayona, J., Guzmán, A., Eras, J., Silva-Casarín, R., Bastidas-Arteaga, E., & Horrillo- Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. In Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.02.174Sánchez Giralda, T. (2007). UNIÓN. Revista Iberoamericana de Educación Matemática.Siebert, N. (2008). Development of Methods for Regional Wind Power Forecasting.Soman, S. S., Zareipour, H., Malik, O., & Mandal, P. (2010). A review of wind power and wind speed forecasting methods with different time horizons. North American Power Symposium 2010, NAPS 2010. https://doi.org/10.1109/NAPS.2010.5619586Soto Gutierrez, J. J. (2016). DESARROLLO DE LA ENERGÍA EÓLICA EN COLOMBIA [UNIVERSIDAD DE AMÉRICA]. http://52.0.229.99/bitstream/20.500.11839/624/1/5082005-2016-2-GA.pdfSri Sairam Engineering College. Department of Electrical and Electronics Engineering, Institute of Electrical and Electronics Engineers. Madras Section, IEEE Power & Energy Society, & Institute of Electrical and Electronics Engineers. (n.d.). Proceedings of the International Conference on Power, Energy, Control and Transmission Systems (ICPECTS- 2018) : 22nd & 23rd February, 2018, Department of Electrical and Electronics Engineering, Sri Sairam Engineering College, Chennai.Statgraphics Technologies, Inc. (n.d.). Statgraphics Centurión XVI.Sunaina, S., Shivahare, B. D., Kumar, V., Gupta, S. K., Singh, P., & Diwakar, M. (2023). Metaheuristic Optimization Algorithms and recent applications: A comprehensive survey. 2023 International Conference on Computational Intelligence, Communication Technology and Networking, CICTN 2023, 506–511. https://doi.org/10.1109/CICTN57981.2023.10140511Tahavorgar, A., & Quaicoe, J. E. (2013). Estimation of wake effect in wind farms using design of experiment methodology. 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, 3317–3324. https://doi.org/10.1109/ECCE.2013.6647136Tastu, J., Madsen, H., & Pinson, P. (2013). Short-term wind power forecasting: probabilistic and space-time aspects. Ph.D Thesis, Technical University of Denmark.Techn, O. (n.d.). IDENTIFICACIÓN DE LA INFLUENCIA DE LAS VARIACIONES CONVECTIVAS EN LA GENERACIÓN DE CARGAS TRANSITORIAS Y SU EFECTO HIDROMECÁNICO EN LAS ESTRUCTURAS OFFSHORE IDENTIFICATION OF THE INFLUENCE OF CONVECTIVE VARIATIONS IN THE GENERATION OF TRANSIENT LOADS AND THEIR HYDROMECHANICAL EFFECT OVER THE OFFSHORE STRUCTURES.TEMA 3 APROXIMACIÓN DE FILTROS 3.1 Teoría de la aproximación. (n.d.).The 7th International Conference on Wireless Communications, Networking and Mobile Computing : Sep. 23-25, 2011, Wuhan, China. (n.d.).Therán Nieto, K. R., Potes, L. R., Celedon, S. M., & De León, J. M. (2019). Microclimate And Urban Thermal Comfort. Modulo Arquitectura CUC, 23(1), 49–88. https://doi.org/10.17981/mod.arq.cuc.23.1.2019.04Treiber, N. A., Heinermann, J., & Kramer, O. (2016). Wind Power Prediction with Machine Learning BT - Computational Sustainability. September, 13–29.Tripp-Barba, C. (2020). Revisión de literatura de modelos computacionales para la predicción de la velocidad del viento de 2004 a 2016. Revista de Investigación En Tecnologías de La Información, 8(15), 27–40. https://doi.org/10.36825/riti.08.15.004Trnka, P., Západočeská univerzita v Plzni. Faculty of Electrical Engineering. Department of Technologies and Measurement, IEEE Czechoslovakia Section, Západočeská univerzita v Plzni, & Institute of Electrical and Electronics Engineers. (n.d.). 2018 International Conference on Diagnostics in Electrical Engineering (Diagnostika) : Parkhotel Pilsen, September 4-7, 2018.Türkan, Y. S., Yumurtacı Aydoğmuş, H., & Erdal, H. (2016). The prediction of the wind speed at different heights by machine learning methods. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 6(2), 179–187. https://doi.org/10.11121/ijocta.01.2016.00315Vega-Zuñiga, S., Rueda-Bayona, J. G., & Ospino-Castro, A. (2022). Evaluation of Eleven Numerical Methods for Determining Weibull Parameters for Wind Energy Generation in the Caribbean Region of Colombia. Mathematical Modelling of Engineering Problems, 9(1), 194–199. https://doi.org/10.18280/mmep.090124Vidya, S., Srie, E., & Janani, V. (2019). A Review On The Hybrid Approaches For Wind Speed Forecasting. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 8(09). www.ijstr.orgVijayvargia, A., Sharma, K. C., & Bhakar, R. (n.d.). A Comparative Study of Short-Term Wind Speed Forecasting Models.Wang, X. (2017). Forecasting short-Term wind speed using support vector machine with particle swarm optimization. Proceedings - 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2017, 2017-December, 241–245. https://doi.org/10.1109/SDPC.2017.53Wang, X. (2017). Forecasting short-Term wind speed using support vector machine with particle swarm optimization. Proceedings - 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2017, 2017-December, 241–245. https://doi.org/10.1109/SDPC.2017.53Xie, L., Yuan, X., Ruan, X., & Ji, Q. (2020). Harmonic Analysis in PWM Converters Using Short- Time Fourier Series. 2020 IEEE 9th International Power Electronics and Motion Control Conference, IPEMC 2020 ECCE Asia, 2812–2818. https://doi.org/10.1109/IPEMC- ECCEAsia48364.2020.9368081Xu, B., Mou, K., Institute of Electrical and Electronics Engineers. Beijing Section, & Institute of Electrical and Electronics Engineers. (n.d.). Proceedings of 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC 2019) : December 20-22, 2019, Chengdu, China.Yang, B., Dai, K., Yang, C., Luo, H., He, K., & Dai, Z. (2021). Improvement of Recursive DFT for APF With Higher Switching Frequency to Suppress Wideband Harmonics. IEEE Access, 9, 144300–144312. https://doi.org/10.1109/ACCESS.2021.3121735Yserentant, H. (2010). Fourier analysis. In Lecture Notes in Mathematics (Vol. 2000, pp. 13–26). Springer Verlag. https://doi.org/10.1007/978-3-642-12248-4_2Zedan, Y., Songmene, V., Samuel, A. M., Samuel, F. H., & Doty, H. W. (2022). Assessment of the Influence of Additives on the Mechanical Properties and Machinability of Al-11%Si Cast Alloys: Application of DOE and ANOVA Methods. Materials, 15(9). https://doi.org/10.3390/ma15093297Zhao, Z., Nan, H., Qiao, J., & Yu, Y. (n.d.). Research on Combination Forecast of Ultra-short- term Wind Speed Based on CEEMDAN-PSO-NNCT Multi-model.Zill, De. G., & Dewar, J. M. (2008). Calculo vectorial, analisis de Fourier y Analisis Complejo (M. Á. Toledo Castellanos, R. A. del Bosque Alayón, P. E. Roig Vázquez, L. Campa Rojas, & Z. Garc.ía García, Eds.; Tercera Edición, Vol. 2). McGraw-Hill Interamericana.de Mattos Neto, P. S. G., de Oliveira, J. F. L., de Oliveira Santos Júnior, D. S., Siqueira, H. V., da Nóbrega Marinho, M. H., & Madeiro, F. (2020). A hybrid nonlinear combination system for monthly wind speed forecasting. IEEE Access, 8, 191365–191377. https://doi.org/10.1109/ACCESS.2020.3032070Desai, V. A., & Rathore, S. (2016, March). Harmonic detection using Kalman filter. Conference: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT).Gilpavas, E., Medina, J., Dobrosz-Gómez, I., & Gómez, M. (2016). Degradación de Colorante Amarillo 12 de Aguas Residuales Industriales utilizando Hierro Cero Valente, Peróxido de Hidrógeno y Radiación Ultravioleta. Informacion Tecnologica, 27(3), 23–34. https://doi.org/10.4067/S0718-07642016000300004PronósticoRegresión linealHeurísticaVelocidad del vientoEnergía eólica teóricaFourierDOE-ANOVAPSOForecastingLinear regressionHeuristicWind speedTheorical wind energyPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/568ea0a9-f687-42fe-9cbd-ee9f42168bd1/download73a5432e0b76442b22b026844140d683MD51ORIGINALPronóstico de Viento Local con Alta Resolución y Amplio Horizonte Mediante Moderacion.cleaned (1) (2).pdfPronóstico de Viento Local con Alta Resolución y Amplio Horizonte Mediante Moderacion.cleaned (1) (2).pdfapplication/pdf4567352https://repositorio.cuc.edu.co/bitstreams/f482e866-7e3b-46ab-9e8a-a6ab0af2ad53/download275e30661597f39087cc1546538def1aMD52TEXTPronóstico de Viento Local con Alta Resolución y Amplio Horizonte Mediante Moderacion.cleaned (1) (2).pdf.txtPronóstico de Viento Local con Alta Resolución y Amplio Horizonte Mediante Moderacion.cleaned (1) (2).pdf.txtExtracted texttext/plain103495https://repositorio.cuc.edu.co/bitstreams/d2fb8eb2-5c3b-494d-b463-1bc016ed1331/downloade7d55a076a873d443de043d5c7e350eaMD53THUMBNAILPronóstico de Viento Local con Alta Resolución y Amplio Horizonte Mediante Moderacion.cleaned (1) (2).pdf.jpgPronóstico de Viento Local con Alta Resolución y Amplio Horizonte Mediante Moderacion.cleaned (1) (2).pdf.jpgGenerated Thumbnailimage/jpeg7551https://repositorio.cuc.edu.co/bitstreams/d7275dd0-6f7d-4275-bce6-a69e281549ba/download8715cad28ca10bd76f14275627e521a6MD5411323/14338oai:repositorio.cuc.edu.co:11323/143382025-07-29 04:00:54.481https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |