Identificación de la presencia de hidrocarburos en arenas arcillosas usando un algoritmo de machine learning, registros de pozo e imágenes de fluorescencia de corazones

Evaluating the presence of hydrocarbon in sands interbedded with clay laminations below the vertical resolution of resistivity logs is a complex task. Clays, being highly conductive, generate suppression of the resistivity logs, making water saturation calculated using the Archie equation high in ot...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de América
Repositorio:
Lumieres
Idioma:
spa
OAI Identifier:
oai:repository.uamerica.edu.co:20.500.11839/8627
Acceso en línea:
https://hdl.handle.net/20.500.11839/8627
Palabra clave:
Imágenes de corazones
Presencia de hidrocarburos
Saturación de agua
Images of hearts
Presence of hydrocarbons
Water saturation
Tesis y disertaciones académicas
Rights
License
Atribución – No comercial
Description
Summary:Evaluating the presence of hydrocarbon in sands interbedded with clay laminations below the vertical resolution of resistivity logs is a complex task. Clays, being highly conductive, generate suppression of the resistivity logs, making water saturation calculated using the Archie equation high in otherwise potentially productive zones. Other models such as Poupon, Waxman-Smits or Simandoux require knowledge of the electrical properties of clays from laboratory measurements or calibration in thick end-member shales representative of the laminations. Recent advances in machine learning algorithms and the availability of image processing modules in Python suggest training borehole logs to recognize variations in ultraviolet (UV) fluorescence core images as a promising way to recognize the presence of hydrocarbons in complex reservoirs. In this paper, we propose a new method based on Machine Learning, analogous to the use of facial recognition algorithms, to predict the complex relationship between the presence of hydrocarbon in laminated sands and basic well log measurements without using any explicit analytical expressions.