Experimental study of foaming agent proportions for cellular concrete cabrication: a case study in Barranquilla
Cellular concrete is a mixture of cement, water, and preformed foam, whose main feature is being a low-density material due to it containing uniformly distributed gas cells. To reach this, the preformed foam is composed of a solution based on a foaming agent and water, resulting in a material with a...
- Autores:
-
Abudinen, D
Murillo, M
Gómez, W
Ardila, A
Espitia, E
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13522
- Acceso en línea:
- https://hdl.handle.net/11323/13522
- Palabra clave:
- Cellular Concrete
Preformed Foam
Protein Foaming Agent
Density
Compressive Strength
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
Summary: | Cellular concrete is a mixture of cement, water, and preformed foam, whose main feature is being a low-density material due to it containing uniformly distributed gas cells. To reach this, the preformed foam is composed of a solution based on a foaming agent and water, resulting in a material with a density between 320 kg⁄m3 and 1920 kg⁄m3, creating an advantage over conventional concrete, which in some cases can be harmful as it normally has densities from 2300 kg⁄m3 to 2500 kg⁄m3. Despite the creation of this concrete type being nothing new, there is still no procedure or standardization of the proportion to be used between water and foaming agent for the preformed foam production for the creation of high-density cellular concrete (classified as a subcategory within cellular concrete category) characterized for having a minimum density of 800kg⁄m3. The purpose of this paper is to study the behavior of the relation between water and foaming agents in the production of preformed foam for the creation of high-density cellular concrete. For it, a total of 84 cylindrical specimens were manufactured using mixtures with two different target densities (880 kg⁄m3 and 1680 kg⁄m3), where each of these densities is divided into three different protein foaming agent proportions (1:30, 1:35, and 1:40). The properties of the mixtures were analyzed in terms of the slump, the density, and the compressive strength. The test results revealed a pattern: as the proportion or amounts of foaming agent within the water-foaming agent ratio increased while keeping the other mixture variables constant, a decrease in compressive strength was observed. This phenomenon was inversely proportional to density, since, as the amount of foaming agent decreased, the density of the specimens increased. Mixtures that remained within the expected limits obtained compressive strength values of 3.01 MPa and 22.55 MPa, corresponding to a target density of 880 and 1680, respectively. |
---|