Analysis of crowd behavior through pattern virtualization
The study of the concentration of individuals in public places such as squares, shopping malls, parks, gardens, etc., is an open study field in the different disciplines of science, that leads to the need of having systems that allow to forecast and to predict eventualities in uncontrolled situation...
- Autores:
-
amelec, viloria
Pineda Lezama, Omar Bonerge
Vargas, Jesus
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7696
- Acceso en línea:
- https://hdl.handle.net/11323/7696
https://doi.org/10.1016/j.procs.2020.07.017
https://repositorio.cuc.edu.co/
- Palabra clave:
- Heterogeneous virtual crowds
Human behavior
Grouping patterns
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_35376753db59739a404943b243eaaf49 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7696 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Analysis of crowd behavior through pattern virtualization |
title |
Analysis of crowd behavior through pattern virtualization |
spellingShingle |
Analysis of crowd behavior through pattern virtualization Heterogeneous virtual crowds Human behavior Grouping patterns |
title_short |
Analysis of crowd behavior through pattern virtualization |
title_full |
Analysis of crowd behavior through pattern virtualization |
title_fullStr |
Analysis of crowd behavior through pattern virtualization |
title_full_unstemmed |
Analysis of crowd behavior through pattern virtualization |
title_sort |
Analysis of crowd behavior through pattern virtualization |
dc.creator.fl_str_mv |
amelec, viloria Pineda Lezama, Omar Bonerge Vargas, Jesus |
dc.contributor.author.spa.fl_str_mv |
amelec, viloria Pineda Lezama, Omar Bonerge Vargas, Jesus |
dc.subject.spa.fl_str_mv |
Heterogeneous virtual crowds Human behavior Grouping patterns |
topic |
Heterogeneous virtual crowds Human behavior Grouping patterns |
description |
The study of the concentration of individuals in public places such as squares, shopping malls, parks, gardens, etc., is an open study field in the different disciplines of science, that leads to the need of having systems that allow to forecast and to predict eventualities in uncontrolled situations, as it is the case of an earthquake. From that assumption, artificial intelligence, as a branch of computational sciences, studies the human behavior in a virtual way in order to obtain simulations based on social, psychological, neuro-scientific areas, among others, with the purpose of linking these theories to the area of artificial intelligence. This paper presents a way to generate virtual multitudes with heterogeneous behaviors, in such a way that the individuals that form the multitude present different behaviors. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-01-15T14:16:13Z |
dc.date.available.none.fl_str_mv |
2021-01-15T14:16:13Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1877-0509 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7696 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.procs.2020.07.017 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1877-0509 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7696 https://doi.org/10.1016/j.procs.2020.07.017 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Ma, Y. P., & Zhang, H. (2020). Simulation study on cooperation behaviors and crowd dynamics in pedestrian evacuation. Chinese Physics B. [2] Liu, A. (2020). DYNAMIC VISUALIZATIONS: Developing a Framework for Crowd-Based Simulations (Master's thesis, University of Waterloo). [3] Xu, M., Xie, X., Lv, P., Niu, J., Wang, H., Li, C., ... & Zhou, B. (2019). Crowd behavior simulation with emotional contagion in unexpected multihazard situations. IEEE Transactions on Systems, Man, and Cybernetics: Systems. [4] Shendarkar, A., Vasudevan, K., Lee, S., & Son, Y. J. (2008). Crowd simulation for emergency response using BDI agents based on immersive virtual reality. Simulation Modelling Practice and Theory, 16(9), 1415-1429. [5] Dickinson, P., Gerling, K., Hicks, K., Murray, J., Shearer, J., & Greenwood, J. (2019). Virtual reality crowd simulation: effects of agent density on user experience and behaviour. Virtual Reality, 23(1), 19-32. [6] Miyagawa, D., & Ichinose, G. (2020). Cellular automaton model with turning behavior in crowd evacuation. Physica A: Statistical Mechanics and its Applications, 124376. [7] Guy, S.J., Chhugani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: a least-effort approach to crowd simulation. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation. pp. 119–128. Eu- rographics Association (2010) [8] Hadap, S., Eberle, D., Volino, P., Lin, M.C., Redon, S., Ericson, C.: Collision detection and proximity queries. In: ACM SIGGRAPH 2004 Course Notes. p. 15. ACM (2004) [9] Shendarkar, A., Vasudevan, K., Lee, S., & Son, Y. J. (2006, December). Crowd simulation for emergency response using BDI agent based on virtual reality. In Proceedings of the 2006 winter simulation conference (pp. 545-553). IEEE. [10] Kapadia, M., Singh, S., Reinman, G., Faloutsos, P.: A behavior-authoring frame- work for multiactor simulations. Computer Graphics and Applications, IEEE 31(6), 45–55 (2011) [11] Ulicny, B., & Thalmann, D. (2001). Crowd simulation for interactive virtual environments and VR training systems. In Computer animation and simulation 2001 (pp. 163-170). Springer, Vienna. [12] Xue, J., Yin, H., Lv, P., Xu, M., & Li, Y. (2019). Crowd queuing simulation with an improved emotional contagion model. Science China Information Sciences, 62(4), 44101. [13] Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIG- GRAPH/Eurographics symposium on Computer animation. pp. 99–108. Euro- graphics Association (2007) [14] Zou, Q., & Chen, S. (2020). Simulation of Crowd Evacuation under Toxic Gas Incident Considering Emotion Contagion and Information Transmission. Journal of Computing in Civil Engineering, 34(3), 04020007. [15] Samson, M., Crowe, A., De Vreede, P., Dessens, J., Duursma, S., Verhaar, H.: Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging Clinical and Experimental Research 13(1), 16–21 (2001) [16] Bera, A., Kim, S., & Manocha, D. (2016, March). Interactive and adaptive data-driven crowd simulation: User study. In 2016 IEEE Virtual Reality (VR) (pp. 325-325). IEEE. [17] Vásquez, C., Ramírez-Pisco, R., Viloria, A., Martínez Sierra, D., Ruiz-Barrios, E., Hernández-P, H., … De la Hoz Hernández, J. (2020). Conglomerates of Bus Rapid Transit in Latin American Countries. In Advances in Intelligent Systems and Computing (Vol. 1039, pp. 220– 228). Springer. https://doi.org/10.1007/978-3-030-30465-2_25 [18] Viloria, A., & Pineda Lezama, O. B. (2019). An intelligent approach for the design and development of a personalized system of knowledge representation. In Procedia Computer Science (Vol. 151, pp. 1225–1230). Elsevier B.V. https://doi.org/10.1016/j.procs.2019.04.176 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1877050920316963 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/83e163ef-136f-4e04-9202-f1fd7295b2d7/download https://repositorio.cuc.edu.co/bitstreams/80914388-5c0f-4c9e-aaae-cc9fd8e5e349/download https://repositorio.cuc.edu.co/bitstreams/c4580ab9-f833-4306-b35b-b585b12efb19/download https://repositorio.cuc.edu.co/bitstreams/328a5b11-63c3-4a60-ac5d-de3f6286f6ea/download https://repositorio.cuc.edu.co/bitstreams/b7bcc8c2-70b1-4540-b059-456acc63d3b4/download |
bitstream.checksum.fl_str_mv |
d16b9be2ec3ad1d39aed425c647ac5f9 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad b19c2b89ab7695b90206562537b38fa4 dd89b403675df51290e8e436de530af9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166865174659072 |
spelling |
amelec, viloriaPineda Lezama, Omar BonergeVargas, Jesus2021-01-15T14:16:13Z2021-01-15T14:16:13Z20201877-0509https://hdl.handle.net/11323/7696https://doi.org/10.1016/j.procs.2020.07.017Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The study of the concentration of individuals in public places such as squares, shopping malls, parks, gardens, etc., is an open study field in the different disciplines of science, that leads to the need of having systems that allow to forecast and to predict eventualities in uncontrolled situations, as it is the case of an earthquake. From that assumption, artificial intelligence, as a branch of computational sciences, studies the human behavior in a virtual way in order to obtain simulations based on social, psychological, neuro-scientific areas, among others, with the purpose of linking these theories to the area of artificial intelligence. This paper presents a way to generate virtual multitudes with heterogeneous behaviors, in such a way that the individuals that form the multitude present different behaviors.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Pineda Lezama, Omar BonergeVargas, Jesusapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920316963Heterogeneous virtual crowdsHuman behaviorGrouping patternsAnalysis of crowd behavior through pattern virtualizationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Ma, Y. P., & Zhang, H. (2020). Simulation study on cooperation behaviors and crowd dynamics in pedestrian evacuation. Chinese Physics B.[2] Liu, A. (2020). DYNAMIC VISUALIZATIONS: Developing a Framework for Crowd-Based Simulations (Master's thesis, University of Waterloo).[3] Xu, M., Xie, X., Lv, P., Niu, J., Wang, H., Li, C., ... & Zhou, B. (2019). Crowd behavior simulation with emotional contagion in unexpected multihazard situations. IEEE Transactions on Systems, Man, and Cybernetics: Systems.[4] Shendarkar, A., Vasudevan, K., Lee, S., & Son, Y. J. (2008). Crowd simulation for emergency response using BDI agents based on immersive virtual reality. Simulation Modelling Practice and Theory, 16(9), 1415-1429.[5] Dickinson, P., Gerling, K., Hicks, K., Murray, J., Shearer, J., & Greenwood, J. (2019). Virtual reality crowd simulation: effects of agent density on user experience and behaviour. Virtual Reality, 23(1), 19-32.[6] Miyagawa, D., & Ichinose, G. (2020). Cellular automaton model with turning behavior in crowd evacuation. Physica A: Statistical Mechanics and its Applications, 124376.[7] Guy, S.J., Chhugani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: a least-effort approach to crowd simulation. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation. pp. 119–128. Eu- rographics Association (2010)[8] Hadap, S., Eberle, D., Volino, P., Lin, M.C., Redon, S., Ericson, C.: Collision detection and proximity queries. In: ACM SIGGRAPH 2004 Course Notes. p. 15. ACM (2004)[9] Shendarkar, A., Vasudevan, K., Lee, S., & Son, Y. J. (2006, December). Crowd simulation for emergency response using BDI agent based on virtual reality. In Proceedings of the 2006 winter simulation conference (pp. 545-553). IEEE.[10] Kapadia, M., Singh, S., Reinman, G., Faloutsos, P.: A behavior-authoring frame- work for multiactor simulations. Computer Graphics and Applications, IEEE 31(6), 45–55 (2011)[11] Ulicny, B., & Thalmann, D. (2001). Crowd simulation for interactive virtual environments and VR training systems. In Computer animation and simulation 2001 (pp. 163-170). Springer, Vienna.[12] Xue, J., Yin, H., Lv, P., Xu, M., & Li, Y. (2019). Crowd queuing simulation with an improved emotional contagion model. Science China Information Sciences, 62(4), 44101.[13] Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIG- GRAPH/Eurographics symposium on Computer animation. pp. 99–108. Euro- graphics Association (2007)[14] Zou, Q., & Chen, S. (2020). Simulation of Crowd Evacuation under Toxic Gas Incident Considering Emotion Contagion and Information Transmission. Journal of Computing in Civil Engineering, 34(3), 04020007.[15] Samson, M., Crowe, A., De Vreede, P., Dessens, J., Duursma, S., Verhaar, H.: Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging Clinical and Experimental Research 13(1), 16–21 (2001)[16] Bera, A., Kim, S., & Manocha, D. (2016, March). Interactive and adaptive data-driven crowd simulation: User study. In 2016 IEEE Virtual Reality (VR) (pp. 325-325). IEEE.[17] Vásquez, C., Ramírez-Pisco, R., Viloria, A., Martínez Sierra, D., Ruiz-Barrios, E., Hernández-P, H., … De la Hoz Hernández, J. (2020). Conglomerates of Bus Rapid Transit in Latin American Countries. In Advances in Intelligent Systems and Computing (Vol. 1039, pp. 220– 228). Springer. https://doi.org/10.1007/978-3-030-30465-2_25[18] Viloria, A., & Pineda Lezama, O. B. (2019). An intelligent approach for the design and development of a personalized system of knowledge representation. In Procedia Computer Science (Vol. 151, pp. 1225–1230). Elsevier B.V. https://doi.org/10.1016/j.procs.2019.04.176PublicationORIGINALAnalysis of crowd behavior through pattern virtualization.pdfAnalysis of crowd behavior through pattern virtualization.pdfapplication/pdf817811https://repositorio.cuc.edu.co/bitstreams/83e163ef-136f-4e04-9202-f1fd7295b2d7/downloadd16b9be2ec3ad1d39aed425c647ac5f9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/80914388-5c0f-4c9e-aaae-cc9fd8e5e349/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/c4580ab9-f833-4306-b35b-b585b12efb19/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILAnalysis of crowd behavior through pattern virtualization.pdf.jpgAnalysis of crowd behavior through pattern virtualization.pdf.jpgimage/jpeg47565https://repositorio.cuc.edu.co/bitstreams/328a5b11-63c3-4a60-ac5d-de3f6286f6ea/downloadb19c2b89ab7695b90206562537b38fa4MD54TEXTAnalysis of crowd behavior through pattern virtualization.pdf.txtAnalysis of crowd behavior through pattern virtualization.pdf.txttext/plain47277https://repositorio.cuc.edu.co/bitstreams/b7bcc8c2-70b1-4540-b059-456acc63d3b4/downloaddd89b403675df51290e8e436de530af9MD5511323/7696oai:repositorio.cuc.edu.co:11323/76962024-09-17 14:19:30.505http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |