Application of a 2k–p fractional experimental design in coagulation-flocculation processes in the treatment of wastewater from a slaughterhouse
Determining the optimal dose of coagulant required to perform flocculation is critical in most water treatment plants’ planning and operation. This study implemented a 2k–p fractional factorial design of experiments to identify the factors influencing the color decrease of wastewater from a slaughte...
- Autores:
-
Carpintero Durango, Javier Andrés
Villa-Dominguez, Jennifer
Tavera Quiroz, Maria Jose
Tavera, Humberto
Kaźmierczak, Bartosz
Fábregas Villegas, Jonathan
Canales, Fausto
Canales, Fausto Alfredo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10759
- Acceso en línea:
- https://hdl.handle.net/11323/10759
https://repositorio.cuc.edu.co/
- Palabra clave:
- Coagulation
Coagulation adjuvant
Residence time
Design of experiments
Chlorination
Color
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
| id |
RCUC2_32edbb50c9ffd8136af64ce4551f4302 |
|---|---|
| oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10759 |
| network_acronym_str |
RCUC2 |
| network_name_str |
REDICUC - Repositorio CUC |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Application of a 2k–p fractional experimental design in coagulation-flocculation processes in the treatment of wastewater from a slaughterhouse |
| title |
Application of a 2k–p fractional experimental design in coagulation-flocculation processes in the treatment of wastewater from a slaughterhouse |
| spellingShingle |
Application of a 2k–p fractional experimental design in coagulation-flocculation processes in the treatment of wastewater from a slaughterhouse Coagulation Coagulation adjuvant Residence time Design of experiments Chlorination Color |
| title_short |
Application of a 2k–p fractional experimental design in coagulation-flocculation processes in the treatment of wastewater from a slaughterhouse |
| title_full |
Application of a 2k–p fractional experimental design in coagulation-flocculation processes in the treatment of wastewater from a slaughterhouse |
| title_fullStr |
Application of a 2k–p fractional experimental design in coagulation-flocculation processes in the treatment of wastewater from a slaughterhouse |
| title_full_unstemmed |
Application of a 2k–p fractional experimental design in coagulation-flocculation processes in the treatment of wastewater from a slaughterhouse |
| title_sort |
Application of a 2k–p fractional experimental design in coagulation-flocculation processes in the treatment of wastewater from a slaughterhouse |
| dc.creator.fl_str_mv |
Carpintero Durango, Javier Andrés Villa-Dominguez, Jennifer Tavera Quiroz, Maria Jose Tavera, Humberto Kaźmierczak, Bartosz Fábregas Villegas, Jonathan Canales, Fausto Canales, Fausto Alfredo |
| dc.contributor.author.none.fl_str_mv |
Carpintero Durango, Javier Andrés Villa-Dominguez, Jennifer Tavera Quiroz, Maria Jose Tavera, Humberto Kaźmierczak, Bartosz Fábregas Villegas, Jonathan Canales, Fausto Canales, Fausto Alfredo |
| dc.subject.proposal.eng.fl_str_mv |
Coagulation Coagulation adjuvant Residence time Design of experiments Chlorination Color |
| topic |
Coagulation Coagulation adjuvant Residence time Design of experiments Chlorination Color |
| description |
Determining the optimal dose of coagulant required to perform flocculation is critical in most water treatment plants’ planning and operation. This study implemented a 2k–p fractional factorial design of experiments to identify the factors influencing the color decrease of wastewater from a slaughterhouse. The variables assessed were the velocity gradient, residence time, primary coagulant dosage, chlorine dosage, and coagulation adjuvant dosage. The results indicate that the primary coagulant dose and the velocity gradient significantly affect the samples’ color and that the other factors can be run at a low technical-economic level to start up the water treatment plant. The fractional factorial design allowed reducing the number of experimental points without affecting the minimum information required to identify which factors are significant in reducing the color of a wastewater sample. |
| publishDate |
2022 |
| dc.date.issued.none.fl_str_mv |
2022-08-21 |
| dc.date.accessioned.none.fl_str_mv |
2024-02-21T14:57:08Z |
| dc.date.available.none.fl_str_mv |
2024-02-21T14:57:08Z |
| dc.type.spa.fl_str_mv |
Artículo de revista |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.content.spa.fl_str_mv |
Text |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Carpintero, J.; Villa-Dominguez, J.; Tavera-Quiroz, M.J.; Tavera-Quiroz, H.C.; Ka ´zmierczak, B.; Fábregas-Villegas, J.; Canales, F.A. Application of a 2k–p Fractional Experimental Design in Coagulation-Flocculation Processes in the Treatment of Wastewater from a Slaughterhouse. Sustainability 2022, 14, 10402. https://doi.org/10.3390/ su141610402 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10759 |
| dc.identifier.doi.none.fl_str_mv |
10.3390/ su141610402 |
| dc.identifier.eissn.spa.fl_str_mv |
2071-1050 |
| dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
| dc.identifier.reponame.spa.fl_str_mv |
REDICUC – Repositorio CUC |
| dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
| identifier_str_mv |
Carpintero, J.; Villa-Dominguez, J.; Tavera-Quiroz, M.J.; Tavera-Quiroz, H.C.; Ka ´zmierczak, B.; Fábregas-Villegas, J.; Canales, F.A. Application of a 2k–p Fractional Experimental Design in Coagulation-Flocculation Processes in the Treatment of Wastewater from a Slaughterhouse. Sustainability 2022, 14, 10402. https://doi.org/10.3390/ su141610402 10.3390/ su141610402 2071-1050 Corporación Universidad de la Costa REDICUC – Repositorio CUC |
| url |
https://hdl.handle.net/11323/10759 https://repositorio.cuc.edu.co/ |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Sustainability |
| dc.relation.references.spa.fl_str_mv |
1. Ospina Zúñiga, O.E.; Cardona García, O.H. Evaluación de La Contaminación Por Aluminio Del Agua Para Consumo Humano, Región Central de Colombia. Inge CUC 2021, 17, 31–41. [CrossRef] 2. Canales, F.A.; Plata-Solano, D.; Cantero-Rodelo, R.; Pereira, Y.Á.; Díaz-Martínez, K.; Carpintero, J.; Ka´zmierczak, B.; TaveraQuiroz, H. Assessment of Carwash Wastewater Reclamation Potential Based on Household Water Treatment Technologies. Water Resour. Ind. 2021, 26, 100164. [CrossRef] 3. Al-Mutairi, N.Z.; Hamoda, M.F.; Al-Ghusain, I. Coagulant Selection and Sludge Conditioning in a Slaughterhouse Wastewater Treatment Plant. Bioresour. Technol. 2004, 95, 115–119. [CrossRef] [PubMed] 4. Gökçek, Ö.B.; Özdemir, S. Optimization of the Coagulation–Flocculation Process for Slaughterhouse Wastewater Using Response Surface Methodology. CLEAN Soil Air Water 2020, 48, 2000033. [CrossRef] 5. Hu, H.; Li, X.; Wu, S.; Yang, C. Sustainable Livestock Wastewater Treatment via Phytoremediation: Current Status and Future Perspectives. Bioresour. Technol. 2020, 315, 123809. [CrossRef] 6. Sły´s, D.; Pochwat, K.; Czarniecki, D. An Analysis of Waste Heat Recovery from Wastewater on Livestock and Agriculture Farms. Resources 2020, 9, 3. [CrossRef] 7. Lahlou, F.Z.; Mackey, H.R.; Al-Ansari, T. Wastewater Reuse for Livestock Feed Irrigation as a Sustainable Practice: A SocioEnvironmental-Economic Review. J. Clean. Prod. 2021, 294, 126331. [CrossRef] 8. Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse Wastewater Characteristics, Treatment, and Management in the Meat Processing Industry: A Review on Trends and Advances. J. Environ. Manag. 2015, 161, 287–302. [CrossRef] 9. Orssatto, F.; Tavares, M.H.F.; da Silva, F.M.; Eyng, E.; Fleck, L.; Frare, L.M. Optimization of the Treatment of Wastewater from a Slaughterhouse and Packing Plant by the Combination of Electrocoagulation and Tannin-Based Coagulant. Desalinat. Water Treat. 2018, 102, 82–92. [CrossRef] 10. Bui, H.M. Applying Response Surface Methodology to Optimize the Treatment of Swine Slaughterhouse Wastewater by Electrocoagulation. Pol. J. Environ. Stud. 2018, 27, 1975–1981. [CrossRef] 11. Struk-Sokołowska, J.; Rodziewicz, J.; Mielcarek, A. Effect of Dairy Wastewater on Changes in COD Fractions in Technical-Scale SBR Type Reactors. Water Sci. Technol. 2018, 2017, 156–169. [CrossRef] 12. Struk-Sokolowska, J.; Tkaczuk, J. Analysis of Bakery Sewage Treatment Process Options Based on COD Fraction Changes. J. Ecol. Eng. 2018, 19, 226–235. [CrossRef] 13. Jiang, J.-Q. The Role of Coagulation in Water Treatment. Curr. Opin. Chem. Eng. 2015, 8, 36–44. [CrossRef] 14. Guigui, C.; Rouch, J.C.; Durand-Bourlier, L.; Bonnelye, V.; Aptel, P. Impact of Coagulation Conditions on the In-Line Coagulation/UF Process for Drinking Water Production. Desalination 2002, 147, 95–100. [CrossRef] 15. Suquet, J.; Godo-Pla, L.; Valentí, M.; Ferràndez, L.; Verdaguer, M.; Poch, M.; Martín, M.J.; Monclús, H. Assessing the Effect of Catchment Characteristics to Enhanced Coagulation in Drinking Water Treatment: RSM Models and Sensitivity Analysis. Sci. Total Environ. 2021, 799, 149398. [CrossRef] [PubMed] 16. American Society for Testing and Materials. D2035-13 Standard Practice for Coagulation-Flocculation Jar Test of Water; American Society for Testing and Materials: West Conshohocken, PA, USA, 2013. 17. Mousa, K.M.; Hadi, H.J. Coagulation/Flocculation Process for Produced Water Treatment. Int. J. Curr. Eng. Technol. 2016, 6, 551–555. 18. Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2017; ISBN 9781119113478. 19. Bobadilla, M.C.; Lorza, R.L.; García, R.E.; Gómez, F.S.; González, E.P.V. Coagulation: Determination of Key Operating Parameters by Multi-Response Surface Methodology Using Desirability Functions. Water 2019, 11, 398. [CrossRef] 20. Carpintero, J.; Canales, F.A.; Fábregas, J.; Ávila, J. Factors and Interactions That Influence the Pressure Drop Across An Air Volume Reducing Device on Low-Pressure Water Distribution Networks. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 46, 1433–1443. [CrossRef] 21. Jiang, Y.; Zhang, Y.; Banks, C.; Heaven, S.; Longhurst, P. Investigation of the Impact of Trace Elements on Anaerobic Volatile Fatty Acid Degradation Using a Fractional Factorial Experimental Design. Water Res. 2017, 125, 458–465. [CrossRef] 22. Stewardson, D.J.; Whitfield, R.I. A Demonstration of the Utility of Fractional Experimental Design for Finding Optimal Genetic Algorithm Parameter Settings. J. Oper. Res. Soc. 2004, 55, 132–138. [CrossRef] 23. Haghiri, S.; Daghighi, A.; Moharramzadeh, S. Optimum Coagulant Forecasting by Modeling Jar Test Experiments Using ANNs. Drink. Water Eng. Sci. 2018, 11, 1–8. [CrossRef] 24. Bouyer, D.; Escudié, R.; Liné, A. Experimental Analysis of Hydrodynamics in a Jar-Test. Process Saf. Environ. Prot. 2005, 83, 22–30. [CrossRef] 25. Griffith, J.D.; Williams, R.G. Application of Jar-Test Analysis at Phoenix, Ariz. J Am. Water Work. Assoc. 1972, 64, 825–830. [CrossRef] 26. Bouyer, D.; Line, A.; Cockx, A.; Do-quang, Z. Experimental Analysis of Floc Size Distribution and Hydrodynamics in a Jar-Test. Chem. Eng. Res. Des. 2001, 79, 1017–1024. [CrossRef] 27. Ministerio de Ambiente y Desarrollo Sostenible. Resolución 631 de 2015; Ministerio de Ambiente y Desarrollo Sostenible: Bogota, Colombia, 2015; Volume 2015. 28. Ministerio de Ambiente y Desarrollo Sostenible. Resolución 1207 de 2014; Ministerio de Ambiente y Desarrollo Sostenible: Bogota, Colombia, 2014. 29. Baird, R.B.; Eaton, A.D.; Rice, E.W. (Eds.) Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association & Water Environment Federation: Washington, DC, USA, 2017; ISBN 9780875532875. 30. Daud, Z.; Nasir, N.; Kadir, A.A.; Aziz, A.; Latiff, A.; Ahmad, B.; Suhani, N.; Awang, H.; Halim, A.A. Treatment of Biodiesel Wastewater Using Ferric Chloride and Ferric Sulfate. Int. J. Integr. Eng. 2017, 9, 54–57. 31. Kerneïs, A.; Nakache, F.; Deguin, A.; Feinberg, M. The Effects of Water Residence Time on the Biological Quality in a Distribution Network. Water Res. 1995, 29, 1719–1727. [CrossRef] 32. Zhao, J.; Shi, H.; Liu, M.; Lu, J.; Li, W. Coagulation-Adsorption of Reactive Orange from Aqueous Solution by Freshly Formed Magnesium Hydroxide: Mixing Time and Mechanistic Study. Water Sci. Technol. 2017, 75, 1776–1783. [CrossRef] [PubMed] 33. Kan, C.; Huang, C.; Pan, J.R. Time Requirement for Rapid-Mixing in Coagulation. Colloids Surf. A: Physicochem. Eng. Asp. 2002, 203, 1–9. [CrossRef] 34. Som, A.M.; Ramlee, A.A.; Puasa, S.W.; Hamid, H.A.A. Optimisation of Operating Conditions during Coagulation-Flocculation Process in Industrial Wastewater Treatment Using Hylocereus Undatus Foliage through Response Surface Methodology. Environ. Sci. Pollut. Res. 2021. [CrossRef] 35. Lai, R.J.; Hudson, H.E.; Singley, J.E. Velocity Gradient Calibration of Jar-Test Equipment. J. Am. Water Work. Assoc. 1975, 67, 553–557. [CrossRef] 36. Zhan, X.; Gao, B.; Wang, Y.; Yue, Q. Influence of Velocity Gradient on Aluminum and Iron Floc Property for NOM Removal from Low Organic Matter Surfacewater by Coagulation. Chem. Eng. J. 2011, 166, 116–121. [CrossRef] 37. TeKippe, R.J.; Ham, R.K. Velocity-Gradient Paths in Coagulation. J. Am. Water Work. Assoc. 1971, 63, 439–448. [CrossRef] 38. Mhaisalkar, V.A.; Paramasivam, R.; Bhole, A.G. An Innovative Technique for Determining Velocity Gradient in CoagulationFlocculation Process. Water Res. 1986, 20, 1307–1314. [CrossRef] 39. Bratby, J. Coagulation and Flocculation in Water and Wastewater Treatment, 3rd ed.; IWA publishing: London, UK, 2016; ISBN 9781780407494. 40. Teh, C.Y.; Wu, T.Y. The Potential Use of Natural Coagulants and Flocculants in the Treatment of Urban Waters. Chem. Eng. Trans. 2014, 39, 1603–1608. [CrossRef] 41. Amirtharajah, A.; Dennett, K.E.; Studstill, A. Ferric Chloride Coagulation for Removal of Dissolved Organic Matter and Trihalomethane Precursors. Water Sci. Technol. 1993, 27, 113–121. [CrossRef] 42. Domínguez, J.R.; De Heredia, J.B.; González, T.; Sanchez-Lavado, F. Evaluation of Ferric Chloride as a Coagulant for Cork Processing Wastewaters. Influence of the Operating Conditions on the Removal of Organic Matter and Settleability Parameters. Ind. Eng. Chem. Res. 2005, 44, 6539–6548. [CrossRef] 43. Shi, X.; Bi, R.; Yuan, B.; Liao, X.; Zhou, Z.; Li, F.; Sun, W. A Comparison of Trichloromethane Formation from Two Algae Species during Two Pre-Oxidation-Coagulation-Chlorination Processes. Sci. Total Environ. 2019, 656, 1063–1070. [CrossRef] 44. Lapsongpon, T.; Leungprasert, S.; Yoshimura, C. Pre-Chlorination Contact Time and the Removal and Control of Microcystis Aeroginosa in Coagulation. IOP Conf. Ser. Earth Environ. Sci. 2017, 67, 012011. [CrossRef] 45. Ji, Q.; Liu, H.; Hu, C.; Qu, J.; Wang, D.; Li, J. Removal of Disinfection By-Products Precursors by Polyaluminum Chloride Coagulation Coupled with Chlorination. Sep. Purif. Technol. 2008, 62, 464–469. [CrossRef] 46. Bruno, P.; Campo, R.; Giustra, M.G.; De Marchis, M.; Di Bella, G. Bench Scale Continuous Coagulation-Flocculation of Saline Industrial Wastewater Contaminated by Hydrocarbons. J. Water Process. Eng. 2020, 34, 101156. [CrossRef] 47. Hazourli, S.; Ziati, M.; Benredjem, Z.; Delimi, R.; Boudiba, L. Analysis of Wastewater Loaded with Paint Before and After Treatment of Coagulation–Flocculation. Arab. J. Sci. Eng. 2012, 37, 897–903. [CrossRef] 48. An, D.; Chen, Y.; Gu, B.; Westerhoff, P.; Hanigan, D.; Herckes, P.; Fischer, N.; Donovan, S.; Croue, J.P.; Atkinson, A. Lower Molecular Weight Fractions of PolyDADMAC Coagulants Disproportionately Contribute to N-Nitrosodimethylamine Formation during Water Treatment. Water Res. 2019, 150, 466–472. [CrossRef] [PubMed] 49. Ariffin, A.; Razali, M.A.A.; Ahmad, Z. PolyDADMAC and Polyacrylamide as a Hybrid Flocculation System in the Treatment of Pulp and Paper Mills Waste Water. Chem. Eng. J. 2012, 179, 107–111. [CrossRef] 50. Zahrim, A.Y.; Dexter, Z.D.; Joseph, C.G.; Hilal, N. Effective Coagulation-Flocculation Treatment of Highly Polluted Palm Oil Mill Biogas Plant Wastewater Using Dual Coagulants: Decolourisation, Kinetics and Phytotoxicity Studies. J. Water Process Eng. 2017, 16, 258–269. [CrossRef] 51. Iuliani, P.; Carlucci, G.; Marrone, A. Investigation of the HPLC Response of NSAIDs by Fractional Experimental Design and Multivariate Regression Analysis. Response Optimization and New Retention Parameters. J. Pharm. Biomed. Anal. 2010, 51, 46–55. [CrossRef] 52. Ofman, P.; Struk-Sokołowska, J. Artificial Neural Network (ANN) Approach to Modelling of Selected Nitrogen Forms Removal from Oily Wastewater in Anaerobic and Aerobic GSBR Process Phases. Water 2019, 11, 1594. [CrossRef] 53. ICONTEC Norma Técnica Colombiana NTC 3903. Procedimiento Para El Ensayo de Coagulación-Floculación En Un Recipiente Con Agua o Método de Jarras. 2010. Available online: https://tienda.icontec.org/gp-procedimiento-para-el-ensayo-decoagulacion-floculacion-en-un-recipiente-con-agua-o-metodo-de-jarras-ntc3903-2010.html (accessed on 15 June 2022). 54. Tsaur, S.-L.; Fitch, R.M. Preparation and Properties of Polystyrene Model Colloids: II. Effect of Surface Charge Density on Coagulation Behavior. J. Colloid Interface Sci. 1987, 115, 463–471. [CrossRef] 55. Oriekhova, O.; Stoll, S. Investigation of FeCl3 Induced Coagulation Processes Using Electrophoretic Measurement, Nanoparticle Tracking Analysis and Dynamic Light Scattering: Importance of PH and Colloid Surface Charge. Colloids Surf. A Physicochem. Eng. Asp. 2014, 461, 212–219. [CrossRef] 56. de Paula, H.M.; de Oliveira Ilha, M.S.; Sarmento, A.P.; Andrade, L.S. Dosage Optimization of Moringa Oleifera Seed and Traditional Chemical Coagulants Solutions for Concrete Plant Wastewater Treatment. J. Clean. Prod. 2018, 174, 123–132. [CrossRef] 57. Shihab, A.S.; Hamad, A.T. Effect of Inclination Angle, Dimensions of Impeller Blades, and Velocity Gradient on the Efficiency of Water Flocculation. Int. J. Civ. Eng. Technol. 2018, 9, 969–977. 58. Mohammed, T.J.; Shakir, E. Effect of Settling Time, Velocity Gradient, and Camp Number on Turbidity Removal for Oilfield Produced Water. Egypt. J. Pet. 2018, 27, 31–36. [CrossRef] 59. Yukselen, M.A.; Gregory, J. The Effect of Rapid Mixing on the Break-up and Re-Formation of Flocs. J. Chem. Technol. Biotechnol. 2004, 79, 782–788. [CrossRef] 60. Choong Lek, B.L.; Peter, A.P.; Qi Chong, K.H.; Ragu, P.; Sethu, V.; Selvarajoo, A.; Arumugasamy, S.K. Treatment of Palm Oil Mill Effluent (POME) Using Chickpea (Cicer Arietinum) as a Natural Coagulant and Flocculant: Evaluation, Process Optimization and Characterization of Chickpea Powder. J. Environ. Chem. Eng. 2018, 6, 6243–6255. [CrossRef] 61. Rossini, M.; Garrido, J.G.; Galluzzo, M. Optimization of the Coagulation-Flocculation Treatment: Influence of Rapid Mix Parameters. Water Res. 1999, 33, 1817–1826. [CrossRef] 62. Kim, D.W.; Yu, S.I.; Im, K.; Shin, J.; Shin, S.G. Responses of Coagulant Type, Dosage and Process Conditions to Phosphate Removal Efficiency from Anaerobic Sludge. Int. J. Environ. Res. Public Health 2022, 19, 1693. [CrossRef] [PubMed] 63. Shruthi Keerthi, D.; Mukunda Vani, M. Optimization Studies on Decolorization of Textile Wastewater Using Natural Coagulants. Mater. Today Proc. 2022, 57, 1546–1552. [CrossRef] |
| dc.relation.citationendpage.spa.fl_str_mv |
14 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationissue.spa.fl_str_mv |
16 |
| dc.relation.citationvolume.spa.fl_str_mv |
14 |
| dc.rights.eng.fl_str_mv |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland |
| dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 by the authors. Licensee MDPI, Basel, Switzerland https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
14 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
MDPI AG |
| dc.publisher.place.spa.fl_str_mv |
Switzerland |
| dc.source.spa.fl_str_mv |
https://www.mdpi.com/2071-1050/14/16/10402 |
| institution |
Corporación Universidad de la Costa |
| bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d742b56d-655f-4237-a07e-f6fcd150e000/download https://repositorio.cuc.edu.co/bitstreams/b43e9db7-1592-4235-8d5d-b4077825477e/download https://repositorio.cuc.edu.co/bitstreams/8a890c8f-8d48-456c-bfe6-c871ab924086/download https://repositorio.cuc.edu.co/bitstreams/074b5bb0-eb49-4e66-9cfc-7622d9817d60/download |
| bitstream.checksum.fl_str_mv |
70523578d8603c05c0485ff142b1268e 2f9959eaf5b71fae44bbf9ec84150c7a 08a60e45e8f3bb72a331afd908ca3729 ff2d09ddb78705271d53c9006160e011 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
| repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
| _version_ |
1849968058812071936 |
| spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2022 by the authors. Licensee MDPI, Basel, Switzerlandhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carpintero Durango, Javier AndrésVilla-Dominguez, JenniferTavera Quiroz, Maria JoseTavera, HumbertoKaźmierczak, BartoszFábregas Villegas, JonathanCanales, FaustoCanales, Fausto Alfredovirtual::582-12024-02-21T14:57:08Z2024-02-21T14:57:08Z2022-08-21Carpintero, J.; Villa-Dominguez, J.; Tavera-Quiroz, M.J.; Tavera-Quiroz, H.C.; Ka ´zmierczak, B.; Fábregas-Villegas, J.; Canales, F.A. Application of a 2k–p Fractional Experimental Design in Coagulation-Flocculation Processes in the Treatment of Wastewater from a Slaughterhouse. Sustainability 2022, 14, 10402. https://doi.org/10.3390/ su141610402https://hdl.handle.net/11323/1075910.3390/ su1416104022071-1050Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/Determining the optimal dose of coagulant required to perform flocculation is critical in most water treatment plants’ planning and operation. This study implemented a 2k–p fractional factorial design of experiments to identify the factors influencing the color decrease of wastewater from a slaughterhouse. The variables assessed were the velocity gradient, residence time, primary coagulant dosage, chlorine dosage, and coagulation adjuvant dosage. The results indicate that the primary coagulant dose and the velocity gradient significantly affect the samples’ color and that the other factors can be run at a low technical-economic level to start up the water treatment plant. The fractional factorial design allowed reducing the number of experimental points without affecting the minimum information required to identify which factors are significant in reducing the color of a wastewater sample.14 páginasapplication/pdfengMDPI AGSwitzerlandhttps://www.mdpi.com/2071-1050/14/16/10402Application of a 2k–p fractional experimental design in coagulation-flocculation processes in the treatment of wastewater from a slaughterhouseArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Sustainability1. Ospina Zúñiga, O.E.; Cardona García, O.H. Evaluación de La Contaminación Por Aluminio Del Agua Para Consumo Humano, Región Central de Colombia. Inge CUC 2021, 17, 31–41. [CrossRef]2. Canales, F.A.; Plata-Solano, D.; Cantero-Rodelo, R.; Pereira, Y.Á.; Díaz-Martínez, K.; Carpintero, J.; Ka´zmierczak, B.; TaveraQuiroz, H. Assessment of Carwash Wastewater Reclamation Potential Based on Household Water Treatment Technologies. Water Resour. Ind. 2021, 26, 100164. [CrossRef]3. Al-Mutairi, N.Z.; Hamoda, M.F.; Al-Ghusain, I. Coagulant Selection and Sludge Conditioning in a Slaughterhouse Wastewater Treatment Plant. Bioresour. Technol. 2004, 95, 115–119. [CrossRef] [PubMed]4. Gökçek, Ö.B.; Özdemir, S. Optimization of the Coagulation–Flocculation Process for Slaughterhouse Wastewater Using Response Surface Methodology. CLEAN Soil Air Water 2020, 48, 2000033. [CrossRef]5. Hu, H.; Li, X.; Wu, S.; Yang, C. Sustainable Livestock Wastewater Treatment via Phytoremediation: Current Status and Future Perspectives. Bioresour. Technol. 2020, 315, 123809. [CrossRef]6. Sły´s, D.; Pochwat, K.; Czarniecki, D. An Analysis of Waste Heat Recovery from Wastewater on Livestock and Agriculture Farms. Resources 2020, 9, 3. [CrossRef]7. Lahlou, F.Z.; Mackey, H.R.; Al-Ansari, T. Wastewater Reuse for Livestock Feed Irrigation as a Sustainable Practice: A SocioEnvironmental-Economic Review. J. Clean. Prod. 2021, 294, 126331. [CrossRef]8. Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse Wastewater Characteristics, Treatment, and Management in the Meat Processing Industry: A Review on Trends and Advances. J. Environ. Manag. 2015, 161, 287–302. [CrossRef]9. Orssatto, F.; Tavares, M.H.F.; da Silva, F.M.; Eyng, E.; Fleck, L.; Frare, L.M. Optimization of the Treatment of Wastewater from a Slaughterhouse and Packing Plant by the Combination of Electrocoagulation and Tannin-Based Coagulant. Desalinat. Water Treat. 2018, 102, 82–92. [CrossRef]10. Bui, H.M. Applying Response Surface Methodology to Optimize the Treatment of Swine Slaughterhouse Wastewater by Electrocoagulation. Pol. J. Environ. Stud. 2018, 27, 1975–1981. [CrossRef]11. Struk-Sokołowska, J.; Rodziewicz, J.; Mielcarek, A. Effect of Dairy Wastewater on Changes in COD Fractions in Technical-Scale SBR Type Reactors. Water Sci. Technol. 2018, 2017, 156–169. [CrossRef]12. Struk-Sokolowska, J.; Tkaczuk, J. Analysis of Bakery Sewage Treatment Process Options Based on COD Fraction Changes. J. Ecol. Eng. 2018, 19, 226–235. [CrossRef]13. Jiang, J.-Q. The Role of Coagulation in Water Treatment. Curr. Opin. Chem. Eng. 2015, 8, 36–44. [CrossRef]14. Guigui, C.; Rouch, J.C.; Durand-Bourlier, L.; Bonnelye, V.; Aptel, P. Impact of Coagulation Conditions on the In-Line Coagulation/UF Process for Drinking Water Production. Desalination 2002, 147, 95–100. [CrossRef]15. Suquet, J.; Godo-Pla, L.; Valentí, M.; Ferràndez, L.; Verdaguer, M.; Poch, M.; Martín, M.J.; Monclús, H. Assessing the Effect of Catchment Characteristics to Enhanced Coagulation in Drinking Water Treatment: RSM Models and Sensitivity Analysis. Sci. Total Environ. 2021, 799, 149398. [CrossRef] [PubMed]16. American Society for Testing and Materials. D2035-13 Standard Practice for Coagulation-Flocculation Jar Test of Water; American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.17. Mousa, K.M.; Hadi, H.J. Coagulation/Flocculation Process for Produced Water Treatment. Int. J. Curr. Eng. Technol. 2016, 6, 551–555.18. Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2017; ISBN 9781119113478.19. Bobadilla, M.C.; Lorza, R.L.; García, R.E.; Gómez, F.S.; González, E.P.V. Coagulation: Determination of Key Operating Parameters by Multi-Response Surface Methodology Using Desirability Functions. Water 2019, 11, 398. [CrossRef]20. Carpintero, J.; Canales, F.A.; Fábregas, J.; Ávila, J. Factors and Interactions That Influence the Pressure Drop Across An Air Volume Reducing Device on Low-Pressure Water Distribution Networks. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 46, 1433–1443. [CrossRef]21. Jiang, Y.; Zhang, Y.; Banks, C.; Heaven, S.; Longhurst, P. Investigation of the Impact of Trace Elements on Anaerobic Volatile Fatty Acid Degradation Using a Fractional Factorial Experimental Design. Water Res. 2017, 125, 458–465. [CrossRef]22. Stewardson, D.J.; Whitfield, R.I. A Demonstration of the Utility of Fractional Experimental Design for Finding Optimal Genetic Algorithm Parameter Settings. J. Oper. Res. Soc. 2004, 55, 132–138. [CrossRef]23. Haghiri, S.; Daghighi, A.; Moharramzadeh, S. Optimum Coagulant Forecasting by Modeling Jar Test Experiments Using ANNs. Drink. Water Eng. Sci. 2018, 11, 1–8. [CrossRef]24. Bouyer, D.; Escudié, R.; Liné, A. Experimental Analysis of Hydrodynamics in a Jar-Test. Process Saf. Environ. Prot. 2005, 83, 22–30. [CrossRef]25. Griffith, J.D.; Williams, R.G. Application of Jar-Test Analysis at Phoenix, Ariz. J Am. Water Work. Assoc. 1972, 64, 825–830. [CrossRef]26. Bouyer, D.; Line, A.; Cockx, A.; Do-quang, Z. Experimental Analysis of Floc Size Distribution and Hydrodynamics in a Jar-Test. Chem. Eng. Res. Des. 2001, 79, 1017–1024. [CrossRef]27. Ministerio de Ambiente y Desarrollo Sostenible. Resolución 631 de 2015; Ministerio de Ambiente y Desarrollo Sostenible: Bogota, Colombia, 2015; Volume 2015.28. Ministerio de Ambiente y Desarrollo Sostenible. Resolución 1207 de 2014; Ministerio de Ambiente y Desarrollo Sostenible: Bogota, Colombia, 2014.29. Baird, R.B.; Eaton, A.D.; Rice, E.W. (Eds.) Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association & Water Environment Federation: Washington, DC, USA, 2017; ISBN 9780875532875.30. Daud, Z.; Nasir, N.; Kadir, A.A.; Aziz, A.; Latiff, A.; Ahmad, B.; Suhani, N.; Awang, H.; Halim, A.A. Treatment of Biodiesel Wastewater Using Ferric Chloride and Ferric Sulfate. Int. J. Integr. Eng. 2017, 9, 54–57.31. Kerneïs, A.; Nakache, F.; Deguin, A.; Feinberg, M. The Effects of Water Residence Time on the Biological Quality in a Distribution Network. Water Res. 1995, 29, 1719–1727. [CrossRef]32. Zhao, J.; Shi, H.; Liu, M.; Lu, J.; Li, W. Coagulation-Adsorption of Reactive Orange from Aqueous Solution by Freshly Formed Magnesium Hydroxide: Mixing Time and Mechanistic Study. Water Sci. Technol. 2017, 75, 1776–1783. [CrossRef] [PubMed]33. Kan, C.; Huang, C.; Pan, J.R. Time Requirement for Rapid-Mixing in Coagulation. Colloids Surf. A: Physicochem. Eng. Asp. 2002, 203, 1–9. [CrossRef]34. Som, A.M.; Ramlee, A.A.; Puasa, S.W.; Hamid, H.A.A. Optimisation of Operating Conditions during Coagulation-Flocculation Process in Industrial Wastewater Treatment Using Hylocereus Undatus Foliage through Response Surface Methodology. Environ. Sci. Pollut. Res. 2021. [CrossRef]35. Lai, R.J.; Hudson, H.E.; Singley, J.E. Velocity Gradient Calibration of Jar-Test Equipment. J. Am. Water Work. Assoc. 1975, 67, 553–557. [CrossRef]36. Zhan, X.; Gao, B.; Wang, Y.; Yue, Q. Influence of Velocity Gradient on Aluminum and Iron Floc Property for NOM Removal from Low Organic Matter Surfacewater by Coagulation. Chem. Eng. J. 2011, 166, 116–121. [CrossRef]37. TeKippe, R.J.; Ham, R.K. Velocity-Gradient Paths in Coagulation. J. Am. Water Work. Assoc. 1971, 63, 439–448. [CrossRef]38. Mhaisalkar, V.A.; Paramasivam, R.; Bhole, A.G. An Innovative Technique for Determining Velocity Gradient in CoagulationFlocculation Process. Water Res. 1986, 20, 1307–1314. [CrossRef]39. Bratby, J. Coagulation and Flocculation in Water and Wastewater Treatment, 3rd ed.; IWA publishing: London, UK, 2016; ISBN 9781780407494.40. Teh, C.Y.; Wu, T.Y. The Potential Use of Natural Coagulants and Flocculants in the Treatment of Urban Waters. Chem. Eng. Trans. 2014, 39, 1603–1608. [CrossRef]41. Amirtharajah, A.; Dennett, K.E.; Studstill, A. Ferric Chloride Coagulation for Removal of Dissolved Organic Matter and Trihalomethane Precursors. Water Sci. Technol. 1993, 27, 113–121. [CrossRef]42. Domínguez, J.R.; De Heredia, J.B.; González, T.; Sanchez-Lavado, F. Evaluation of Ferric Chloride as a Coagulant for Cork Processing Wastewaters. Influence of the Operating Conditions on the Removal of Organic Matter and Settleability Parameters. Ind. Eng. Chem. Res. 2005, 44, 6539–6548. [CrossRef]43. Shi, X.; Bi, R.; Yuan, B.; Liao, X.; Zhou, Z.; Li, F.; Sun, W. A Comparison of Trichloromethane Formation from Two Algae Species during Two Pre-Oxidation-Coagulation-Chlorination Processes. Sci. Total Environ. 2019, 656, 1063–1070. [CrossRef]44. Lapsongpon, T.; Leungprasert, S.; Yoshimura, C. Pre-Chlorination Contact Time and the Removal and Control of Microcystis Aeroginosa in Coagulation. IOP Conf. Ser. Earth Environ. Sci. 2017, 67, 012011. [CrossRef]45. Ji, Q.; Liu, H.; Hu, C.; Qu, J.; Wang, D.; Li, J. Removal of Disinfection By-Products Precursors by Polyaluminum Chloride Coagulation Coupled with Chlorination. Sep. Purif. Technol. 2008, 62, 464–469. [CrossRef]46. Bruno, P.; Campo, R.; Giustra, M.G.; De Marchis, M.; Di Bella, G. Bench Scale Continuous Coagulation-Flocculation of Saline Industrial Wastewater Contaminated by Hydrocarbons. J. Water Process. Eng. 2020, 34, 101156. [CrossRef]47. Hazourli, S.; Ziati, M.; Benredjem, Z.; Delimi, R.; Boudiba, L. Analysis of Wastewater Loaded with Paint Before and After Treatment of Coagulation–Flocculation. Arab. J. Sci. Eng. 2012, 37, 897–903. [CrossRef]48. An, D.; Chen, Y.; Gu, B.; Westerhoff, P.; Hanigan, D.; Herckes, P.; Fischer, N.; Donovan, S.; Croue, J.P.; Atkinson, A. Lower Molecular Weight Fractions of PolyDADMAC Coagulants Disproportionately Contribute to N-Nitrosodimethylamine Formation during Water Treatment. Water Res. 2019, 150, 466–472. [CrossRef] [PubMed]49. Ariffin, A.; Razali, M.A.A.; Ahmad, Z. PolyDADMAC and Polyacrylamide as a Hybrid Flocculation System in the Treatment of Pulp and Paper Mills Waste Water. Chem. Eng. J. 2012, 179, 107–111. [CrossRef]50. Zahrim, A.Y.; Dexter, Z.D.; Joseph, C.G.; Hilal, N. Effective Coagulation-Flocculation Treatment of Highly Polluted Palm Oil Mill Biogas Plant Wastewater Using Dual Coagulants: Decolourisation, Kinetics and Phytotoxicity Studies. J. Water Process Eng. 2017, 16, 258–269. [CrossRef]51. Iuliani, P.; Carlucci, G.; Marrone, A. Investigation of the HPLC Response of NSAIDs by Fractional Experimental Design and Multivariate Regression Analysis. Response Optimization and New Retention Parameters. J. Pharm. Biomed. Anal. 2010, 51, 46–55. [CrossRef]52. Ofman, P.; Struk-Sokołowska, J. Artificial Neural Network (ANN) Approach to Modelling of Selected Nitrogen Forms Removal from Oily Wastewater in Anaerobic and Aerobic GSBR Process Phases. Water 2019, 11, 1594. [CrossRef]53. ICONTEC Norma Técnica Colombiana NTC 3903. Procedimiento Para El Ensayo de Coagulación-Floculación En Un Recipiente Con Agua o Método de Jarras. 2010. Available online: https://tienda.icontec.org/gp-procedimiento-para-el-ensayo-decoagulacion-floculacion-en-un-recipiente-con-agua-o-metodo-de-jarras-ntc3903-2010.html (accessed on 15 June 2022).54. Tsaur, S.-L.; Fitch, R.M. Preparation and Properties of Polystyrene Model Colloids: II. Effect of Surface Charge Density on Coagulation Behavior. J. Colloid Interface Sci. 1987, 115, 463–471. [CrossRef]55. Oriekhova, O.; Stoll, S. Investigation of FeCl3 Induced Coagulation Processes Using Electrophoretic Measurement, Nanoparticle Tracking Analysis and Dynamic Light Scattering: Importance of PH and Colloid Surface Charge. Colloids Surf. A Physicochem. Eng. Asp. 2014, 461, 212–219. [CrossRef]56. de Paula, H.M.; de Oliveira Ilha, M.S.; Sarmento, A.P.; Andrade, L.S. Dosage Optimization of Moringa Oleifera Seed and Traditional Chemical Coagulants Solutions for Concrete Plant Wastewater Treatment. J. Clean. Prod. 2018, 174, 123–132. [CrossRef]57. Shihab, A.S.; Hamad, A.T. Effect of Inclination Angle, Dimensions of Impeller Blades, and Velocity Gradient on the Efficiency of Water Flocculation. Int. J. Civ. Eng. Technol. 2018, 9, 969–977.58. Mohammed, T.J.; Shakir, E. Effect of Settling Time, Velocity Gradient, and Camp Number on Turbidity Removal for Oilfield Produced Water. Egypt. J. Pet. 2018, 27, 31–36. [CrossRef]59. Yukselen, M.A.; Gregory, J. The Effect of Rapid Mixing on the Break-up and Re-Formation of Flocs. J. Chem. Technol. Biotechnol. 2004, 79, 782–788. [CrossRef]60. Choong Lek, B.L.; Peter, A.P.; Qi Chong, K.H.; Ragu, P.; Sethu, V.; Selvarajoo, A.; Arumugasamy, S.K. Treatment of Palm Oil Mill Effluent (POME) Using Chickpea (Cicer Arietinum) as a Natural Coagulant and Flocculant: Evaluation, Process Optimization and Characterization of Chickpea Powder. J. Environ. Chem. Eng. 2018, 6, 6243–6255. [CrossRef]61. Rossini, M.; Garrido, J.G.; Galluzzo, M. Optimization of the Coagulation-Flocculation Treatment: Influence of Rapid Mix Parameters. Water Res. 1999, 33, 1817–1826. [CrossRef]62. Kim, D.W.; Yu, S.I.; Im, K.; Shin, J.; Shin, S.G. Responses of Coagulant Type, Dosage and Process Conditions to Phosphate Removal Efficiency from Anaerobic Sludge. Int. J. Environ. Res. Public Health 2022, 19, 1693. [CrossRef] [PubMed]63. Shruthi Keerthi, D.; Mukunda Vani, M. Optimization Studies on Decolorization of Textile Wastewater Using Natural Coagulants. Mater. Today Proc. 2022, 57, 1546–1552. [CrossRef]1411614CoagulationCoagulation adjuvantResidence timeDesign of experimentsChlorinationColorPublication48a40323-4c39-4859-bb1c-eeeb97a2c4dfvirtual::582-148a40323-4c39-4859-bb1c-eeeb97a2c4dfvirtual::582-1https://scholar.google.com.pr/citations?user=mBTX4IAAAAAJ&hl=esvirtual::582-10000-0002-6858-1855virtual::582-1ORIGINALApplication of a 2k–p Fractional Experimental Design in Coagulation-Flocculation.pdfApplication of a 2k–p Fractional Experimental Design in Coagulation-Flocculation.pdfArtículoapplication/pdf2015428https://repositorio.cuc.edu.co/bitstreams/d742b56d-655f-4237-a07e-f6fcd150e000/download70523578d8603c05c0485ff142b1268eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/b43e9db7-1592-4235-8d5d-b4077825477e/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTApplication of a 2k–p Fractional Experimental Design in Coagulation-Flocculation.pdf.txtApplication of a 2k–p Fractional Experimental Design in Coagulation-Flocculation.pdf.txtExtracted texttext/plain63709https://repositorio.cuc.edu.co/bitstreams/8a890c8f-8d48-456c-bfe6-c871ab924086/download08a60e45e8f3bb72a331afd908ca3729MD53THUMBNAILApplication of a 2k–p Fractional Experimental Design in Coagulation-Flocculation.pdf.jpgApplication of a 2k–p Fractional Experimental Design in Coagulation-Flocculation.pdf.jpgGenerated Thumbnailimage/jpeg16074https://repositorio.cuc.edu.co/bitstreams/074b5bb0-eb49-4e66-9cfc-7622d9817d60/downloadff2d09ddb78705271d53c9006160e011MD5411323/10759oai:repositorio.cuc.edu.co:11323/107592025-02-20 17:56:05.636https://creativecommons.org/licenses/by/4.0/© 2022 by the authors. Licensee MDPI, Basel, Switzerlandopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
