Big data and automatic detection of topics: social network texts

This paper proposes the analysis of the influence of terms that express feelings in the automatic detection of topics in social networks. This proposal uses an ontology-based methodology which incorporates the ability to identify and eliminate those terms that present a sentimental orientation in so...

Full description

Autores:
Silva, Jesús
Hernandez Palma, Hugo Gaspar
Niebles Núñez, William
Ruiz Lázaro, Alex
Varela, Noel
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6192
Acceso en línea:
https://hdl.handle.net/11323/6192
https://repositorio.cuc.edu.co/
Palabra clave:
Big Data
Automatic detection
Social network
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_088afb696116b549881bcaf893a1986e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6192
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Big data and automatic detection of topics: social network texts
title Big data and automatic detection of topics: social network texts
spellingShingle Big data and automatic detection of topics: social network texts
Big Data
Automatic detection
Social network
title_short Big data and automatic detection of topics: social network texts
title_full Big data and automatic detection of topics: social network texts
title_fullStr Big data and automatic detection of topics: social network texts
title_full_unstemmed Big data and automatic detection of topics: social network texts
title_sort Big data and automatic detection of topics: social network texts
dc.creator.fl_str_mv Silva, Jesús
Hernandez Palma, Hugo Gaspar
Niebles Núñez, William
Ruiz Lázaro, Alex
Varela, Noel
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Hernandez Palma, Hugo Gaspar
Niebles Núñez, William
Ruiz Lázaro, Alex
Varela, Noel
dc.subject.spa.fl_str_mv Big Data
Automatic detection
Social network
topic Big Data
Automatic detection
Social network
description This paper proposes the analysis of the influence of terms that express feelings in the automatic detection of topics in social networks. This proposal uses an ontology-based methodology which incorporates the ability to identify and eliminate those terms that present a sentimental orientation in social network texts, which can negatively influence the detection of topics. To this end, two resources were used to analyze feelings in order to detect these terms. The proposed system was evaluated with real data sets from the Twitter and Facebook social networks in English and Spanish respectively, demonstrating in both cases the influence of sentimentally oriented terms in the detection of topics in social network texts.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-15T17:10:28Z
dc.date.available.none.fl_str_mv 2020-04-15T17:10:28Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1742-6588
1742-6596
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6192
dc.identifier.doi.spa.fl_str_mv doi:10.1088/1742-6596/1432/1/012073
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1742-6588
1742-6596
doi:10.1088/1742-6596/1432/1/012073
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6192
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] A. Gonzalez-Agirre, E. Laparra, y G. Laparra, “Multilingual central repository version 3.0,” in Proceedings of the Eight International Con- ference on Language Resources and Evaluation (LREC’12). Istanbul, Turkey: European Language Resources Association (ELRA), may 2012
[2] P. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. 1, pp. 53–65, Nov. 1987. [Online]. Disponible: http://dx.doi.org/10.1016/0377- 0427(87)90125-7.
[3] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.
[4] K. Toutanova, D. Klein, C. D. Manning, y Y. Singer, “Feature-rich part- of-speech tagging with a cyclic dependency network,” in Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1, ser. NAACL ’03. Stroudsburg, PA, USA: Association for Computational Linguistics, 2003, pp. 173–180. [Online]. Disponible: http://dx.doi.org/10.3115/1073445.1073478.
[5] Lis-Gutiérrez JP., Gaitán-Angulo M., Henao L.C., Viloria A., Aguilera-Hernández D., PortilloMedina R. (2018) Measures of Concentration and Stability: Two Pedagogical Tools for Industrial Organization Courses. In: Tan Y., Shi Y., Tang Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science, vol 10942. Springer, Cham
[6] W. X. Zhao, J. Weng, J. He, E.-P. Lim, y H. Yan, “Comparing twitter and traditional media using topic models,” in 33rd European conference on advances in information retrieval (ECIR11). Berlin, Heidelberg: Springer-Verlag., 2011, pp. 338–349.
[7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.
[8] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012..
[9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.
[10] N. Swanson y H. White, “Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models”, International Journal of Forecasting, vol. 13, núm. 4, pp. 439–461, 1997.
[11] E. M. Toro, D. A. Mejia, y H. Salazar, “Pronóstico de ventas usando redes neuronales”, Scientia et technica, vol. 10, núm. 26, 2004.
[12] Hernández, J. A., Burlak, G., Muñoz Arteaga, J., y Ochoa, A. (2006). Propuesta para la evaluación de objetos de aprendizaje desde una perspectiva integral usando minería de datos. En A. Hernández y J. Zechinelli (Eds.), Avances en la ciencia de la computación (pp. 382-387). México: Universidad Autónoma de México.
[13] Romero, C., Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
[14] Romero, C., y Ventura, S. (2010). Educational data mining: a review of the state of the art. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(6), 601-618. Disponible en: http://ieeexplore.ieee.org/xpl/RecentIssue. jsp?reload=true&punumber=5326
[15] Choudhury, A. and Jones, J. Crop yield prediction using time series models, Journal of Economics and Economic Education Research., 15, 53-68, 2014.
[16] Scheffer, T. (2004). Finding Association Rules that Trade Support Optimally Against Confidence. Intelligent Data Analysis, 9(4), 381-395.
[16] Ruß G. Data Mining of Agricultural Yield Data: A Comparison of Regression Models, In: Perner P. (eds) Advances in Data Mining. Applications and Theoretical Aspects, ICDM 2009. Lecture Notes in Computer Science, vol 5633.
[17] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
[18] Y. Rao, Q. Li, X. Mao, y L. Wenyin, “Sentiment topic models for social emotion mining,” Information Sciences, vol. 266, pp. 90 – 100, 2014. [Online]. Disponible: http://www.sciencedirect.com/science/article/pii/ S002002551400019X
[19] K. Gutiérrez-Batista, J. R. Campaña, M.-A. Vila, y M. J. Martin- Bautista, “An ontology-based framework for automatic topic detection in multilingual environments,” International Journal of Intelligent Systems, vol. 33, no. 7, pp. 1459–1475, 2018. [Online]. Disponible: https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21986
[20] J. Wu, W. Gao, B. Zhang, J. Liu, y C. Li, “Cluster based detection and analysis of internet topics,” in 4th International Symposium on Computational Intelligence and Design, ISCID 2011, vol. 2, 2011, pp. 371–374.
[21] L. Zheng y T. Li, “Semi-supervised hierarchical clustering,” in Proceedings of the 2011 IEEE 11th International Conference on Data Mining, ser. ICDM ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 982–991. [Online]. Disponible: http://dx.doi.org/10.1109/ICDM.2011.130
[22] C. Lin y Y. He, “Joint sentiment/topic model for sentiment analysis,” in 18th ACM Conference on Information and Knowledge Management 8CIKM09). New York, NY, USA: ACM, 2009, pp. 375–384.
[23] J. Duan y J. Zeng, “Web objectionable text content detection using topic modeling technique,” Expert Systems with Applications, vol. 40, pp. 6094–6104., 2013.
[24] M. Pennacchiotti y S. Gurumurthy, “Investigating topic models for social media user recommendation,” in 20th International Conference Companion on World Wide Web. New York, NY, USA: ACM, 2011, pp. 101–102.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Physics: Conference Series
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/37c3c29a-da06-4da1-aa04-315e567a1005/download
https://repositorio.cuc.edu.co/bitstreams/cd70be23-ae21-4675-888e-f8dbc2f2cb69/download
https://repositorio.cuc.edu.co/bitstreams/bff1caad-9960-4e14-880b-f686fed56870/download
https://repositorio.cuc.edu.co/bitstreams/25b973c7-0245-42fa-b22e-e51c8117ebe2/download
https://repositorio.cuc.edu.co/bitstreams/239cc66e-7aaa-4ece-808d-ff88ecd89a87/download
https://repositorio.cuc.edu.co/bitstreams/f4cb3827-d95b-40b0-b122-90b5288d299e/download
https://repositorio.cuc.edu.co/bitstreams/c2efe99a-2b46-4ad4-80a5-fb92c3c8bbc1/download
https://repositorio.cuc.edu.co/bitstreams/2bad5f48-e618-434e-ab5d-460a10a9a469/download
bitstream.checksum.fl_str_mv ddd984edaabd6e6ccdf505ea6ff1b5c5
313ee43dff8f487802df51ac9cfc99dc
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
268428ef8e2fa118d47e1ba504c3b92d
7dcd3646e2831efad956ba77833a1fad
2eb906a256b991b050e19251588a2263
ce6e729bbdeb9ee81752c4872e7066b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166870663954432
spelling Silva, JesúsHernandez Palma, Hugo GasparNiebles Núñez, WilliamRuiz Lázaro, AlexVarela, Noel2020-04-15T17:10:28Z2020-04-15T17:10:28Z20201742-65881742-6596https://hdl.handle.net/11323/6192doi:10.1088/1742-6596/1432/1/012073Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper proposes the analysis of the influence of terms that express feelings in the automatic detection of topics in social networks. This proposal uses an ontology-based methodology which incorporates the ability to identify and eliminate those terms that present a sentimental orientation in social network texts, which can negatively influence the detection of topics. To this end, two resources were used to analyze feelings in order to detect these terms. The proposed system was evaluated with real data sets from the Twitter and Facebook social networks in English and Spanish respectively, demonstrating in both cases the influence of sentimentally oriented terms in the detection of topics in social network texts.Silva, JesúsHernandez Palma, Hugo Gaspar-will be generated-orcid-0000-0002-3873-0530-600Niebles Núñez, WilliamRuiz Lázaro, Alex-will be generated-orcid-0000-0002-5974-2864-600Varela, NoelengJournal of Physics: Conference SeriesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Big DataAutomatic detectionSocial networkBig data and automatic detection of topics: social network textsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] A. Gonzalez-Agirre, E. Laparra, y G. Laparra, “Multilingual central repository version 3.0,” in Proceedings of the Eight International Con- ference on Language Resources and Evaluation (LREC’12). Istanbul, Turkey: European Language Resources Association (ELRA), may 2012[2] P. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. 1, pp. 53–65, Nov. 1987. [Online]. Disponible: http://dx.doi.org/10.1016/0377- 0427(87)90125-7.[3] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.[4] K. Toutanova, D. Klein, C. D. Manning, y Y. Singer, “Feature-rich part- of-speech tagging with a cyclic dependency network,” in Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1, ser. NAACL ’03. Stroudsburg, PA, USA: Association for Computational Linguistics, 2003, pp. 173–180. [Online]. Disponible: http://dx.doi.org/10.3115/1073445.1073478.[5] Lis-Gutiérrez JP., Gaitán-Angulo M., Henao L.C., Viloria A., Aguilera-Hernández D., PortilloMedina R. (2018) Measures of Concentration and Stability: Two Pedagogical Tools for Industrial Organization Courses. In: Tan Y., Shi Y., Tang Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science, vol 10942. Springer, Cham[6] W. X. Zhao, J. Weng, J. He, E.-P. Lim, y H. Yan, “Comparing twitter and traditional media using topic models,” in 33rd European conference on advances in information retrieval (ECIR11). Berlin, Heidelberg: Springer-Verlag., 2011, pp. 338–349.[7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.[8] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012..[9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.[10] N. Swanson y H. White, “Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models”, International Journal of Forecasting, vol. 13, núm. 4, pp. 439–461, 1997.[11] E. M. Toro, D. A. Mejia, y H. Salazar, “Pronóstico de ventas usando redes neuronales”, Scientia et technica, vol. 10, núm. 26, 2004.[12] Hernández, J. A., Burlak, G., Muñoz Arteaga, J., y Ochoa, A. (2006). Propuesta para la evaluación de objetos de aprendizaje desde una perspectiva integral usando minería de datos. En A. Hernández y J. Zechinelli (Eds.), Avances en la ciencia de la computación (pp. 382-387). México: Universidad Autónoma de México.[13] Romero, C., Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.[14] Romero, C., y Ventura, S. (2010). Educational data mining: a review of the state of the art. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(6), 601-618. Disponible en: http://ieeexplore.ieee.org/xpl/RecentIssue. jsp?reload=true&punumber=5326[15] Choudhury, A. and Jones, J. Crop yield prediction using time series models, Journal of Economics and Economic Education Research., 15, 53-68, 2014.[16] Scheffer, T. (2004). Finding Association Rules that Trade Support Optimally Against Confidence. Intelligent Data Analysis, 9(4), 381-395.[16] Ruß G. Data Mining of Agricultural Yield Data: A Comparison of Regression Models, In: Perner P. (eds) Advances in Data Mining. Applications and Theoretical Aspects, ICDM 2009. Lecture Notes in Computer Science, vol 5633.[17] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham[18] Y. Rao, Q. Li, X. Mao, y L. Wenyin, “Sentiment topic models for social emotion mining,” Information Sciences, vol. 266, pp. 90 – 100, 2014. [Online]. Disponible: http://www.sciencedirect.com/science/article/pii/ S002002551400019X[19] K. Gutiérrez-Batista, J. R. Campaña, M.-A. Vila, y M. J. Martin- Bautista, “An ontology-based framework for automatic topic detection in multilingual environments,” International Journal of Intelligent Systems, vol. 33, no. 7, pp. 1459–1475, 2018. [Online]. Disponible: https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21986[20] J. Wu, W. Gao, B. Zhang, J. Liu, y C. Li, “Cluster based detection and analysis of internet topics,” in 4th International Symposium on Computational Intelligence and Design, ISCID 2011, vol. 2, 2011, pp. 371–374.[21] L. Zheng y T. Li, “Semi-supervised hierarchical clustering,” in Proceedings of the 2011 IEEE 11th International Conference on Data Mining, ser. ICDM ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 982–991. [Online]. Disponible: http://dx.doi.org/10.1109/ICDM.2011.130[22] C. Lin y Y. He, “Joint sentiment/topic model for sentiment analysis,” in 18th ACM Conference on Information and Knowledge Management 8CIKM09). New York, NY, USA: ACM, 2009, pp. 375–384.[23] J. Duan y J. Zeng, “Web objectionable text content detection using topic modeling technique,” Expert Systems with Applications, vol. 40, pp. 6094–6104., 2013.[24] M. Pennacchiotti y S. Gurumurthy, “Investigating topic models for social media user recommendation,” in 20th International Conference Companion on World Wide Web. New York, NY, USA: ACM, 2011, pp. 101–102.PublicationORIGINALBig Data and Automatic Detection of Topics. Social Network Texts.pdfBig Data and Automatic Detection of Topics. Social Network Texts.pdfapplication/pdf809872https://repositorio.cuc.edu.co/bitstreams/37c3c29a-da06-4da1-aa04-315e567a1005/downloadddd984edaabd6e6ccdf505ea6ff1b5c5MD51Big Data and Automatic Detection of Topics Social Network Texts.pdfBig Data and Automatic Detection of Topics Social Network Texts.pdfapplication/pdf1511320https://repositorio.cuc.edu.co/bitstreams/cd70be23-ae21-4675-888e-f8dbc2f2cb69/download313ee43dff8f487802df51ac9cfc99dcMD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/bff1caad-9960-4e14-880b-f686fed56870/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/25b973c7-0245-42fa-b22e-e51c8117ebe2/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILBig Data and Automatic Detection of Topics. Social Network Texts.pdf.jpgBig Data and Automatic Detection of Topics. Social Network Texts.pdf.jpgimage/jpeg31960https://repositorio.cuc.edu.co/bitstreams/239cc66e-7aaa-4ece-808d-ff88ecd89a87/download268428ef8e2fa118d47e1ba504c3b92dMD54Big Data and Automatic Detection of Topics Social Network Texts.pdf.jpgBig Data and Automatic Detection of Topics Social Network Texts.pdf.jpgimage/jpeg34005https://repositorio.cuc.edu.co/bitstreams/f4cb3827-d95b-40b0-b122-90b5288d299e/download7dcd3646e2831efad956ba77833a1fadMD56TEXTBig Data and Automatic Detection of Topics. Social Network Texts.pdf.txtBig Data and Automatic Detection of Topics. Social Network Texts.pdf.txttext/plain24256https://repositorio.cuc.edu.co/bitstreams/c2efe99a-2b46-4ad4-80a5-fb92c3c8bbc1/download2eb906a256b991b050e19251588a2263MD57Big Data and Automatic Detection of Topics Social Network Texts.pdf.txtBig Data and Automatic Detection of Topics Social Network Texts.pdf.txttext/plain26496https://repositorio.cuc.edu.co/bitstreams/2bad5f48-e618-434e-ab5d-460a10a9a469/downloadce6e729bbdeb9ee81752c4872e7066b7MD5811323/6192oai:repositorio.cuc.edu.co:11323/61922024-09-17 14:20:08.318http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=