Evolutionary algorithm for content-based image search

Content-based image retrieval systems attempt to provide a means of searching for images in large repositories without using any information other than that contained in the image itself, usually in the form of low-level descriptors. Since these descriptors do not accurately represent the semantics...

Full description

Autores:
Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7729
Acceso en línea:
https://hdl.handle.net/11323/7729
https://doi.org/10.1007/978-981-15-4875-8_20
https://repositorio.cuc.edu.co/
Palabra clave:
Image recovery
IGA
Genetic algorithm
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_1f7675c16968b6ae69af459d5b3f72e6
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7729
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evolutionary algorithm for content-based image search
title Evolutionary algorithm for content-based image search
spellingShingle Evolutionary algorithm for content-based image search
Image recovery
IGA
Genetic algorithm
title_short Evolutionary algorithm for content-based image search
title_full Evolutionary algorithm for content-based image search
title_fullStr Evolutionary algorithm for content-based image search
title_full_unstemmed Evolutionary algorithm for content-based image search
title_sort Evolutionary algorithm for content-based image search
dc.creator.fl_str_mv Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
dc.subject.spa.fl_str_mv Image recovery
IGA
Genetic algorithm
topic Image recovery
IGA
Genetic algorithm
description Content-based image retrieval systems attempt to provide a means of searching for images in large repositories without using any information other than that contained in the image itself, usually in the form of low-level descriptors. Since these descriptors do not accurately represent the semantics of the image, evaluating the perceptual similarity between two images based only on them is not a trivial task. This paper describes an effective method for image recovery based on evolutionary computing techniques. The results are compared with those obtained by the classical approach of the movement of the query point and the rescheduling of the axes and by a technique based on self-organizing maps, showing a remarkably higher performance in the repositories.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-20T18:38:55Z
dc.date.available.none.fl_str_mv 2021-01-20T18:38:55Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7729
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-4875-8_20
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7729
https://doi.org/10.1007/978-981-15-4875-8_20
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Banuchitra, S., Kungumaraj, K.: A comprehensive survey of content based image retrieval techniques. Int. J. Eng. Comput. Sci. (IJECS), 5 (2016).
2. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
3. Tunga, S., Jayadevappa, D., Gururaj, C.: A comparative study of content-based image retrieval trends and approaches. Int. J. Image Process. (IJIP) 9(3), 127 (2015)
4. Tzelepi, M., Tefas, A.: Deep convolutional learning for content-based image retrieval. Neuro-Computing 275, 2467–2478 (2018)
5. Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough set theory. J. Central South Univ. 20, 2708–2714 (2013)
6. Pineda Lezama, O., Gómez Dorta, R.: Techniques of multivariate statistical analysis: an application for the Honduran banking sector. Innov: J. Sci. Technol. 5(2), 61–75 (2017)
7. Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques. Expert Syst. Appl. 37(7), 5484–5490 (2010)
8. Thames L., Schaefer, D.: Softwaredefined cloud manufacturing for industry 4.0. In: Procedía CIRP, vol. 52, pp. 12–17 (2016)
9. Viloria A., Neira-Rodado, D., Pineda Lezama, O.B.: Recovery of scientific data using Intelligent Distributed Data Warehouse. ANT/EDI40, pp. 1249–1254 (2019a)
10. Viloria, A., Pineda Lezama, O.B.: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. ANT/EDI40, pp. 1201–1206 (2019b)
11. Nisa, R., Qamar, U.: A text mining-based approach for web service classification. In: Information Systems and e-Business Management, pp. 1–18 (2014)
12. Wu, J., Chen, L., Zheng, Z., Lyu, M.R., Wu, Z.: Clustering web services to facilitate service discovery. Knowl. Inf. Syst. 38(1), 207–229 (2014)
13. Paulin M., et al.: Convolutional patch representations for image retrieval: an unsupervised approach. Int. J. Comput. Vis. 165–166 (2017)
14. Chandrasekhar, V., Lin, J., Liao, Q., Morere, O., Veillard, A., Duan, L., Poggio, T.: Compression of deep neural networks for image instance retrieval. arXiv:1701.04923 (2017)
15. Sharif, U., Mehmood, Z., Mahmood, T., Javid, M.A., Rehman, A., Saba, T.: Scene analysis and search using local features and support vector machine for effective content-based image retrieval. Artif. Intell. Rev. 52(2), 901–925 (2019)
16. Korytkowski, M., Senkerik, R., Scherer, M.M., Angryk, R.A., Kordos, M., Siwocha, A.: Efficient image retrieval by fuzzy rules from boosting and metaheuristic. J. Artif. Intell. Soft Comput. Res. 10(1), 57–69 (2020)
17. Abdi, Y., Feizi-Derakhshi, M.R.: Hybrid multi-objective evolutionary algorithm based on Search Manager framework for big data optimization problems. Appl. Soft Comput. 87, 105991 (2020)
18. Sarkar, S., Das, S., Chaudhuri, S.S.: Multi-level thresholding with a decomposition-based multi-objective evolutionary algorithm for segmenting natural and medical images. Appl. Soft Comput. 50, 142–157 (2017)
19. de Ves, E., Domingo, J., Ayala, G., Zuccarello, P.: A novel bayesian framework for relevance feedback in image content-based retrieval systems. Pattern Recogn. 39, 1622–1632 (2006)
20. Viloria, A., Robayo, P.V.: Virtual network level of application composed IP networks connected with systems-(NETS peer-to-peer). Ind. J. Sci. Technol. 9, 46
21. Koskela, M., Laaksonen, J., & Oja E.: (2004) Use of image subset features in image retrieval with self-organizing maps. In: Image and Video Retrieval: Third International Conference, Dublin, Ireland, July 2004, pp. 508–516
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Smart Innovation, Systems and Technologies
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-4875-8_20
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/50042c11-132a-442a-b7f2-e2b96d94f872/download
https://repositorio.cuc.edu.co/bitstreams/32ae35fa-ae5c-452e-a2fb-61e3efd260ac/download
https://repositorio.cuc.edu.co/bitstreams/7b7872d5-4988-4561-a6a2-abc3ced916c5/download
https://repositorio.cuc.edu.co/bitstreams/c0624d80-c6d7-4bbb-a8c7-cc62783c9db4/download
https://repositorio.cuc.edu.co/bitstreams/2a6dcd9b-498b-4231-98c2-68ff43a7f37e/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
988b500398c3fb4b1d7d1730a75a8e74
fec462d5179cf49fe70d9b40d2678245
66a88f148df78326f4482a209440a220
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166883773251584
spelling Silva, JesúsVarela Izquierdo, NoelPineda, Omar2021-01-20T18:38:55Z2021-01-20T18:38:55Z2020https://hdl.handle.net/11323/7729https://doi.org/10.1007/978-981-15-4875-8_20Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Content-based image retrieval systems attempt to provide a means of searching for images in large repositories without using any information other than that contained in the image itself, usually in the form of low-level descriptors. Since these descriptors do not accurately represent the semantics of the image, evaluating the perceptual similarity between two images based only on them is not a trivial task. This paper describes an effective method for image recovery based on evolutionary computing techniques. The results are compared with those obtained by the classical approach of the movement of the query point and the rescheduling of the axes and by a technique based on self-organizing maps, showing a remarkably higher performance in the repositories.Silva, JesúsVarela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Smart Innovation, Systems and Technologieshttps://link.springer.com/chapter/10.1007/978-981-15-4875-8_20Image recoveryIGAGenetic algorithmEvolutionary algorithm for content-based image searchArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Banuchitra, S., Kungumaraj, K.: A comprehensive survey of content based image retrieval techniques. Int. J. Eng. Comput. Sci. (IJECS), 5 (2016).2. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)3. Tunga, S., Jayadevappa, D., Gururaj, C.: A comparative study of content-based image retrieval trends and approaches. Int. J. Image Process. (IJIP) 9(3), 127 (2015)4. Tzelepi, M., Tefas, A.: Deep convolutional learning for content-based image retrieval. Neuro-Computing 275, 2467–2478 (2018)5. Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough set theory. J. Central South Univ. 20, 2708–2714 (2013)6. Pineda Lezama, O., Gómez Dorta, R.: Techniques of multivariate statistical analysis: an application for the Honduran banking sector. Innov: J. Sci. Technol. 5(2), 61–75 (2017)7. Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques. Expert Syst. Appl. 37(7), 5484–5490 (2010)8. Thames L., Schaefer, D.: Softwaredefined cloud manufacturing for industry 4.0. In: Procedía CIRP, vol. 52, pp. 12–17 (2016)9. Viloria A., Neira-Rodado, D., Pineda Lezama, O.B.: Recovery of scientific data using Intelligent Distributed Data Warehouse. ANT/EDI40, pp. 1249–1254 (2019a)10. Viloria, A., Pineda Lezama, O.B.: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. ANT/EDI40, pp. 1201–1206 (2019b)11. Nisa, R., Qamar, U.: A text mining-based approach for web service classification. In: Information Systems and e-Business Management, pp. 1–18 (2014)12. Wu, J., Chen, L., Zheng, Z., Lyu, M.R., Wu, Z.: Clustering web services to facilitate service discovery. Knowl. Inf. Syst. 38(1), 207–229 (2014)13. Paulin M., et al.: Convolutional patch representations for image retrieval: an unsupervised approach. Int. J. Comput. Vis. 165–166 (2017)14. Chandrasekhar, V., Lin, J., Liao, Q., Morere, O., Veillard, A., Duan, L., Poggio, T.: Compression of deep neural networks for image instance retrieval. arXiv:1701.04923 (2017)15. Sharif, U., Mehmood, Z., Mahmood, T., Javid, M.A., Rehman, A., Saba, T.: Scene analysis and search using local features and support vector machine for effective content-based image retrieval. Artif. Intell. Rev. 52(2), 901–925 (2019)16. Korytkowski, M., Senkerik, R., Scherer, M.M., Angryk, R.A., Kordos, M., Siwocha, A.: Efficient image retrieval by fuzzy rules from boosting and metaheuristic. J. Artif. Intell. Soft Comput. Res. 10(1), 57–69 (2020)17. Abdi, Y., Feizi-Derakhshi, M.R.: Hybrid multi-objective evolutionary algorithm based on Search Manager framework for big data optimization problems. Appl. Soft Comput. 87, 105991 (2020)18. Sarkar, S., Das, S., Chaudhuri, S.S.: Multi-level thresholding with a decomposition-based multi-objective evolutionary algorithm for segmenting natural and medical images. Appl. Soft Comput. 50, 142–157 (2017)19. de Ves, E., Domingo, J., Ayala, G., Zuccarello, P.: A novel bayesian framework for relevance feedback in image content-based retrieval systems. Pattern Recogn. 39, 1622–1632 (2006)20. Viloria, A., Robayo, P.V.: Virtual network level of application composed IP networks connected with systems-(NETS peer-to-peer). Ind. J. Sci. Technol. 9, 4621. Koskela, M., Laaksonen, J., & Oja E.: (2004) Use of image subset features in image retrieval with self-organizing maps. In: Image and Video Retrieval: Third International Conference, Dublin, Ireland, July 2004, pp. 508–516PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/50042c11-132a-442a-b7f2-e2b96d94f872/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/32ae35fa-ae5c-452e-a2fb-61e3efd260ac/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALEvolutionary algorithm for content.pdfEvolutionary algorithm for content.pdfapplication/pdf94535https://repositorio.cuc.edu.co/bitstreams/7b7872d5-4988-4561-a6a2-abc3ced916c5/download988b500398c3fb4b1d7d1730a75a8e74MD51THUMBNAILEvolutionary algorithm for content.pdf.jpgEvolutionary algorithm for content.pdf.jpgimage/jpeg28006https://repositorio.cuc.edu.co/bitstreams/c0624d80-c6d7-4bbb-a8c7-cc62783c9db4/downloadfec462d5179cf49fe70d9b40d2678245MD54TEXTEvolutionary algorithm for content.pdf.txtEvolutionary algorithm for content.pdf.txttext/plain970https://repositorio.cuc.edu.co/bitstreams/2a6dcd9b-498b-4231-98c2-68ff43a7f37e/download66a88f148df78326f4482a209440a220MD5511323/7729oai:repositorio.cuc.edu.co:11323/77292024-09-17 14:21:46.475http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==