Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering
Ionic liquids (ILs) are widely used in many applications. Still, their use in enzyme engineering is particularly notable due to their environmentally friendly nature and efficient replacement of conventional organic solvents. Recently, lipase has emerged as an environmentally friendly catalyst. Neve...
- Autores:
-
Castro Bizerra, Viviane de
Fernandes Melo , Rafael Leandro
Sim˜ ao Neto, Francisco
de Castro, Erico Carlos
Bessa Sales, Misael
Paulo Gonçalves de Sousa Junior
Nascimento Dari, Dayana
da Silva Aires, Francisco Izaias
Moreira dos Santos, Kaiany
França Serpa, Juliana de
H. Kim, Tak
Fernandez-Lucas, Jesús
Martins de Souza, Maria Cristiane
dos Santos, Jose C.S.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13511
- Acceso en línea:
- https://hdl.handle.net/11323/13511
https://repositorio.cuc.edu.co/
- Palabra clave:
- Bibliometric analysis
Enzyme engineering
Ionic liquids
Lipase
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_312df57b2b6eb922ebf256080a26f4c6 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13511 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering |
title |
Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering |
spellingShingle |
Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering Bibliometric analysis Enzyme engineering Ionic liquids Lipase |
title_short |
Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering |
title_full |
Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering |
title_fullStr |
Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering |
title_full_unstemmed |
Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering |
title_sort |
Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering |
dc.creator.fl_str_mv |
Castro Bizerra, Viviane de Fernandes Melo , Rafael Leandro Sim˜ ao Neto, Francisco de Castro, Erico Carlos Bessa Sales, Misael Paulo Gonçalves de Sousa Junior Nascimento Dari, Dayana da Silva Aires, Francisco Izaias Moreira dos Santos, Kaiany França Serpa, Juliana de H. Kim, Tak Fernandez-Lucas, Jesús Martins de Souza, Maria Cristiane dos Santos, Jose C.S. |
dc.contributor.author.none.fl_str_mv |
Castro Bizerra, Viviane de Fernandes Melo , Rafael Leandro Sim˜ ao Neto, Francisco de Castro, Erico Carlos Bessa Sales, Misael Paulo Gonçalves de Sousa Junior Nascimento Dari, Dayana da Silva Aires, Francisco Izaias Moreira dos Santos, Kaiany França Serpa, Juliana de H. Kim, Tak Fernandez-Lucas, Jesús Martins de Souza, Maria Cristiane dos Santos, Jose C.S. |
dc.subject.proposal.eng.fl_str_mv |
Bibliometric analysis Enzyme engineering Ionic liquids Lipase |
topic |
Bibliometric analysis Enzyme engineering Ionic liquids Lipase |
description |
Ionic liquids (ILs) are widely used in many applications. Still, their use in enzyme engineering is particularly notable due to their environmentally friendly nature and efficient replacement of conventional organic solvents. Recently, lipase has emerged as an environmentally friendly catalyst. Nevertheless, using Lipases in the presence of ILs has led to a remarkable activity enhancement, making it a sustainable and non-harmful approach. This study conducted a bibliometric review of research articles published between 2010 and 2022 concerning the use of ILs in lipase-catalyzed reactions. The analysis was based on 206 publications retrieved from the Web of Science Core Collection (WoS) database., which were analyzed using different software tools, such as VOSviewer, CiteSpace, and ArcGIS. Key findings included that over half of the publications originated from other countries, notably China (around 36.4%), the United States, Spain, and France. As a result of this bibliometric analysis, four emerging trends were identified: namely: i) lipase-catalyzed synthesis, ii) the use of deep eutectic solvent, iii) the application of ILs in secondary alcohol reactions, iv) the use of ILs as green solvents, and iv) the enzymatic ring-opening polymerization. The study also evaluated the most prominent authors, articles, and institutions that provide comprehensive data on up-to-date research on ILs and lipases. It is noted that the studies identify significant advantages in this field, showing a positive trend of promising results, especially with the development of improved and environmentally friendly processes. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-24T12:17:32Z |
dc.date.available.none.fl_str_mv |
2024-10-24T12:17:32Z 2025-04-01 |
dc.date.issued.none.fl_str_mv |
2024-04-01 |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Viviane de Castro Bizerra, Rafael Leandro Fernandes Melo, Francisco Simão Neto, Erico Carlos de Castro, Misael Bessa Sales, Paulo Gonçalves de Sousa Junior, Dayana Nascimento Dari, Francisco Izaias da Silva Aires, Kaiany Moreira dos Santos, Juliana de França Serpa, Tak H. Kim, Jesús Fernández-Lucas, Maria Cristiane Martins de Souza, José C.S. dos Santos, Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering, Journal of Molecular Liquids, Volume 399, 2024, 124373, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2024.124373. |
dc.identifier.issn.none.fl_str_mv |
0167-7322 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13511 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.molliq.2024.124373 |
dc.identifier.eissn.none.fl_str_mv |
1873-3166 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Viviane de Castro Bizerra, Rafael Leandro Fernandes Melo, Francisco Simão Neto, Erico Carlos de Castro, Misael Bessa Sales, Paulo Gonçalves de Sousa Junior, Dayana Nascimento Dari, Francisco Izaias da Silva Aires, Kaiany Moreira dos Santos, Juliana de França Serpa, Tak H. Kim, Jesús Fernández-Lucas, Maria Cristiane Martins de Souza, José C.S. dos Santos, Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering, Journal of Molecular Liquids, Volume 399, 2024, 124373, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2024.124373. 0167-7322 10.1016/j.molliq.2024.124373 1873-3166 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13511 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Journal of Molecular Liquids |
dc.relation.references.none.fl_str_mv |
[1] V. Sankar Sivasankarapillai, A. Sundararajan, E. Chonnur Easwaran, M. Pourmadadi, A. Aslani, R. Dhanusuraman, A. Rahdar, G.Z. Kyzas, Application of ionic liquids in rubber elastomers: perspectives and challenges, J. Mol. Liq. 382 (2023) 121846, https://doi.org/10.1016/J.MOLLIQ.2023.121846. [2] I. Ali, M. Hozaifa, S. Ali, A. Malik, M. Locatelli, Advances in ionic liquids as future anti-cancer drugs, J. Mol. Liq. 388 (2023) 122823, https://doi.org/10.1016/J. MOLLIQ.2023.122823. [3] P. Sharma, S. Sharma, H. Kumar, Introduction to ionic liquids, applications and micellization behaviour in presence of different additives, J. Mol. Liq. 393 (2024) 123447, https://doi.org/10.1016/J.MOLLIQ.2023.123447. [4] M. Imai, I. Tanabe, Y. Ozaki, K. Fukui, Solvation properties of silver ions in ionic liquids using attenuated total reflectance ultraviolet spectroscopy, J. Mol. Liq. 364 (2022) 119998, https://doi.org/10.1016/J.MOLLIQ.2022.119998. [5] K.S. Egorova, M.M. Seitkalieva, A.S. Kashin, E.G. Gordeev, A.V. Vavina, A. V. Posvyatenko, V.P. Ananikov, Biological activity, solvation properties and microstructuring of protic imidazolium ionic liquids, J. Mol. Liq. 367 (2022) 120450, https://doi.org/10.1016/J.MOLLIQ.2022.120450. [6] A.A.M. Elgharbawy, M. Moniruzzaman, M. Goto, Facilitating enzymatic reactions by using ionic liquids: a mini review, Curr Opin Green Sustain Chem 27 (2021) 100406, https://doi.org/10.1016/J.COGSC.2020.100406. [7] K.C. Badgujar, V.C. Badgujar, B.M. Bhanage, Recent update on use of ionic liquids for enzyme immobilization, activation, and catalysis: a partnership for sustainability, Curr. Opin. Green Sustain. Chem. 36 (2022) 100621, https://doi. org/10.1016/J.COGSC.2022.100621. [8] P. Xu, G.W. Zheng, P.X. Du, M.H. Zong, W.Y. Lou, Whole-cell biocatalytic processes with ionic liquids, ACS Sustain. Chem. Eng. 4 (2016) 371–386, https:// doi.org/10.1021/acssuschemeng.5b00965 [9] P. Lozano, J.M. Bernal, E. Garcia-Verdugo, G. SanchezGomez, M. Vaultier, I. Burguete, S.V. Luisb, Sponge-like ionic liquids a new platform for green biocatalytic chemical processes, Green Chem. 17 (2015) 3706–3717, https://doi. org/10.1039/C5GC00894H. [10] W.W. Gao, F.X. Zhang, G.X. Zhang, C.H. Zhou, Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis, Biochem. Eng. J. 99 (2015) 67–84, https://doi.org/10.1016/J.BEJ.2015.03.005. [11] T.C. Schutt, G.A. Hegde, V.S. Bharadwaj, A.J. Johns, C.M. Maupin, Impact of water-dilution on the solvation properties of the ionic liquid 1-Methyltriethoxy-3- ethylimidazolium acetate for model biomass molecules, J. Phys. Chem. B 121 (2017) 843–853, https://doi.org/10.1021/acs.jpcb.6b09101. [12] J.C. Stevens, J. Shi, Biocatalysis in ionic liquids for lignin valorization: opportunities and recent developments, Biotechnol. Adv. 37 (2019) 107418, https://doi.org/10.1016/J.BIOTECHADV.2019.107418. [13] R. Madeira Lau, F. Van Rantwijk, K.R. Seddon, R.A. Sheldon, Lipase-catalyzed reactions in ionic liquids, Org Lett 2 (2000) 4189–4191, https://doi.org/ 10.1021/ol006732d. [14] B.B. Popatkar, N.A. Sasane, G.A. Meshram, [BMPTFB]-ionic liquid as an efficient catalyst for the rapid, and eco-friendly synthesis of benzimidazole, 2-substituted benzimidazole, and benzothiazole derivatives at room temperature, Synth. Commun. 52 (2022) 2249–2259, https://doi.org/10.1080/ 00397911.2022.2142915. [15] B. Pouramiri, K. Rabiei, M.H. Meshkatalsadat, M. Rashidi, Saccharin based ionic liquid: novel and recyclable catalyst for eco-friendly mechanosynthesis of Biginelli and Hantzcsh heterocycles under solvent-free conditions, J. Mol. Struct. 1292 (2023) 136013, https://doi.org/10.1016/J.MOLSTRUC.2023.136013. [16] Y. Fan, D. Cai, X. Wang, L. Yang, Ionic liquids: efficient media for the lipasecatalyzed Michael addition, Molecules 23 (2018), https://doi.org/10.3390/ molecules23092154. [17] P.Y. Stergiou, A. Foukis, M. Filippou, M. Koukouritaki, M. Parapouli, L. G. Theodorou, E. Hatziloukas, A. Afendra, A. Pandey, E.M. Papamichael, Advances in lipase-catalyzed esterification reactions, Biotechnol. Adv. 31 (2013) 1846–1859, https://doi.org/10.1016/j.biotechadv.2013.08.006. [18] K. Faber, Biotransformations in Organic Chemistry, 5th ed., Springer, Berlin Heidelberg, Berlin, Heidelberg, 2004, 10.1007/978-3-642-18537-3. [19] T. Itoh, Ionic liquids as tool to improve enzymatic organic synthesis, Chem. Rev. 117 (2017) 10567–10607, https://doi.org/10.1021/acs.chemrev.7b00158. [20] M.B. Sales, P.T. Borges, M.N. Ribeiro Filho, L.R. Miranda da Silva, A.P. Castro, A. A. Sanders Lopes, R.K. Chaves de Lima, M.A. de Sousa Rios, J.C.S. dos Santos, Sustainable feedstocks and challenges in biodiesel production: an advanced bibliometric analysis, Bioengineering 9 (2022), https://doi.org/10.3390/ bioengineering9100539. [21] B.D. Catumba, M.B. Sales, P.T. Borges, M.N. Ribeiro Filho, A.A.S. Lopes, M.A. de Sousa Rios, A.S. Desai, M. Bilal, J.C.S. dos Santos, Sustainability and challenges in hydrogen production: an advanced bibliometric analysis, Int. J. Hydrogen Energy 48 (2023) 7975–7992, https://doi.org/10.1016/j.ijhydene.2022.11.215. [22] J.W. Goodell, S. Kumar, W.M. Lim, D. Pattnaik, Artificial intelligence and machine learning in finance: identifying foundations, themes, and research clusters from bibliometric analysis, J Behav Exp Finance 32 (2021), https://doi. org/10.1016/j.jbef.2021.100577 [23] M. Su, H. Peng, S. Li, A visualized bibliometric analysis of mapping research trends of machine learning in engineering (MLE), Expert Syst. Appl. 186 (2021), https://doi.org/10.1016/j.eswa.2021.115728. [24] W. Jiang, T. Aishan, Ü. Halik, Z. Wei, M. Wumaier, A bibliometric and visualized analysis of research Progress and trends on decay and cavity trees in Forest ecosystem over 20 years: an application of the CiteSpace software, Forests 13 (2022), https://doi.org/10.3390/f13091437. [25] N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, W.M. Lim, How to conduct a bibliometric analysis: an overview and guidelines, J. Bus. Res. 133 (2021) 285–296, https://doi.org/10.1016/j.jbusres.2021.04.070. [26] M. Ranjbari, Z. Shams Esfandabadi, F. Quatraro, H. Vatanparast, S.S. Lam, M. Aghbashlo, M. Tabatabaei, Biomass and organic waste potentials towards implementing circular bioeconomy platforms: a systematic bibliometric analysis, Fuel 318 (2022), https://doi.org/10.1016/j.fuel.2022.123585. [27] R.L.F. Melo, M.B. Sales, V. de Castro Bizerra, P.G. de Sousa Junior, A.L. G. Cavalcante, T.M. Freire, F.S. Neto, M. Bilal, T. Jesionowski, J.M. Soares, P.B. A. Fechine, J.C.S. dos Santos, Recent applications and future prospects of magnetic biocatalysts, 253, Int. J. Biol. Macromol. (2023) 126709, https://doi. org/10.1016/J.IJBIOMAC.2023.126709. [28] S. Braz, A.K. De, S. Junior, P.G. Melo, R.L.F. Val´erio, R.B.R. Serpa, J.D.F. Da, S. Lima, A.M. De Lima, R.K.C. Guimaraes, ˜ Trends and opportunities in enzyme biosensors coupled to metal-organic, (2023). 10.3390/electrochem4020014. [29] J.L. da Silva, M.B. Sales, V. de Castro Bizerra, M.M.R. Nobre, A.K. de Sousa Braz, P. da Silva Sousa, A.L.G. Cavalcante, R.L.F. Melo, P. Gonçalves De Sousa Junior, F.S. Neto, A.M. da Fonseca, J.C.S. dos Santos, Lipase from Yarrowia lipolytica: prospects as an industrial biocatalyst for biotechnological applications, Fermentation 9 (2023) 581, https://doi.org/10.3390/fermentation9070581 [30] R.C. Nogueira, F.S. Neto, P.G. de S. Junior, R.B.R. Val´erio, J. de F. Serpa, A.M. da S. Lima, M.C.M. de Souza, R.K.C. de Lima, A.A.S. Lopes, A.P. Guimaraes, ˜ R.L. F. Melo, M.A. de S. Rios, J.C.S. dos Santos, Research trends and perspectives on hydrothermal gasification in producing biofuels, Energy Nexus 10 (2023) 100199, https://doi.org/10.1016/J.NEXUS.2023.100199. [31] C.E.C. Guimar˜ aes, F.S. Neto, V. de Castro Bizerra, J.G.A. do Nascimento, R.B. R. Val´erio, P.G. de Sousa Junior, A.K. de Sousa Braz, R.L.F. Melo, J. de França Serpa, R.K.C. de Lima, A.P. Guimaraes, ˜ M.C.M. de Souza, A.A.S. Lopes, M.A. de Sousa Rios, A.S. Desai, M. Bilal, W. Smułek, T. Jesionowski, J.C.S. dos Santos, Sustainable bioethanol production from first- and second-generation sugar-based feedstocks: advanced bibliometric analysis, Bioresour Technol Rep 23 (2023) 101543, https://doi.org/10.1016/J.BITEB.2023.101543. [32] M.H. Doolittle, M. P´eterfy, Mechanisms of lipase maturation, Clin Lipidol 5 (2010) 117–130, https://doi.org/10.2217/clp.09.84. [33] M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carri`ere, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. MacIerzanka, A. MacKie, S. Marze, D. J. McClements, O. M´enard, I. Recio, C.N. Santos, R.P. Singh, G.E. Vegarud, M.S. J. Wickham, W. Weitschies, A. Brodkorb, A standardised static in vitro digestion method suitable for food-an international consensus, Food Funct. 5 (2014) 1113–1124, https://doi.org/10.1039/c3fo60702j. [34] G. An, Y.M. Kim, Y.-M. Koo, S.H. Ha, Effect of microwave irradiation on lipasecatalyzed reactions in ionic liquids, Anal. Sci. Technol. 30 (2017) 138–145, https://doi.org/10.5806/AST.2017.30.3.138. [35] X. Lu, Z. Luo, S. Yu, X. Fu, Lipase-catalyzed synthesis of starch palmitate in mixed ionic liquids, in, J. Agric. Food Chem. (2012) 9273–9279, https://doi.org/ 10.1021/jf303096c. [36] S.H. Ha, N.M. Hiep, S.H. Lee, Y.M. Koo, Optimization of lipase-catalyzed glucose ester synthesis in ionic liquids, Bioprocess Biosyst. Eng. 33 (2010) 63–70, https:// doi.org/10.1007/s00449-009-0363-4. [37] E. Durand, J. Lecomte, P. Villeneuve, Deep eutectic solvents: synthesis, application, and focus on lipase-catalyzed reactions, Eur. J. Lipid Sci. Technol. 115 (2013) 379–385, https://doi.org/10.1002/ejlt.201200416. [38] M.M. Kessler, Bibliographic coupling between scientific papers, J. Assoc. Inf. Sci. Technol. 14 (1963) 10–25, https://doi.org/10.1002/asi.5090140103. [39] S. Tang, G.A. Baker, H. Zhao, Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications, Chem. Soc. Rev. 41 (2012) 4030–4066, https://doi.org/10.1039/c2cs15362a. [40] K.S. Egorova, E.G. Gordeev, V.P. Ananikov, Biological activity of ionic liquids and their application in pharmaceutics and medicine, Chem. Rev. 117 (2017) 7132–7189, https://doi.org/10.1021/acs.chemrev.6b00562. [41] I. Bustos-Jaimes, Y. García-Torres, H.C. Santillan-Uribe, ´ C. Montiel, Immobilization and enantioselectivity of Bacillus pumilus lipase in ionic liquids, J. Mol. Catal. B Enzym. 89 (2013) 137–141, https://doi.org/10.1016/j. molcatb.2013.01.002. [42] M. Naushad, Z.A. ALOthman, A.B. Khan, M. Ali, Effect of ionic liquid on activity, stability, and structure of enzymes: a review, Int. J. Biol. Macromol. 51 (2012) 555–560, https://doi.org/10.1016/j.ijbiomac.2012.06.020 [43] J. Gorke, F. Srienc, R. Kazlauskas, Toward advanced ionic liquids, polar, enzymefriendly solvents for biocatalysis, Biotechnol. Bioprocess Eng. 15 (2010) 40–53, https://doi.org/10.1007/s12257-009-3079-z. [44] A. Farran, ´ C. Cai, M. Sandoval, Y. Xu, J. Liu, M.J. Hern´ aiz, R.J. Linhardt, Green solvents in carbohydrate chemistry: from raw materials to fine chemicals, Chem. Rev. 115 (2015) 6811–6853, https://doi.org/10.1021/cr500719h [45] P. Xu, G.W. Zheng, M.H. Zong, N. Li, W.Y. Lou, Recent progress on deep eutectic solvents in biocatalysis, Bioresour Bioprocess 4 (2017), https://doi.org/10.1186/ s40643-017-0165-5. [46] M. Patzold, ¨ S. Siebenhaller, S. Kara, A. Liese, C. Syldatk, D. Holtmann, Deep eutectic solvents as efficient solvents in biocatalysis, Trends Biotechnol. 37 (2019) 943–959, https://doi.org/10.1016/j.tibtech.2019.03.007. [47] E. Durand, J. Lecomte, B. Bar´ea, G. Piombo, E. Dubreucq, P. Villeneuve, Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions, Process Biochem. 47 (2012) 2081–2089, https://doi.org/ 10.1016/j.procbio.2012.07.027. [48] F.L.C. Almeida, B.M. Travalia, ´ I.S. Gonçalves, M.B.S. Forte, Biodiesel production by lipase-catalyzed reactions: bibliometric analysis and study of trends, Biofuels Bioprod. Biorefin. 15 (2021) 1141–1159, https://doi.org/10.1002/bbb.2183. [49] F.J. Deive, D. Ruivo, J.V. Rodrigues, C.M. Gomes, M.A. ´ Sanrom´ an, L.P.N. Rebelo, J.M.S.S. Esperança, A. Rodríguez, On the hunt for truly biocompatible ionic liquids for lipase-catalyzed reactions, RSC Adv. 5 (2015) 3386–3389, https://doi. org/10.1039/c4ra15021j [50] E. Durand, J. Lecomte, B. Bar´ea, P. Villeneuve, P. Villeneuve, Towards a better understanding of how to improve lipase-catalyzed reactions using deep eutectic solvents based on choline chloride †, Eur. J. Lipid Sci. Technol. 116 (2013) 1–24, https://doi.org/10.1002/ejlt. [51] F. Wang, G. Zhao, X. Lang, J. Li, X. Li, Lipase-catalyzed synthesis of long-chain cellulose esters using ionic liquid mixtures as reaction media, J. Chem. Technol. Biotechnol. 92 (2017) 1203–1210, https://doi.org/10.1002/jctb.5109. [52] F.K. Sutili, H.S. Ruela, S.G.F. Leite, L.S.D.M. Miranda, I.C.R. Leal, R.O.M.A. De Souza, Lipase-catalyzed esterification of steric hindered fructose derivative by continuous flow and batch conditions, J. Mol. Catal. B Enzym. 85–86 (2013) 37–42, https://doi.org/10.1016/j.molcatb.2012.08.004. [53] H. Zhao, Z. Song, O. Olubajo, J.V. Cowins, New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel, Appl. Biochem. Biotechnol. 162 (2010) 13–23, https://doi.org/10.1007/s12010-009-8717-6. [54] S. Sun, X. Hou, W. Zhou, Effect of ionic liquids on enzymatic preparation of lipophilic feruloylated structured lipids using distearin as feruloylated acceptor and kinetic analysis, J. Mol. Liq. 260 (2018) 92–98, https://doi.org/10.1016/J. MOLLIQ.2018.03.077. [55] Y. Liu, H. Wu, Y. Yan, L. Dong, M. Zhu, P. Liang, Lipase-catalyzed transesterification for biodiesel production in ionic liquid [EMIM]TFO) lipasecatalyzed transesterification for biodiesel production in ionic liquid, Int. J. Green Energy 10 (2013) 63–71, https://doi.org/10.1080/15435075.2011.647368. [56] C. Chen, CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature, J. Am. Soc. Inf. Sci. Technol. 57 (2006) 359–377, https://doi.org/10.1002/asi.20317. [57] X. Liu, S. Zhao, L. Tan, Y. Tan, Y. Wang, Z. Ye, C. Hou, Y. Xu, S. Liu, G. Wang, Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis, Biosens. Bioelectron. 201 (2022), https://doi. org/10.1016/j.bios.2021.113932. [58] S. Liu, Y.P. Sun, X.L. Gao, Y. Sui, Knowledge domain and emerging trends in Alzheimer’s disease: a scientometric review based on CiteSpace analysis, Neural Regen. Res. 14 (2019) 1643–1650, https://doi.org/10.4103/1673-5374.255995. [59] H. Wang, W. Zhang, Y. Zhang, J. Xu, A bibliometric review on stability and reinforcement of special soil subgrade based on CiteSpace, J. Traff. Transport. Eng. (Engl. Ed.) 9 (2022) 223–243, https://doi.org/10.1016/j.jtte.2021.07.005. [60] K.-H. Zhao, Y.-Z. Cai, X.-S. Lin, J. Xiong, P. Halling, Z. Yang, Enzymatic synthesis of glucose-based fatty acid esters in bisolvent systems containing ionic liquids or deep eutectic solvents, Molecules 21 (2016) 1294, https://doi.org/10.3390/ molecules21101294. [61] S. Gu, J. Wang, X. Wei, H. Cui, X. Wu, F. Wu, Enhancement of lipase-catalyzed synthesis of caffeic acid phenethyl Ester in ionic liquid with DMSO co-solvent, Chin. J. Chem. Eng. 22 (2014) 1314–1321, https://doi.org/10.1016/j. cjche.2014.09.024. [62] Y. He, K. Li, J. Wang, L. Xu, J. Yan, M. Yang, Y. Yan, A novel strategy for biodiesel production by combination of liquid lipase, deep eutectic solvent and ultrasonicassistance in scaled-up reactor: optimization and kinetics, J. Clean. Prod. 372 (2022) 133740, https://doi.org/10.1016/j.jclepro.2022.133740. [63] Y. He, K. Li, G. Bo, J. Wang, L. Xu, J. Yan, M. Yang, Y. Yan, Enhancing biodiesel production via liquid Yarrowia lipolytica lipase 2 in deep eutectic solvents, Fuel 316 (2022) 123342, https://doi.org/10.1016/j.fuel.2022.123342. [64] Y. Abe, K. Yoshiyama, Y. Yagi, S. Hayase, M. Kawatsura, T. Itoh, A rational design of phosphonium salt type ionic liquids for ionic liquid coated-lipase catalyzed reaction, Green Chem. 12 (2010) 1976, https://doi.org/10.1039/c0gc00151a. [65] S. Sun, B. Hu, F. Qin, Y. Bi, Comparative study of soybean oil and the mixed fatty acids as acyl donors for enzymatic preparation of feruloylated acylglycerols in ionic liquids, J. Agric. Food Chem. 63 (2015) 7261–7269, https://doi.org/ 10.1021/acs.jafc.5b03479. [66] M. Perez, J.V. Sinisterra, M.J. Hernaiz, Hydrolases in green solvents, Curr. Org. Chem. 14 (2010) 2366–2383, https://doi.org/10.2174/138527210793358222. [67] N. Ríos-Lombardía, E. Busto, V. Gotor-Fernandez, ´ V. Gotor, R. Porcar, E. GarcíaVerdugo, S.V. Luis, I. Alfonso, S. García-Granda, A. Men´endez-Velazquez, ´ From salts to ionic liquids by systematic structural modifications: a rational approach towards the efficient modular synthesis of enantiopure imidazolium salts, Chem. A Eur. J. 16 (2010) 836–847, https://doi.org/10.1002/chem.200901623 [68] H. Zhao, G.A. Nathaniel, P.C. Merenini, Enzymatic ring-opening polymerization (ROP) of lactides and lactone in ionic liquids and organic solvents: digging the controlling factors, RSC Adv. 7 (2017) 48639–48648, https://doi.org/10.1039/ C7RA09038B. [69] B. Zeuner, G.M. Kontogeorgis, A. Riisager, A.S. Meyer, Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media, N. Biotechnol. 29 (2012) 255–270, https://doi.org/ 10.1016/j.nbt.2011.11.011. [70] A. Rajendran, A. Palanisamy, V. Thangavelu, Lipase catalyzed ester synthesis for food processing industries, Braz. Arch. Biol. Technol. 52 (2009) 207–219, https:// doi.org/10.1590/S1516-89132009000100026 [71] A. Kumar, K. Dhar, S.S. Kanwar, P.K. Arora, Lipase catalysis in organic solvents: advantages and applications, Biol. Proced. Online 18 (2016), https://doi.org/ 10.1186/s12575-016-0033-2. [72] K.H. Zhao, Y.Z. Cai, X.S. Lin, J. Xiong, P.J. Halling, Z. Yang, Enzymatic synthesis of glucose-based fatty acid esters in bisolvent systems containing ionic liquids or deep eutectic solvents, Molecules 21 (2016), https://doi.org/10.3390/ molecules21101294. [73] Y. He, K. Li, G. Bo, J. Wang, L. Xu, J. Yan, M. Yang, Y. Yan, Enhancing biodiesel production via liquid Yarrowia lipolytica lipase 2 in deep eutectic solvents, Fuel 316 (2022), https://doi.org/10.1016/j.fuel.2022.123342. [74] N. Ríos-Lombardía, E. Busto, V. Gotor-Fernandez, ´ V. Gotor, R. Porcar, E. GarcíaVerdugo, S.V. Luis, I. Alfonso, S. Garcia-Granda, A. Men´endez-Velazquez, ´ From salts to ionic liquids by systematic structural modifications: a rational approach towards the efficient modular synthesis of enantiopure imidazolium salts, Chem. A Eur. J. 16 (2010) 836–847, https://doi.org/10.1002/chem.200901623. [75] J. Wang, Y.Y. Yuan, J.Z. Du, Polyphosphoesters: Controlled Ring-Opening Polymerization and Biological Applications, in: Polymer Science: A Comprehensive Reference, Elsevier, 2012, pp. 719–747, https://doi.org/ 10.1016/B978-0-444-53349-4.00299-5. [76] V.K. Dhote, K. Dhote, S.P. Pandey, T. Shukla, R. Maheshwari, D.K. Mishra, R. K. Tekade, Fundamentals of polymers science applied in pharmaceutical product development, in: Basic Fundamentals of Drug Delivery, Elsevier, 2018, pp. 85–112, 10.1016/B978-0-12-817909-3.00003-0. [77] M. Cypryk, A. Jo, ´ J. Jo´zwiak, ́ Four-membered rings with two heteroatoms including silicon to Lead, Compreh. Heterocycl. Chem. III (2008) 907–938, https://doi.org/10.1016/B978-008044992-0.00221-2. [78] E. Jean, D. Villemin, L. Lebrun, New ionic liquids with fluorous anions for supported liquid membranes and characterization, J. Fluor. Chem. 227 (2019), https://doi.org/10.1016/j.jfluchem.2019.109365. [79] Vinod Kumar Yata, Shivendu Ranjan, Nandita Dasgupta, Eric Lichtfouse, Nanopharmaceuticals: Principles and Applications, Springer, 2005, 10.1007/978- 3-030-44925-4. [80] M. Llaver, G. Mafra, J. Merib, R. Lucena, R.G. Wuilloud, E. Carasek, Ionic liquids, in: Analytical Sample Preparation With Nano- and Other High-Performance Materials, Elsevier, 2021, pp. 427–451, 10.1016/B978-0-12-822139-6.00012-2. [81] J.L. Shamshina, O. Zavgorodnya, R.D. Rogers, Ionic liquids, in: Encyclopedia of Analytical Sc [82] Z. Lei, B. Chen, Y.M. Koo, D.R. Macfarlane, Introduction: ionic liquids, Chem. Rev. 117 (2017) 6633–6635, https://doi.org/10.1021/acs.chemrev.7b00246. [83] J.P. Hallett, T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis, Chem. Rev. 2 (111) (2011) 3508–3576, https://doi.org/10.1021/ cr1003248. [84] N.L. Mai, Y.-M. Koo, Computer-aided design of ionic liquids for high cellulose dissolution, ACS Sustain. Chem. Eng. 4 (2016) 541–547, https://doi.org/ 10.1021/acssuschemeng.5b00958. [85] Z. Lei, C. Dai, B. Chen, Gas solubility in ionic liquids, Chem. Rev. 114 (2014) 1289–1326, https://doi.org/10.1021/cr300497a. [86] K.N. Ruckart, R.A. O’Brien, S.M. Woodard, K.N. West, T.G. Glover, Porous solids impregnated with task-specific ionic liquids as composite sorbents, J. Phys. Chem. C 119 (2015) 20681–20697, https://doi.org/10.1021/acs.jpcc.5b04646. [87] W. Qian, J. Texter, F. Yan, Frontiers in poly(ionic liquid)s: syntheses and applications, Chem. Soc. Rev. 46 (2017) 1124–1159, https://doi.org/10.1039/ c6cs00620e. [88] S. Wickramanayake, D. Hopkinson, C. Myers, L. Hong, J. Feng, Y. Seol, D. Plasynski, M. Zeh, D. Luebke, Mechanically robust hollow fiber supported ionic liquid membranes for CO2 separation applications, J. Memb. Sci. 470 (2014) 52–59, https://doi.org/10.1016/j.memsci.2014.07.015. [89] R.L. Yang, N. Li, R.F. Li, T.J. Smith, M.H. Zong, A highly regioselective route to arbutin esters by immobilized lipase from Penicillium expansum, Bioresour. Technol. 101 (2010) 1–5, https://doi.org/10.1016/j.biortech.2009.07.067. [90] A. Mustafa, Lipase catalyzed reactions: A promising approach for clean synthesis of oleochemicals, in: Sustainable Solutions for Environmental Pollution, Wiley, 2021, pp. 417–447, 10.1002/9781119785439.ch11. [91] A.A.M. Elgharbawy, M. Moniruzzaman, M. Goto, Recent advances of enzymatic reactions in ionic liquids: part II, Biochem. Eng. J. 154 (2020), https://doi.org/ 10.1016/j.bej.2019.107426. [92] A. Wolny, A. Chrobok, Ionic liquids for development of heterogeneous catalysts based on nanomaterials for biocatalysis, Nanomaterials 11 (2021) 2030, https:// doi.org/10.3390/nano11082030. [93] A. Wolny, A. Chrobok, Silica-based supported ionic liquid-like phases as heterogeneous catalysts, Molecules 27 (2022) 5900, https://doi.org/10.3390/ molecules27185900. [94] A.A. Elgharbawy, F.A. Riyadi, M.Z. Alam, M. Moniruzzaman, Ionic liquids as a potential solvent for lipase-catalysed reactions: a review, J. Mol. Liq. 251 (2018) 150–166, https://doi.org/10.1016/j.molliq.2017.12.050. [95] M.S. Barbosa, A.J. Santos, N.B. Carvalho, R.T. Figueiredo, M.M. Pereira, A. ´ S. Lima, M.G. Freire, R.Y. Cabrera-Padilla, C.M.F. Soares, Enhanced activity of immobilized lipase by phosphonium-based ionic liquids used in the support preparation and immobilization process, ACS Sustain. Chem. Eng. 7 (2019) 15648–15659, https://doi.org/10.1021/acssuschemeng.9b03741. [96] J. Xu, S. Zhou, Y. Zhao, J. Xia, X. Liu, J.M. Xu, B. He, B. Wu, J. Zhang, Asymmetric whole-cell bioreduction of sterically bulky 2-benzoylpyridine derivatives in aqueous hydrophilic ionic liquid media, Chem. Eng. J. 316 (2017) 919–927, https://doi.org/10.1016/j.cej.2017.02.028. [97] Y. Gang Shi, Y. Wu, X. Yang Lu, Y. Ping Ren, Q. Wang, C. Min Zhu, D. Yu, H. Wang, Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria, Food Chem. 220 (2017) 249–256, https://doi.org/10.1016/j. foodchem.2016.09.187. [98] A. Wolny, A. Siewniak, J. Zdarta, F. Ciesielczyk, P. Latos, S. Jurczyk, L.D. Nghiem, T. Jesionowski, A. Chrobok, Supported ionic liquid phase facilitated catalysis with lipase from aspergillus oryzae for enhance enantiomeric resolution of racemic ibuprofen, Environ. Technol. Innov. 28 (2022), https://doi.org/10.1016/ j.eti.2022.102936. [99] L.E. Meyer, A. Gummesson, U. Kragl, J. von Langermann, Development of ionic liquid-water-based thermomorphic solvent (TMS)-Systems for Biocatalytic Reactions, Biotechnol. J. 14 (2019), https://doi.org/10.1002/biot.201900215. [100] A. Szelwicka, K. Erfurt, S. Jurczyk, S. Boncel, A. Chrobok, Outperformance in acrylation: supported d-glucose-based ionic liquid phase on mwcnts for immobilized lipase b from candida antarctica as catalytic system, Materials 14 (2021), https://doi.org/10.3390/ma14113090. [101] E. Alvarez, J. Rodriguez, R. Villa, C. Gomez, S. Nieto, A. Donaire, P. Lozano, Clean enzymatic production of flavor esters in spongelike ionic liquids, ACS Sustain. Chem. Eng. 7 (2019) 13307–13314, https://doi.org/10.1021/ acssuschemeng.9b02537. [102] P. Lehmann, S. Jopp, Novel glucosylimidazolium ionic-liquid-supported novozym 435 catalysts - a proof of concept for an acrylation reaction, ChemistryOpen 11 (2022) e202200135. [103] J.N. Pedersen, S. Liu, Y. Zhou, T. Balle, X. Xu, Z. Guo, Synergistic effects of binary ionic liquid-solvent systems on enzymatic esterification of esculin, Food Chem. 310 (2020), https://doi.org/10.1016/j.foodchem.2019.125858. [104] X. Di, Y. Zhang, J. Fu, Q. Yu, Z. Wang, Z. Yuan, Ionic liquid-strengthened immobilized rhizomucor miehei lipase for catalytic esterification of itaconic acid in aqueous media, ACS Sustain. Chem. Eng. 8 (2020) 1805–1812, https://doi.org/ 10.1021/acssuschemeng.9b05731. [105] Y. Wang, X.Y. Chen, X.Y. Liang, Z.H. Liang, H. Cheng, X. Li, L.L. Li, Pepsincatalyzed asymmetric cross aldol reaction promoted by ionic liquids and deep eutectic solvents, Catal. Lett. 150 (2020) 2549–2557, https://doi.org/10.1007/ s10562-020-03176-1. [106] J.C. Stevens, L. Das, J.K. Mobley, S.O. Asare, B.C. Lynn, D.W. Rodgers, J. Shi, Understanding laccase-ionic liquid interactions toward biocatalytic lignin conversion in aqueous ionic liquids, ACS Sustain. Chem. Eng. 7 (2019) 15928–15938, https://doi.org/10.1021/acssuschemeng.9b02151. [107] A. Szelwicka, A. Wolny, M. Grymel, S. Jurczyk, S. Boncel, A. Chrobok, Chemoenzymatic baeyer–villiger oxidation facilitated with lipases immobilized in the supported ionic liquid phase, Materials 14 (2021), https://doi.org/10.3390/ ma14133443. [108] M. Guimaraes, ˜ N. Mateus, V. De Freitas, L.C. Branco, L. Cruz, Microwave-assisted synthesis and ionic liquids: green and sustainable alternatives toward enzymatic lipophilization of anthocyanin monoglucosides, J. Agric. Food Chem. 68 (2020) 7387–7392, https://doi.org/10.1021/acs.jafc.0c02599. [109] C. Molina-Fernandez, ´ A. P´eters, D.P. Debecker, P. Luis, Immobilization of carbonic anhydrase in a hydrophobic poly(ionic liquid): a new functional solid for CO2 capture, Biochem. Eng. J. 187 (2022), https://doi.org/10.1016/j. bej.2022.108639. [110] T. Nishihara, A. Shiomi, S. Kadotani, T. Nokami, T. Itoh, Remarkably improved stability and enhanced activity of a Burkholderia cepacia lipase by coating with a triazolium alkyl-PEG sulfate ionic liquid, 19 (2017) 5250. 10.1039/c7gc02319g. [111] J. Grewal, S.K. Khare, L. Drewniak, K. Pranaw, Recent perspectives on microbial and ionic liquid interactions with implications for biorefineries, J. Mol. Liq. 362 (2022) 119796, https://doi.org/10.1016/J.MOLLIQ.2022.119796. [112] F. Van Rantwijk, R.M. Lau, R.A. Sheldon, Biocatalytic transformations in ionic liquids, Trends Biotechnol. 21 (2003) 131–138, https://doi.org/10.1016/S0167- 7799(03)00008-8. [113] O. Degorska, ´ D. Szada, T. Jesionowski, J. Zdarta, A biocatalytic approach for resolution of 3-hydroxy-3-phenylpropanonitrile with the use of immobilized enzymes stabilized with ionic liquids, comput struct, Biotechnol. J. 21 (2023) 1593–1597, https://doi.org/10.1016/J.CSBJ.2023.02.026. [114] L. Gonzalez, ´ M.S. Alvarez, ´ A. Rodríguez, M.A. Longo, F.J. Deive, Creating a new biocatalytic complex with extremolipases and biocompatible ionic liquids for improved transesterification reactions, Energy Conv. Manage: X 20 (2023) 100456, https://doi.org/10.1016/J.ECMX.2023.100456. [115] P. Lozano, J.M. Bernal, C. Gomez, ´ E. Alvarez, ´ B. Markiv, E. García-Verdugo, S. V. Luis, Green biocatalytic synthesis of biodiesel from microalgae in one-pot systems based on sponge-like ionic liquids, Catal. Today 346 (2020) 87–92, https://doi.org/10.1016/J.CATTOD.2019.01.073. [116] A. Anwar, M. Imran, H.M.N. Iqbal, Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges, Coord. Chem. Rev. 493 (2023) 215329, https://doi.org/10.1016/J. CCR.2023.215329. [117] M. Bilal, A.K. Singh, H.M.N. Iqbal, J. Zdarta, A. Chrobok, T. Jesionowski, Enzymelinked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants, Environ. Res. 241 (2024) 117579, https://doi.org/ 10.1016/J.ENVRES.2023.117579. [118] R.A. Sheldon, M.L. Bode, N. Mathebula, Green and sustainable solvents for biocatalytic oxidations, Curr. Opin. Green Sustain. Chem 39 (2023) 100741, https://doi.org/10.1016/J.COGSC.2022.100741. [119] M. Sureshkumar, C.K. Lee, Biocatalytic reactions in hydrophobic ionic liquids, J. Mol. Catal. B Enzym. 60 (2009) 1–12, https://doi.org/10.1016/J. MOLCATB.2009.03.008. [120] J.C.S. Dos Santos, C. Garcia-Galan, R.C. Rodrigues, H. Batista De Sant’ Ana, L.R. B. Gonç Alves, R. Fernandez-Lafuente, Improving the catalytic properties of immobilized lecitase via physical coating with ionic polymers, Enzyme Microb. Technol. 60 (2014) 1–8, https://doi.org/10.1016/j.enzmictec.2014.03.001. [121] N. Saraiva Rios, E. Gomes Morais, W. dos Santos Galvao, ˜ D.M. Andrade Neto, J. Cleiton Sousa dos Santos, F. Bohn, M.A. Correa, P. Basílio Almeida Fechine, R. Fernandez-Lafuente, L. Rocha Barros Gonçalves, das Auroras, R. Jos´e Franco de Oliveira, Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents, 141 (2019) 313-324. 10.1016/j.ijbiomac.2019.09.003. [122] D. Sibalic, A. Salic, B. Zelic, N.N. Tran, V. Hessel, K.D.P. Nigam, M. Tisma, Synergism of ionic liquids and lipases for lignocellulosic biomass valorization, 461 (2023) 142011. 10.1016/j.cej.2023.142011. [123] S. Sangeeta, N. Kumari, S. Agrawal, M. Maruthi, A. Sarkar, R. Tomar, Synthesis of 1,3-benzodioxole-based procaine-tagged ionic liquids and investigation of its physiochemical and anti-cancer properties against A549 cells, J. Mol. Liq. 391 (2023), https://doi.org/10.1016/j.molliq.2023.123325. [124] S. Sun, S. Zhu, Y. Bi, Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil, Food Chem. 158 (2014) 292–295, https://doi.org/10.1016/j.foodchem.2014.02.146. [125] B. Panchal, J. Wang, Y. Sun, K. Bian, C. Zhao, Q. Zhao, B. Liu, Production of ethyl esters using municipal sewage sludge and porous ionic liquid coordinated with burkholderia lipase, Biochem. Eng. J. 198 (2023), https://doi.org/10.1016/j. bej.2023.109019. [126] Q. Wang, X. Guo, M. Ge, L. Sheng, J. Wang, F. Yang, L. Jia, A. Huang, R. Guo, Engineering balanced anions coupling with tailored functional groups of poly (ionic liquid)s immobilized lipase enables effective biodiesel production, Mol. Catal. 531 (2022), https://doi.org/10.1016/j.mcat.2022.112673. [127] F. Li, Y. Xu, C. Wang, C. Wang, H. Xie, Y. Xu, P. Chen, L. Wang, Efficient synthesis of substituted pyrazoles via [3+2] cycloaddition catalyzed by lipase in ionic liquid, Process Biochem. 124 (2023) 253–258, https://doi.org/10.1016/j. procbio.2022.11.020 |
dc.relation.citationendpage.none.fl_str_mv |
19 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
399 |
dc.rights.eng.fl_str_mv |
© 2024 Elsevier B.V. All rights reserved. |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2024 Elsevier B.V. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
19 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
dc.publisher.place.none.fl_str_mv |
Netherlands |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S016773222400429X?via%3Dihub |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/4277c9ad-0d87-45fc-9c91-e46381cbd907/download https://repositorio.cuc.edu.co/bitstreams/0660a0bb-6d5b-46f1-b46a-f8cf75ae46aa/download https://repositorio.cuc.edu.co/bitstreams/fc9b9c61-9bfb-4156-817f-376445f301b0/download https://repositorio.cuc.edu.co/bitstreams/f2f9f246-e4a5-424f-a66f-d72fe221c01d/download |
bitstream.checksum.fl_str_mv |
8a8f31ad532416ac2091d3906f89aff0 73a5432e0b76442b22b026844140d683 7bc706988f7879751eac002bf6165980 92524c6d90e359aab210ba22f1ea81a6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166753479294976 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2024 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfCastro Bizerra, Viviane deFernandes Melo , Rafael LeandroSim˜ ao Neto, Franciscode Castro, Erico CarlosBessa Sales, MisaelPaulo Gonçalves de Sousa JuniorNascimento Dari, Dayanada Silva Aires, Francisco IzaiasMoreira dos Santos, KaianyFrança Serpa, Juliana deH. Kim, TakFernandez-Lucas, JesúsMartins de Souza, Maria Cristianedos Santos, Jose C.S.2024-10-24T12:17:32Z2025-04-012024-10-24T12:17:32Z2024-04-01Viviane de Castro Bizerra, Rafael Leandro Fernandes Melo, Francisco Simão Neto, Erico Carlos de Castro, Misael Bessa Sales, Paulo Gonçalves de Sousa Junior, Dayana Nascimento Dari, Francisco Izaias da Silva Aires, Kaiany Moreira dos Santos, Juliana de França Serpa, Tak H. Kim, Jesús Fernández-Lucas, Maria Cristiane Martins de Souza, José C.S. dos Santos, Exploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering, Journal of Molecular Liquids, Volume 399, 2024, 124373, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2024.124373.0167-7322https://hdl.handle.net/11323/1351110.1016/j.molliq.2024.1243731873-3166Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Ionic liquids (ILs) are widely used in many applications. Still, their use in enzyme engineering is particularly notable due to their environmentally friendly nature and efficient replacement of conventional organic solvents. Recently, lipase has emerged as an environmentally friendly catalyst. Nevertheless, using Lipases in the presence of ILs has led to a remarkable activity enhancement, making it a sustainable and non-harmful approach. This study conducted a bibliometric review of research articles published between 2010 and 2022 concerning the use of ILs in lipase-catalyzed reactions. The analysis was based on 206 publications retrieved from the Web of Science Core Collection (WoS) database., which were analyzed using different software tools, such as VOSviewer, CiteSpace, and ArcGIS. Key findings included that over half of the publications originated from other countries, notably China (around 36.4%), the United States, Spain, and France. As a result of this bibliometric analysis, four emerging trends were identified: namely: i) lipase-catalyzed synthesis, ii) the use of deep eutectic solvent, iii) the application of ILs in secondary alcohol reactions, iv) the use of ILs as green solvents, and iv) the enzymatic ring-opening polymerization. The study also evaluated the most prominent authors, articles, and institutions that provide comprehensive data on up-to-date research on ILs and lipases. It is noted that the studies identify significant advantages in this field, showing a positive trend of promising results, especially with the development of improved and environmentally friendly processes.19 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S016773222400429X?via%3DihubExploring the synergy of ionic liquids and lipase in sustainable enzymatic engineeringArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Molecular Liquids[1] V. Sankar Sivasankarapillai, A. Sundararajan, E. Chonnur Easwaran, M. Pourmadadi, A. Aslani, R. Dhanusuraman, A. Rahdar, G.Z. Kyzas, Application of ionic liquids in rubber elastomers: perspectives and challenges, J. Mol. Liq. 382 (2023) 121846, https://doi.org/10.1016/J.MOLLIQ.2023.121846.[2] I. Ali, M. Hozaifa, S. Ali, A. Malik, M. Locatelli, Advances in ionic liquids as future anti-cancer drugs, J. Mol. Liq. 388 (2023) 122823, https://doi.org/10.1016/J. MOLLIQ.2023.122823.[3] P. Sharma, S. Sharma, H. Kumar, Introduction to ionic liquids, applications and micellization behaviour in presence of different additives, J. Mol. Liq. 393 (2024) 123447, https://doi.org/10.1016/J.MOLLIQ.2023.123447.[4] M. Imai, I. Tanabe, Y. Ozaki, K. Fukui, Solvation properties of silver ions in ionic liquids using attenuated total reflectance ultraviolet spectroscopy, J. Mol. Liq. 364 (2022) 119998, https://doi.org/10.1016/J.MOLLIQ.2022.119998.[5] K.S. Egorova, M.M. Seitkalieva, A.S. Kashin, E.G. Gordeev, A.V. Vavina, A. V. Posvyatenko, V.P. Ananikov, Biological activity, solvation properties and microstructuring of protic imidazolium ionic liquids, J. Mol. Liq. 367 (2022) 120450, https://doi.org/10.1016/J.MOLLIQ.2022.120450.[6] A.A.M. Elgharbawy, M. Moniruzzaman, M. Goto, Facilitating enzymatic reactions by using ionic liquids: a mini review, Curr Opin Green Sustain Chem 27 (2021) 100406, https://doi.org/10.1016/J.COGSC.2020.100406.[7] K.C. Badgujar, V.C. Badgujar, B.M. Bhanage, Recent update on use of ionic liquids for enzyme immobilization, activation, and catalysis: a partnership for sustainability, Curr. Opin. Green Sustain. Chem. 36 (2022) 100621, https://doi. org/10.1016/J.COGSC.2022.100621.[8] P. Xu, G.W. Zheng, P.X. Du, M.H. Zong, W.Y. Lou, Whole-cell biocatalytic processes with ionic liquids, ACS Sustain. Chem. Eng. 4 (2016) 371–386, https:// doi.org/10.1021/acssuschemeng.5b00965[9] P. Lozano, J.M. Bernal, E. Garcia-Verdugo, G. SanchezGomez, M. Vaultier, I. Burguete, S.V. Luisb, Sponge-like ionic liquids a new platform for green biocatalytic chemical processes, Green Chem. 17 (2015) 3706–3717, https://doi. org/10.1039/C5GC00894H.[10] W.W. Gao, F.X. Zhang, G.X. Zhang, C.H. Zhou, Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis, Biochem. Eng. J. 99 (2015) 67–84, https://doi.org/10.1016/J.BEJ.2015.03.005.[11] T.C. Schutt, G.A. Hegde, V.S. Bharadwaj, A.J. Johns, C.M. Maupin, Impact of water-dilution on the solvation properties of the ionic liquid 1-Methyltriethoxy-3- ethylimidazolium acetate for model biomass molecules, J. Phys. Chem. B 121 (2017) 843–853, https://doi.org/10.1021/acs.jpcb.6b09101.[12] J.C. Stevens, J. Shi, Biocatalysis in ionic liquids for lignin valorization: opportunities and recent developments, Biotechnol. Adv. 37 (2019) 107418, https://doi.org/10.1016/J.BIOTECHADV.2019.107418.[13] R. Madeira Lau, F. Van Rantwijk, K.R. Seddon, R.A. Sheldon, Lipase-catalyzed reactions in ionic liquids, Org Lett 2 (2000) 4189–4191, https://doi.org/ 10.1021/ol006732d.[14] B.B. Popatkar, N.A. Sasane, G.A. Meshram, [BMPTFB]-ionic liquid as an efficient catalyst for the rapid, and eco-friendly synthesis of benzimidazole, 2-substituted benzimidazole, and benzothiazole derivatives at room temperature, Synth. Commun. 52 (2022) 2249–2259, https://doi.org/10.1080/ 00397911.2022.2142915.[15] B. Pouramiri, K. Rabiei, M.H. Meshkatalsadat, M. Rashidi, Saccharin based ionic liquid: novel and recyclable catalyst for eco-friendly mechanosynthesis of Biginelli and Hantzcsh heterocycles under solvent-free conditions, J. Mol. Struct. 1292 (2023) 136013, https://doi.org/10.1016/J.MOLSTRUC.2023.136013.[16] Y. Fan, D. Cai, X. Wang, L. Yang, Ionic liquids: efficient media for the lipasecatalyzed Michael addition, Molecules 23 (2018), https://doi.org/10.3390/ molecules23092154.[17] P.Y. Stergiou, A. Foukis, M. Filippou, M. Koukouritaki, M. Parapouli, L. G. Theodorou, E. Hatziloukas, A. Afendra, A. Pandey, E.M. Papamichael, Advances in lipase-catalyzed esterification reactions, Biotechnol. Adv. 31 (2013) 1846–1859, https://doi.org/10.1016/j.biotechadv.2013.08.006.[18] K. Faber, Biotransformations in Organic Chemistry, 5th ed., Springer, Berlin Heidelberg, Berlin, Heidelberg, 2004, 10.1007/978-3-642-18537-3.[19] T. Itoh, Ionic liquids as tool to improve enzymatic organic synthesis, Chem. Rev. 117 (2017) 10567–10607, https://doi.org/10.1021/acs.chemrev.7b00158.[20] M.B. Sales, P.T. Borges, M.N. Ribeiro Filho, L.R. Miranda da Silva, A.P. Castro, A. A. Sanders Lopes, R.K. Chaves de Lima, M.A. de Sousa Rios, J.C.S. dos Santos, Sustainable feedstocks and challenges in biodiesel production: an advanced bibliometric analysis, Bioengineering 9 (2022), https://doi.org/10.3390/ bioengineering9100539.[21] B.D. Catumba, M.B. Sales, P.T. Borges, M.N. Ribeiro Filho, A.A.S. Lopes, M.A. de Sousa Rios, A.S. Desai, M. Bilal, J.C.S. dos Santos, Sustainability and challenges in hydrogen production: an advanced bibliometric analysis, Int. J. Hydrogen Energy 48 (2023) 7975–7992, https://doi.org/10.1016/j.ijhydene.2022.11.215.[22] J.W. Goodell, S. Kumar, W.M. Lim, D. Pattnaik, Artificial intelligence and machine learning in finance: identifying foundations, themes, and research clusters from bibliometric analysis, J Behav Exp Finance 32 (2021), https://doi. org/10.1016/j.jbef.2021.100577[23] M. Su, H. Peng, S. Li, A visualized bibliometric analysis of mapping research trends of machine learning in engineering (MLE), Expert Syst. Appl. 186 (2021), https://doi.org/10.1016/j.eswa.2021.115728.[24] W. Jiang, T. Aishan, Ü. Halik, Z. Wei, M. Wumaier, A bibliometric and visualized analysis of research Progress and trends on decay and cavity trees in Forest ecosystem over 20 years: an application of the CiteSpace software, Forests 13 (2022), https://doi.org/10.3390/f13091437.[25] N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, W.M. Lim, How to conduct a bibliometric analysis: an overview and guidelines, J. Bus. Res. 133 (2021) 285–296, https://doi.org/10.1016/j.jbusres.2021.04.070.[26] M. Ranjbari, Z. Shams Esfandabadi, F. Quatraro, H. Vatanparast, S.S. Lam, M. Aghbashlo, M. Tabatabaei, Biomass and organic waste potentials towards implementing circular bioeconomy platforms: a systematic bibliometric analysis, Fuel 318 (2022), https://doi.org/10.1016/j.fuel.2022.123585.[27] R.L.F. Melo, M.B. Sales, V. de Castro Bizerra, P.G. de Sousa Junior, A.L. G. Cavalcante, T.M. Freire, F.S. Neto, M. Bilal, T. Jesionowski, J.M. Soares, P.B. A. Fechine, J.C.S. dos Santos, Recent applications and future prospects of magnetic biocatalysts, 253, Int. J. Biol. Macromol. (2023) 126709, https://doi. org/10.1016/J.IJBIOMAC.2023.126709.[28] S. Braz, A.K. De, S. Junior, P.G. Melo, R.L.F. Val´erio, R.B.R. Serpa, J.D.F. Da, S. Lima, A.M. De Lima, R.K.C. Guimaraes, ˜ Trends and opportunities in enzyme biosensors coupled to metal-organic, (2023). 10.3390/electrochem4020014.[29] J.L. da Silva, M.B. Sales, V. de Castro Bizerra, M.M.R. Nobre, A.K. de Sousa Braz, P. da Silva Sousa, A.L.G. Cavalcante, R.L.F. Melo, P. Gonçalves De Sousa Junior, F.S. Neto, A.M. da Fonseca, J.C.S. dos Santos, Lipase from Yarrowia lipolytica: prospects as an industrial biocatalyst for biotechnological applications, Fermentation 9 (2023) 581, https://doi.org/10.3390/fermentation9070581[30] R.C. Nogueira, F.S. Neto, P.G. de S. Junior, R.B.R. Val´erio, J. de F. Serpa, A.M. da S. Lima, M.C.M. de Souza, R.K.C. de Lima, A.A.S. Lopes, A.P. Guimaraes, ˜ R.L. F. Melo, M.A. de S. Rios, J.C.S. dos Santos, Research trends and perspectives on hydrothermal gasification in producing biofuels, Energy Nexus 10 (2023) 100199, https://doi.org/10.1016/J.NEXUS.2023.100199.[31] C.E.C. Guimar˜ aes, F.S. Neto, V. de Castro Bizerra, J.G.A. do Nascimento, R.B. R. Val´erio, P.G. de Sousa Junior, A.K. de Sousa Braz, R.L.F. Melo, J. de França Serpa, R.K.C. de Lima, A.P. Guimaraes, ˜ M.C.M. de Souza, A.A.S. Lopes, M.A. de Sousa Rios, A.S. Desai, M. Bilal, W. Smułek, T. Jesionowski, J.C.S. dos Santos, Sustainable bioethanol production from first- and second-generation sugar-based feedstocks: advanced bibliometric analysis, Bioresour Technol Rep 23 (2023) 101543, https://doi.org/10.1016/J.BITEB.2023.101543.[32] M.H. Doolittle, M. P´eterfy, Mechanisms of lipase maturation, Clin Lipidol 5 (2010) 117–130, https://doi.org/10.2217/clp.09.84.[33] M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carri`ere, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. MacIerzanka, A. MacKie, S. Marze, D. J. McClements, O. M´enard, I. Recio, C.N. Santos, R.P. Singh, G.E. Vegarud, M.S. J. Wickham, W. Weitschies, A. Brodkorb, A standardised static in vitro digestion method suitable for food-an international consensus, Food Funct. 5 (2014) 1113–1124, https://doi.org/10.1039/c3fo60702j.[34] G. An, Y.M. Kim, Y.-M. Koo, S.H. Ha, Effect of microwave irradiation on lipasecatalyzed reactions in ionic liquids, Anal. Sci. Technol. 30 (2017) 138–145, https://doi.org/10.5806/AST.2017.30.3.138.[35] X. Lu, Z. Luo, S. Yu, X. Fu, Lipase-catalyzed synthesis of starch palmitate in mixed ionic liquids, in, J. Agric. Food Chem. (2012) 9273–9279, https://doi.org/ 10.1021/jf303096c.[36] S.H. Ha, N.M. Hiep, S.H. Lee, Y.M. Koo, Optimization of lipase-catalyzed glucose ester synthesis in ionic liquids, Bioprocess Biosyst. Eng. 33 (2010) 63–70, https:// doi.org/10.1007/s00449-009-0363-4.[37] E. Durand, J. Lecomte, P. Villeneuve, Deep eutectic solvents: synthesis, application, and focus on lipase-catalyzed reactions, Eur. J. Lipid Sci. Technol. 115 (2013) 379–385, https://doi.org/10.1002/ejlt.201200416.[38] M.M. Kessler, Bibliographic coupling between scientific papers, J. Assoc. Inf. Sci. Technol. 14 (1963) 10–25, https://doi.org/10.1002/asi.5090140103.[39] S. Tang, G.A. Baker, H. Zhao, Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications, Chem. Soc. Rev. 41 (2012) 4030–4066, https://doi.org/10.1039/c2cs15362a.[40] K.S. Egorova, E.G. Gordeev, V.P. Ananikov, Biological activity of ionic liquids and their application in pharmaceutics and medicine, Chem. Rev. 117 (2017) 7132–7189, https://doi.org/10.1021/acs.chemrev.6b00562.[41] I. Bustos-Jaimes, Y. García-Torres, H.C. Santillan-Uribe, ´ C. Montiel, Immobilization and enantioselectivity of Bacillus pumilus lipase in ionic liquids, J. Mol. Catal. B Enzym. 89 (2013) 137–141, https://doi.org/10.1016/j. molcatb.2013.01.002.[42] M. Naushad, Z.A. ALOthman, A.B. Khan, M. Ali, Effect of ionic liquid on activity, stability, and structure of enzymes: a review, Int. J. Biol. Macromol. 51 (2012) 555–560, https://doi.org/10.1016/j.ijbiomac.2012.06.020[43] J. Gorke, F. Srienc, R. Kazlauskas, Toward advanced ionic liquids, polar, enzymefriendly solvents for biocatalysis, Biotechnol. Bioprocess Eng. 15 (2010) 40–53, https://doi.org/10.1007/s12257-009-3079-z.[44] A. Farran, ´ C. Cai, M. Sandoval, Y. Xu, J. Liu, M.J. Hern´ aiz, R.J. Linhardt, Green solvents in carbohydrate chemistry: from raw materials to fine chemicals, Chem. Rev. 115 (2015) 6811–6853, https://doi.org/10.1021/cr500719h[45] P. Xu, G.W. Zheng, M.H. Zong, N. Li, W.Y. Lou, Recent progress on deep eutectic solvents in biocatalysis, Bioresour Bioprocess 4 (2017), https://doi.org/10.1186/ s40643-017-0165-5.[46] M. Patzold, ¨ S. Siebenhaller, S. Kara, A. Liese, C. Syldatk, D. Holtmann, Deep eutectic solvents as efficient solvents in biocatalysis, Trends Biotechnol. 37 (2019) 943–959, https://doi.org/10.1016/j.tibtech.2019.03.007.[47] E. Durand, J. Lecomte, B. Bar´ea, G. Piombo, E. Dubreucq, P. Villeneuve, Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions, Process Biochem. 47 (2012) 2081–2089, https://doi.org/ 10.1016/j.procbio.2012.07.027.[48] F.L.C. Almeida, B.M. Travalia, ´ I.S. Gonçalves, M.B.S. Forte, Biodiesel production by lipase-catalyzed reactions: bibliometric analysis and study of trends, Biofuels Bioprod. Biorefin. 15 (2021) 1141–1159, https://doi.org/10.1002/bbb.2183.[49] F.J. Deive, D. Ruivo, J.V. Rodrigues, C.M. Gomes, M.A. ´ Sanrom´ an, L.P.N. Rebelo, J.M.S.S. Esperança, A. Rodríguez, On the hunt for truly biocompatible ionic liquids for lipase-catalyzed reactions, RSC Adv. 5 (2015) 3386–3389, https://doi. org/10.1039/c4ra15021j[50] E. Durand, J. Lecomte, B. Bar´ea, P. Villeneuve, P. Villeneuve, Towards a better understanding of how to improve lipase-catalyzed reactions using deep eutectic solvents based on choline chloride †, Eur. J. Lipid Sci. Technol. 116 (2013) 1–24, https://doi.org/10.1002/ejlt.[51] F. Wang, G. Zhao, X. Lang, J. Li, X. Li, Lipase-catalyzed synthesis of long-chain cellulose esters using ionic liquid mixtures as reaction media, J. Chem. Technol. Biotechnol. 92 (2017) 1203–1210, https://doi.org/10.1002/jctb.5109.[52] F.K. Sutili, H.S. Ruela, S.G.F. Leite, L.S.D.M. Miranda, I.C.R. Leal, R.O.M.A. De Souza, Lipase-catalyzed esterification of steric hindered fructose derivative by continuous flow and batch conditions, J. Mol. Catal. B Enzym. 85–86 (2013) 37–42, https://doi.org/10.1016/j.molcatb.2012.08.004.[53] H. Zhao, Z. Song, O. Olubajo, J.V. Cowins, New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel, Appl. Biochem. Biotechnol. 162 (2010) 13–23, https://doi.org/10.1007/s12010-009-8717-6.[54] S. Sun, X. Hou, W. Zhou, Effect of ionic liquids on enzymatic preparation of lipophilic feruloylated structured lipids using distearin as feruloylated acceptor and kinetic analysis, J. Mol. Liq. 260 (2018) 92–98, https://doi.org/10.1016/J. MOLLIQ.2018.03.077.[55] Y. Liu, H. Wu, Y. Yan, L. Dong, M. Zhu, P. Liang, Lipase-catalyzed transesterification for biodiesel production in ionic liquid [EMIM]TFO) lipasecatalyzed transesterification for biodiesel production in ionic liquid, Int. J. Green Energy 10 (2013) 63–71, https://doi.org/10.1080/15435075.2011.647368.[56] C. Chen, CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature, J. Am. Soc. Inf. Sci. Technol. 57 (2006) 359–377, https://doi.org/10.1002/asi.20317.[57] X. Liu, S. Zhao, L. Tan, Y. Tan, Y. Wang, Z. Ye, C. Hou, Y. Xu, S. Liu, G. Wang, Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis, Biosens. Bioelectron. 201 (2022), https://doi. org/10.1016/j.bios.2021.113932.[58] S. Liu, Y.P. Sun, X.L. Gao, Y. Sui, Knowledge domain and emerging trends in Alzheimer’s disease: a scientometric review based on CiteSpace analysis, Neural Regen. Res. 14 (2019) 1643–1650, https://doi.org/10.4103/1673-5374.255995.[59] H. Wang, W. Zhang, Y. Zhang, J. Xu, A bibliometric review on stability and reinforcement of special soil subgrade based on CiteSpace, J. Traff. Transport. Eng. (Engl. Ed.) 9 (2022) 223–243, https://doi.org/10.1016/j.jtte.2021.07.005.[60] K.-H. Zhao, Y.-Z. Cai, X.-S. Lin, J. Xiong, P. Halling, Z. Yang, Enzymatic synthesis of glucose-based fatty acid esters in bisolvent systems containing ionic liquids or deep eutectic solvents, Molecules 21 (2016) 1294, https://doi.org/10.3390/ molecules21101294.[61] S. Gu, J. Wang, X. Wei, H. Cui, X. Wu, F. Wu, Enhancement of lipase-catalyzed synthesis of caffeic acid phenethyl Ester in ionic liquid with DMSO co-solvent, Chin. J. Chem. Eng. 22 (2014) 1314–1321, https://doi.org/10.1016/j. cjche.2014.09.024.[62] Y. He, K. Li, J. Wang, L. Xu, J. Yan, M. Yang, Y. Yan, A novel strategy for biodiesel production by combination of liquid lipase, deep eutectic solvent and ultrasonicassistance in scaled-up reactor: optimization and kinetics, J. Clean. Prod. 372 (2022) 133740, https://doi.org/10.1016/j.jclepro.2022.133740.[63] Y. He, K. Li, G. Bo, J. Wang, L. Xu, J. Yan, M. Yang, Y. Yan, Enhancing biodiesel production via liquid Yarrowia lipolytica lipase 2 in deep eutectic solvents, Fuel 316 (2022) 123342, https://doi.org/10.1016/j.fuel.2022.123342.[64] Y. Abe, K. Yoshiyama, Y. Yagi, S. Hayase, M. Kawatsura, T. Itoh, A rational design of phosphonium salt type ionic liquids for ionic liquid coated-lipase catalyzed reaction, Green Chem. 12 (2010) 1976, https://doi.org/10.1039/c0gc00151a.[65] S. Sun, B. Hu, F. Qin, Y. Bi, Comparative study of soybean oil and the mixed fatty acids as acyl donors for enzymatic preparation of feruloylated acylglycerols in ionic liquids, J. Agric. Food Chem. 63 (2015) 7261–7269, https://doi.org/ 10.1021/acs.jafc.5b03479.[66] M. Perez, J.V. Sinisterra, M.J. Hernaiz, Hydrolases in green solvents, Curr. Org. Chem. 14 (2010) 2366–2383, https://doi.org/10.2174/138527210793358222.[67] N. Ríos-Lombardía, E. Busto, V. Gotor-Fernandez, ´ V. Gotor, R. Porcar, E. GarcíaVerdugo, S.V. Luis, I. Alfonso, S. García-Granda, A. Men´endez-Velazquez, ´ From salts to ionic liquids by systematic structural modifications: a rational approach towards the efficient modular synthesis of enantiopure imidazolium salts, Chem. A Eur. J. 16 (2010) 836–847, https://doi.org/10.1002/chem.200901623[68] H. Zhao, G.A. Nathaniel, P.C. Merenini, Enzymatic ring-opening polymerization (ROP) of lactides and lactone in ionic liquids and organic solvents: digging the controlling factors, RSC Adv. 7 (2017) 48639–48648, https://doi.org/10.1039/ C7RA09038B.[69] B. Zeuner, G.M. Kontogeorgis, A. Riisager, A.S. Meyer, Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media, N. Biotechnol. 29 (2012) 255–270, https://doi.org/ 10.1016/j.nbt.2011.11.011.[70] A. Rajendran, A. Palanisamy, V. Thangavelu, Lipase catalyzed ester synthesis for food processing industries, Braz. Arch. Biol. Technol. 52 (2009) 207–219, https:// doi.org/10.1590/S1516-89132009000100026[71] A. Kumar, K. Dhar, S.S. Kanwar, P.K. Arora, Lipase catalysis in organic solvents: advantages and applications, Biol. Proced. Online 18 (2016), https://doi.org/ 10.1186/s12575-016-0033-2.[72] K.H. Zhao, Y.Z. Cai, X.S. Lin, J. Xiong, P.J. Halling, Z. Yang, Enzymatic synthesis of glucose-based fatty acid esters in bisolvent systems containing ionic liquids or deep eutectic solvents, Molecules 21 (2016), https://doi.org/10.3390/ molecules21101294.[73] Y. He, K. Li, G. Bo, J. Wang, L. Xu, J. Yan, M. Yang, Y. Yan, Enhancing biodiesel production via liquid Yarrowia lipolytica lipase 2 in deep eutectic solvents, Fuel 316 (2022), https://doi.org/10.1016/j.fuel.2022.123342.[74] N. Ríos-Lombardía, E. Busto, V. Gotor-Fernandez, ´ V. Gotor, R. Porcar, E. GarcíaVerdugo, S.V. Luis, I. Alfonso, S. Garcia-Granda, A. Men´endez-Velazquez, ´ From salts to ionic liquids by systematic structural modifications: a rational approach towards the efficient modular synthesis of enantiopure imidazolium salts, Chem. A Eur. J. 16 (2010) 836–847, https://doi.org/10.1002/chem.200901623.[75] J. Wang, Y.Y. Yuan, J.Z. Du, Polyphosphoesters: Controlled Ring-Opening Polymerization and Biological Applications, in: Polymer Science: A Comprehensive Reference, Elsevier, 2012, pp. 719–747, https://doi.org/ 10.1016/B978-0-444-53349-4.00299-5.[76] V.K. Dhote, K. Dhote, S.P. Pandey, T. Shukla, R. Maheshwari, D.K. Mishra, R. K. Tekade, Fundamentals of polymers science applied in pharmaceutical product development, in: Basic Fundamentals of Drug Delivery, Elsevier, 2018, pp. 85–112, 10.1016/B978-0-12-817909-3.00003-0.[77] M. Cypryk, A. Jo, ´ J. Jo´zwiak, ́ Four-membered rings with two heteroatoms including silicon to Lead, Compreh. Heterocycl. Chem. III (2008) 907–938, https://doi.org/10.1016/B978-008044992-0.00221-2.[78] E. Jean, D. Villemin, L. Lebrun, New ionic liquids with fluorous anions for supported liquid membranes and characterization, J. Fluor. Chem. 227 (2019), https://doi.org/10.1016/j.jfluchem.2019.109365.[79] Vinod Kumar Yata, Shivendu Ranjan, Nandita Dasgupta, Eric Lichtfouse, Nanopharmaceuticals: Principles and Applications, Springer, 2005, 10.1007/978- 3-030-44925-4.[80] M. Llaver, G. Mafra, J. Merib, R. Lucena, R.G. Wuilloud, E. Carasek, Ionic liquids, in: Analytical Sample Preparation With Nano- and Other High-Performance Materials, Elsevier, 2021, pp. 427–451, 10.1016/B978-0-12-822139-6.00012-2.[81] J.L. Shamshina, O. Zavgorodnya, R.D. Rogers, Ionic liquids, in: Encyclopedia of Analytical Sc[82] Z. Lei, B. Chen, Y.M. Koo, D.R. Macfarlane, Introduction: ionic liquids, Chem. Rev. 117 (2017) 6633–6635, https://doi.org/10.1021/acs.chemrev.7b00246.[83] J.P. Hallett, T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis, Chem. Rev. 2 (111) (2011) 3508–3576, https://doi.org/10.1021/ cr1003248.[84] N.L. Mai, Y.-M. Koo, Computer-aided design of ionic liquids for high cellulose dissolution, ACS Sustain. Chem. Eng. 4 (2016) 541–547, https://doi.org/ 10.1021/acssuschemeng.5b00958.[85] Z. Lei, C. Dai, B. Chen, Gas solubility in ionic liquids, Chem. Rev. 114 (2014) 1289–1326, https://doi.org/10.1021/cr300497a.[86] K.N. Ruckart, R.A. O’Brien, S.M. Woodard, K.N. West, T.G. Glover, Porous solids impregnated with task-specific ionic liquids as composite sorbents, J. Phys. Chem. C 119 (2015) 20681–20697, https://doi.org/10.1021/acs.jpcc.5b04646.[87] W. Qian, J. Texter, F. Yan, Frontiers in poly(ionic liquid)s: syntheses and applications, Chem. Soc. Rev. 46 (2017) 1124–1159, https://doi.org/10.1039/ c6cs00620e.[88] S. Wickramanayake, D. Hopkinson, C. Myers, L. Hong, J. Feng, Y. Seol, D. Plasynski, M. Zeh, D. Luebke, Mechanically robust hollow fiber supported ionic liquid membranes for CO2 separation applications, J. Memb. Sci. 470 (2014) 52–59, https://doi.org/10.1016/j.memsci.2014.07.015.[89] R.L. Yang, N. Li, R.F. Li, T.J. Smith, M.H. Zong, A highly regioselective route to arbutin esters by immobilized lipase from Penicillium expansum, Bioresour. Technol. 101 (2010) 1–5, https://doi.org/10.1016/j.biortech.2009.07.067.[90] A. Mustafa, Lipase catalyzed reactions: A promising approach for clean synthesis of oleochemicals, in: Sustainable Solutions for Environmental Pollution, Wiley, 2021, pp. 417–447, 10.1002/9781119785439.ch11.[91] A.A.M. Elgharbawy, M. Moniruzzaman, M. Goto, Recent advances of enzymatic reactions in ionic liquids: part II, Biochem. Eng. J. 154 (2020), https://doi.org/ 10.1016/j.bej.2019.107426.[92] A. Wolny, A. Chrobok, Ionic liquids for development of heterogeneous catalysts based on nanomaterials for biocatalysis, Nanomaterials 11 (2021) 2030, https:// doi.org/10.3390/nano11082030.[93] A. Wolny, A. Chrobok, Silica-based supported ionic liquid-like phases as heterogeneous catalysts, Molecules 27 (2022) 5900, https://doi.org/10.3390/ molecules27185900.[94] A.A. Elgharbawy, F.A. Riyadi, M.Z. Alam, M. Moniruzzaman, Ionic liquids as a potential solvent for lipase-catalysed reactions: a review, J. Mol. Liq. 251 (2018) 150–166, https://doi.org/10.1016/j.molliq.2017.12.050.[95] M.S. Barbosa, A.J. Santos, N.B. Carvalho, R.T. Figueiredo, M.M. Pereira, A. ´ S. Lima, M.G. Freire, R.Y. Cabrera-Padilla, C.M.F. Soares, Enhanced activity of immobilized lipase by phosphonium-based ionic liquids used in the support preparation and immobilization process, ACS Sustain. Chem. Eng. 7 (2019) 15648–15659, https://doi.org/10.1021/acssuschemeng.9b03741.[96] J. Xu, S. Zhou, Y. Zhao, J. Xia, X. Liu, J.M. Xu, B. He, B. Wu, J. Zhang, Asymmetric whole-cell bioreduction of sterically bulky 2-benzoylpyridine derivatives in aqueous hydrophilic ionic liquid media, Chem. Eng. J. 316 (2017) 919–927, https://doi.org/10.1016/j.cej.2017.02.028.[97] Y. Gang Shi, Y. Wu, X. Yang Lu, Y. Ping Ren, Q. Wang, C. Min Zhu, D. Yu, H. Wang, Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria, Food Chem. 220 (2017) 249–256, https://doi.org/10.1016/j. foodchem.2016.09.187.[98] A. Wolny, A. Siewniak, J. Zdarta, F. Ciesielczyk, P. Latos, S. Jurczyk, L.D. Nghiem, T. Jesionowski, A. Chrobok, Supported ionic liquid phase facilitated catalysis with lipase from aspergillus oryzae for enhance enantiomeric resolution of racemic ibuprofen, Environ. Technol. Innov. 28 (2022), https://doi.org/10.1016/ j.eti.2022.102936.[99] L.E. Meyer, A. Gummesson, U. Kragl, J. von Langermann, Development of ionic liquid-water-based thermomorphic solvent (TMS)-Systems for Biocatalytic Reactions, Biotechnol. J. 14 (2019), https://doi.org/10.1002/biot.201900215.[100] A. Szelwicka, K. Erfurt, S. Jurczyk, S. Boncel, A. Chrobok, Outperformance in acrylation: supported d-glucose-based ionic liquid phase on mwcnts for immobilized lipase b from candida antarctica as catalytic system, Materials 14 (2021), https://doi.org/10.3390/ma14113090.[101] E. Alvarez, J. Rodriguez, R. Villa, C. Gomez, S. Nieto, A. Donaire, P. Lozano, Clean enzymatic production of flavor esters in spongelike ionic liquids, ACS Sustain. Chem. Eng. 7 (2019) 13307–13314, https://doi.org/10.1021/ acssuschemeng.9b02537.[102] P. Lehmann, S. Jopp, Novel glucosylimidazolium ionic-liquid-supported novozym 435 catalysts - a proof of concept for an acrylation reaction, ChemistryOpen 11 (2022) e202200135.[103] J.N. Pedersen, S. Liu, Y. Zhou, T. Balle, X. Xu, Z. Guo, Synergistic effects of binary ionic liquid-solvent systems on enzymatic esterification of esculin, Food Chem. 310 (2020), https://doi.org/10.1016/j.foodchem.2019.125858.[104] X. Di, Y. Zhang, J. Fu, Q. Yu, Z. Wang, Z. Yuan, Ionic liquid-strengthened immobilized rhizomucor miehei lipase for catalytic esterification of itaconic acid in aqueous media, ACS Sustain. Chem. Eng. 8 (2020) 1805–1812, https://doi.org/ 10.1021/acssuschemeng.9b05731.[105] Y. Wang, X.Y. Chen, X.Y. Liang, Z.H. Liang, H. Cheng, X. Li, L.L. Li, Pepsincatalyzed asymmetric cross aldol reaction promoted by ionic liquids and deep eutectic solvents, Catal. Lett. 150 (2020) 2549–2557, https://doi.org/10.1007/ s10562-020-03176-1.[106] J.C. Stevens, L. Das, J.K. Mobley, S.O. Asare, B.C. Lynn, D.W. Rodgers, J. Shi, Understanding laccase-ionic liquid interactions toward biocatalytic lignin conversion in aqueous ionic liquids, ACS Sustain. Chem. Eng. 7 (2019) 15928–15938, https://doi.org/10.1021/acssuschemeng.9b02151.[107] A. Szelwicka, A. Wolny, M. Grymel, S. Jurczyk, S. Boncel, A. Chrobok, Chemoenzymatic baeyer–villiger oxidation facilitated with lipases immobilized in the supported ionic liquid phase, Materials 14 (2021), https://doi.org/10.3390/ ma14133443.[108] M. Guimaraes, ˜ N. Mateus, V. De Freitas, L.C. Branco, L. Cruz, Microwave-assisted synthesis and ionic liquids: green and sustainable alternatives toward enzymatic lipophilization of anthocyanin monoglucosides, J. Agric. Food Chem. 68 (2020) 7387–7392, https://doi.org/10.1021/acs.jafc.0c02599.[109] C. Molina-Fernandez, ´ A. P´eters, D.P. Debecker, P. Luis, Immobilization of carbonic anhydrase in a hydrophobic poly(ionic liquid): a new functional solid for CO2 capture, Biochem. Eng. J. 187 (2022), https://doi.org/10.1016/j. bej.2022.108639.[110] T. Nishihara, A. Shiomi, S. Kadotani, T. Nokami, T. Itoh, Remarkably improved stability and enhanced activity of a Burkholderia cepacia lipase by coating with a triazolium alkyl-PEG sulfate ionic liquid, 19 (2017) 5250. 10.1039/c7gc02319g.[111] J. Grewal, S.K. Khare, L. Drewniak, K. Pranaw, Recent perspectives on microbial and ionic liquid interactions with implications for biorefineries, J. Mol. Liq. 362 (2022) 119796, https://doi.org/10.1016/J.MOLLIQ.2022.119796.[112] F. Van Rantwijk, R.M. Lau, R.A. Sheldon, Biocatalytic transformations in ionic liquids, Trends Biotechnol. 21 (2003) 131–138, https://doi.org/10.1016/S0167- 7799(03)00008-8.[113] O. Degorska, ´ D. Szada, T. Jesionowski, J. Zdarta, A biocatalytic approach for resolution of 3-hydroxy-3-phenylpropanonitrile with the use of immobilized enzymes stabilized with ionic liquids, comput struct, Biotechnol. J. 21 (2023) 1593–1597, https://doi.org/10.1016/J.CSBJ.2023.02.026.[114] L. Gonzalez, ´ M.S. Alvarez, ´ A. Rodríguez, M.A. Longo, F.J. Deive, Creating a new biocatalytic complex with extremolipases and biocompatible ionic liquids for improved transesterification reactions, Energy Conv. Manage: X 20 (2023) 100456, https://doi.org/10.1016/J.ECMX.2023.100456.[115] P. Lozano, J.M. Bernal, C. Gomez, ´ E. Alvarez, ´ B. Markiv, E. García-Verdugo, S. V. Luis, Green biocatalytic synthesis of biodiesel from microalgae in one-pot systems based on sponge-like ionic liquids, Catal. Today 346 (2020) 87–92, https://doi.org/10.1016/J.CATTOD.2019.01.073.[116] A. Anwar, M. Imran, H.M.N. Iqbal, Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges, Coord. Chem. Rev. 493 (2023) 215329, https://doi.org/10.1016/J. CCR.2023.215329.[117] M. Bilal, A.K. Singh, H.M.N. Iqbal, J. Zdarta, A. Chrobok, T. Jesionowski, Enzymelinked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants, Environ. Res. 241 (2024) 117579, https://doi.org/ 10.1016/J.ENVRES.2023.117579.[118] R.A. Sheldon, M.L. Bode, N. Mathebula, Green and sustainable solvents for biocatalytic oxidations, Curr. Opin. Green Sustain. Chem 39 (2023) 100741, https://doi.org/10.1016/J.COGSC.2022.100741.[119] M. Sureshkumar, C.K. Lee, Biocatalytic reactions in hydrophobic ionic liquids, J. Mol. Catal. B Enzym. 60 (2009) 1–12, https://doi.org/10.1016/J. MOLCATB.2009.03.008.[120] J.C.S. Dos Santos, C. Garcia-Galan, R.C. Rodrigues, H. Batista De Sant’ Ana, L.R. B. Gonç Alves, R. Fernandez-Lafuente, Improving the catalytic properties of immobilized lecitase via physical coating with ionic polymers, Enzyme Microb. Technol. 60 (2014) 1–8, https://doi.org/10.1016/j.enzmictec.2014.03.001.[121] N. Saraiva Rios, E. Gomes Morais, W. dos Santos Galvao, ˜ D.M. Andrade Neto, J. Cleiton Sousa dos Santos, F. Bohn, M.A. Correa, P. Basílio Almeida Fechine, R. Fernandez-Lafuente, L. Rocha Barros Gonçalves, das Auroras, R. Jos´e Franco de Oliveira, Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents, 141 (2019) 313-324. 10.1016/j.ijbiomac.2019.09.003.[122] D. Sibalic, A. Salic, B. Zelic, N.N. Tran, V. Hessel, K.D.P. Nigam, M. Tisma, Synergism of ionic liquids and lipases for lignocellulosic biomass valorization, 461 (2023) 142011. 10.1016/j.cej.2023.142011.[123] S. Sangeeta, N. Kumari, S. Agrawal, M. Maruthi, A. Sarkar, R. Tomar, Synthesis of 1,3-benzodioxole-based procaine-tagged ionic liquids and investigation of its physiochemical and anti-cancer properties against A549 cells, J. Mol. Liq. 391 (2023), https://doi.org/10.1016/j.molliq.2023.123325.[124] S. Sun, S. Zhu, Y. Bi, Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil, Food Chem. 158 (2014) 292–295, https://doi.org/10.1016/j.foodchem.2014.02.146.[125] B. Panchal, J. Wang, Y. Sun, K. Bian, C. Zhao, Q. Zhao, B. Liu, Production of ethyl esters using municipal sewage sludge and porous ionic liquid coordinated with burkholderia lipase, Biochem. Eng. J. 198 (2023), https://doi.org/10.1016/j. bej.2023.109019.[126] Q. Wang, X. Guo, M. Ge, L. Sheng, J. Wang, F. Yang, L. Jia, A. Huang, R. Guo, Engineering balanced anions coupling with tailored functional groups of poly (ionic liquid)s immobilized lipase enables effective biodiesel production, Mol. Catal. 531 (2022), https://doi.org/10.1016/j.mcat.2022.112673.[127] F. Li, Y. Xu, C. Wang, C. Wang, H. Xie, Y. Xu, P. Chen, L. Wang, Efficient synthesis of substituted pyrazoles via [3+2] cycloaddition catalyzed by lipase in ionic liquid, Process Biochem. 124 (2023) 253–258, https://doi.org/10.1016/j. procbio.2022.11.020191399Bibliometric analysisEnzyme engineeringIonic liquidsLipasePublicationORIGINALExploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering.pdfExploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering.pdfapplication/pdf10410641https://repositorio.cuc.edu.co/bitstreams/4277c9ad-0d87-45fc-9c91-e46381cbd907/download8a8f31ad532416ac2091d3906f89aff0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/0660a0bb-6d5b-46f1-b46a-f8cf75ae46aa/download73a5432e0b76442b22b026844140d683MD52TEXTExploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering.pdf.txtExploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering.pdf.txtExtracted texttext/plain100415https://repositorio.cuc.edu.co/bitstreams/fc9b9c61-9bfb-4156-817f-376445f301b0/download7bc706988f7879751eac002bf6165980MD53THUMBNAILExploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering.pdf.jpgExploring the synergy of ionic liquids and lipase in sustainable enzymatic engineering.pdf.jpgGenerated Thumbnailimage/jpeg14470https://repositorio.cuc.edu.co/bitstreams/f2f9f246-e4a5-424f-a66f-d72fe221c01d/download92524c6d90e359aab210ba22f1ea81a6MD5411323/13511oai:repositorio.cuc.edu.co:11323/135112024-10-25 03:01:31.536https://creativecommons.org/licenses/by-nc-nd/4.0/© 2024 Elsevier B.V. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |