Concept attribute labeling and context-aware named entity recognition in electronic health records
Extracting valuable knowledge from Electronic Health Records (EHR) represents a challenging task due to the presence of both structured and unstructured data, including codified fields, images and test results. Narrative text in particular contains a variety of notes which are diverse in language an...
- Autores:
-
Pomares-Quimbaya, Alexandra
González, Rafael A.
Muñoz, Óscar
Garcia-Pena, A.A.
Daza Rodríguez, Julián Camilo
Sierra Múnera, Alejandro
Labbé, Cyril
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2020
- Institución:
- Pontificia Universidad Javeriana
- Repositorio:
- Repositorio Universidad Javeriana
- Idioma:
- N/A
- OAI Identifier:
- oai:repository.javeriana.edu.co:10554/57112
- Acceso en línea:
- http://hdl.handle.net/10554/57112
http://dx.doi.org/10.4018/978-1-7998-1204-3.ch017
- Palabra clave:
- Rights
- License
- Atribución-NoComercial 4.0 Internacional
id |
JAVERIANA2_0a5fe1e42c54edf97909fb6f024d5717 |
---|---|
oai_identifier_str |
oai:repository.javeriana.edu.co:10554/57112 |
network_acronym_str |
JAVERIANA2 |
network_name_str |
Repositorio Universidad Javeriana |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Concept attribute labeling and context-aware named entity recognition in electronic health records |
title |
Concept attribute labeling and context-aware named entity recognition in electronic health records |
spellingShingle |
Concept attribute labeling and context-aware named entity recognition in electronic health records |
title_short |
Concept attribute labeling and context-aware named entity recognition in electronic health records |
title_full |
Concept attribute labeling and context-aware named entity recognition in electronic health records |
title_fullStr |
Concept attribute labeling and context-aware named entity recognition in electronic health records |
title_full_unstemmed |
Concept attribute labeling and context-aware named entity recognition in electronic health records |
title_sort |
Concept attribute labeling and context-aware named entity recognition in electronic health records |
dc.creator.fl_str_mv |
Pomares-Quimbaya, Alexandra González, Rafael A. Muñoz, Óscar Garcia-Pena, A.A. Daza Rodríguez, Julián Camilo Sierra Múnera, Alejandro Labbé, Cyril |
dc.contributor.author.none.fl_str_mv |
Pomares-Quimbaya, Alexandra González, Rafael A. Muñoz, Óscar Garcia-Pena, A.A. Daza Rodríguez, Julián Camilo Sierra Múnera, Alejandro Labbé, Cyril |
dc.contributor.corporatename.none.fl_str_mv |
Pontificia Universidad Javeriana. Facultad de Medicina. Departamento de Medicina Interna. Cardiología Pontificia Universidad Javeriana. Facultad de Medicina. Departamento de Medicina Interna. Medicina Interna |
dc.contributor.javerianateacher.none.fl_str_mv |
Garcia-Pena, A.A. Muñoz, Óscar |
description |
Extracting valuable knowledge from Electronic Health Records (EHR) represents a challenging task due to the presence of both structured and unstructured data, including codified fields, images and test results. Narrative text in particular contains a variety of notes which are diverse in language and detail, as well as being full of ad hoc terminology, including acronyms and jargon, which is especially challenging in non-English EHR, where there is a dearth of annotated corpora or trained case sets. This paper proposes an approach for NER and concept attribute labeling for EHR that takes into consideration the contextual words around the entity of interest to determine its sense. The approach proposes a composition method of three different NER methods, together with the analysis of the context (neighboring words) using an ensemble classification model. This contributes to disambiguate NER, as well as labeling the concept as confirmed, negated, speculative, pending or antecedent. Results show an improvement of the recall and a limited impact on precision for the NER process. |
publishDate |
2020 |
dc.date.created.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-09-13T13:47:20Z |
dc.date.available.none.fl_str_mv |
2021-09-13T13:47:20Z |
dc.type.local.spa.fl_str_mv |
Capítulo de libro |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
format |
http://purl.org/coar/resource_type/c_3248 |
dc.identifier.isbn.spa.fl_str_mv |
9781799812043 / 9781799812050 (Electrónico) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10554/57112 |
dc.identifier.doi.spa.fl_str_mv |
http://dx.doi.org/10.4018/978-1-7998-1204-3.ch017 |
dc.identifier.instname.spa.fl_str_mv |
instname:Pontificia Universidad Javeriana |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional - Pontificia Universidad Javeriana |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.javeriana.edu.co |
identifier_str_mv |
9781799812043 / 9781799812050 (Electrónico) instname:Pontificia Universidad Javeriana reponame:Repositorio Institucional - Pontificia Universidad Javeriana repourl:https://repository.javeriana.edu.co |
url |
http://hdl.handle.net/10554/57112 http://dx.doi.org/10.4018/978-1-7998-1204-3.ch017 |
dc.language.iso.spa.fl_str_mv |
N/A |
language |
N/A |
dc.relation.ispartofbook.spa.fl_str_mv |
Data Analytics in Medicine: Concepts, Methodologies, Tools, and Applications |
dc.rights.licence.*.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.spa.fl_str_mv |
PDF |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IGI Global |
institution |
Pontificia Universidad Javeriana |
bitstream.url.fl_str_mv |
http://repository.javeriana.edu.co/bitstream/10554/57112/3/Concept-Attribute-Labeling-and-Context-Aware-Named.pdf http://repository.javeriana.edu.co/bitstream/10554/57112/2/license.txt http://repository.javeriana.edu.co/bitstream/10554/57112/4/Concept-Attribute-Labeling-and-Context-Aware-Named.pdf.jpg |
bitstream.checksum.fl_str_mv |
f2c5a3379f2f52def4c3303763bf4fa8 2070d280cc89439d983d9eee1b17df53 9543e93e29037f1a9ae9acb4474e23a6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Pontificia Universidad Javeriana |
repository.mail.fl_str_mv |
repositorio@javeriana.edu.co |
_version_ |
1814337521080860672 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/http://purl.org/coar/access_right/c_abf2Pomares-Quimbaya, AlexandraGonzález, Rafael A.Muñoz, ÓscarGarcia-Pena, A.A.Daza Rodríguez, Julián CamiloSierra Múnera, AlejandroLabbé, CyrilPontificia Universidad Javeriana. Facultad de Medicina. Departamento de Medicina Interna. CardiologíaPontificia Universidad Javeriana. Facultad de Medicina. Departamento de Medicina Interna. Medicina InternaGarcia-Pena, A.A.Muñoz, Óscar2021-09-13T13:47:20Z2021-09-13T13:47:20Z20209781799812043 / 9781799812050 (Electrónico)http://hdl.handle.net/10554/57112http://dx.doi.org/10.4018/978-1-7998-1204-3.ch017instname:Pontificia Universidad Javerianareponame:Repositorio Institucional - Pontificia Universidad Javerianarepourl:https://repository.javeriana.edu.coPDFapplication/pdfN/AIGI GlobalConcept attribute labeling and context-aware named entity recognition in electronic health recordsCapítulo de librohttp://purl.org/coar/resource_type/c_3248Extracting valuable knowledge from Electronic Health Records (EHR) represents a challenging task due to the presence of both structured and unstructured data, including codified fields, images and test results. Narrative text in particular contains a variety of notes which are diverse in language and detail, as well as being full of ad hoc terminology, including acronyms and jargon, which is especially challenging in non-English EHR, where there is a dearth of annotated corpora or trained case sets. This paper proposes an approach for NER and concept attribute labeling for EHR that takes into consideration the contextual words around the entity of interest to determine its sense. The approach proposes a composition method of three different NER methods, together with the analysis of the context (neighboring words) using an ensemble classification model. This contributes to disambiguate NER, as well as labeling the concept as confirmed, negated, speculative, pending or antecedent. Results show an improvement of the recall and a limited impact on precision for the NER process.https://orcid.org/0000-0002-3606-2102https://orcid.org/0000-0001-5401-0018Data Analytics in Medicine: Concepts, Methodologies, Tools, and ApplicationsORIGINALConcept-Attribute-Labeling-and-Context-Aware-Named.pdfConcept-Attribute-Labeling-and-Context-Aware-Named.pdfCapítulo de libroapplication/pdf1046035http://repository.javeriana.edu.co/bitstream/10554/57112/3/Concept-Attribute-Labeling-and-Context-Aware-Named.pdff2c5a3379f2f52def4c3303763bf4fa8MD53metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82603http://repository.javeriana.edu.co/bitstream/10554/57112/2/license.txt2070d280cc89439d983d9eee1b17df53MD52open accessTHUMBNAILConcept-Attribute-Labeling-and-Context-Aware-Named.pdf.jpgConcept-Attribute-Labeling-and-Context-Aware-Named.pdf.jpgIM Thumbnailimage/jpeg7442http://repository.javeriana.edu.co/bitstream/10554/57112/4/Concept-Attribute-Labeling-and-Context-Aware-Named.pdf.jpg9543e93e29037f1a9ae9acb4474e23a6MD54open access10554/57112oai:repository.javeriana.edu.co:10554/571122023-07-11 16:02:04.627Repositorio Institucional - Pontificia Universidad Javerianarepositorio@javeriana.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIERFIExPUyBBVVRPUkVTIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTy4KClBhcnRlIDEuIFTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBnZW5lcmFsIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwKQ29tbyB0aXR1bGFyIChlcykgZGVsIGRlcmVjaG8gZGUgYXV0b3IsIGNvbmZpZXJvIChlcmltb3MpIGEgbGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBKYXZlcmlhbmEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhcsOhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOgphKSAgICAgIEVzdGFyw6EgdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSBkZSBpbmNsdXNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLCBwb3IgdW4gcGxhem8gZGUgNSBhw7FvcywgcXVlIHNlcsOhbiBwcm9ycm9nYWJsZXMgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gcXVlIGR1cmUgZWwgZGVyZWNobyBwYXRyaW1vbmlhbCBkZWwgYXV0b3IuIEVsIGF1dG9yIHBvZHLDoSBkYXIgcG9yIHRlcm1pbmFkYSBsYSBsaWNlbmNpYSBzb2xpY2l0w6FuZG9sbyBhIGxhIFVuaXZlcnNpZGFkIHBvciBlc2NyaXRvLgpiKSAgICAgIEF1dG9yaXphIGEgbGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBKYXZlcmlhbmEgYSBwdWJsaWNhciBsYSBvYnJhIGVuIGRpZ2l0YWwsIGNvbm9jaWVuZG8gcXVlLCBkYWRvIHF1ZSBzZSBwdWJsaWNhIGVuIEludGVybmV0LCBwb3IgZXN0ZSBoZWNobyBjaXJjdWxhIGNvbiB1biBhbGNhbmNlIG11bmRpYWwuCmMpICAgICAgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvIHJlbnVuY2lhbiBhIHJlY2liaXIgYmVuZWZpY2lvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBkZSB1c28gY29uIHF1ZSBzZSBwdWJsaWNhLgpkKSAgICAgIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBKYXZlcmlhbmEgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBKYXZlcmlhbmEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uCmUpICAgICAgQXV0b3Jpem8gKGFtb3MpIGEgbGEgVW5pdmVyc2lkYWQgcGFyYSBpbmNsdWlyIGxhIG9icmEgZW4gbG9zIMOtbmRpY2VzIHkgYnVzY2Fkb3JlcyBxdWUgZXN0aW1lbiBuZWNlc2FyaW9zIHBhcmEgcHJvbW92ZXIgc3UgZGlmdXNpw7NuLgpmKSAgICAgIEFjZXB0byAoYW1vcykgcXVlIGxhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgSmF2ZXJpYW5hIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLgpnKSAgICAgIEF1dG9yaXpvIChhbW9zKSBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGF1dG9yaXphZG9zIGVuIGxvcyBsaXRlcmFsZXMgYW50ZXJpb3JlcyBiYWpvIGxvcyBsw61taXRlcyBkZWZpbmlkb3MgcG9yIGxhIHVuaXZlcnNpZGFkIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgUFVKICwgY3V5byB0ZXh0byBjb21wbGV0byBzZSBwdWVkZSBjb25zdWx0YXIgZW4gaHR0cDovL3JlcG9zaXRvcnkuamF2ZXJpYW5hLmVkdS5jby8KClNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBQT05USUZJQ0lBIFVOSVZFUlNJREFEIEpBVkVSSUFOQSwgRUwgKExPUykgQVVUT1IoRVMpIEdBUkFOVElaQShNT1MpIFFVRSBTRSBIQSBDVU1QTElETyBDT04gTE9TIERFUkVDSE9TIFkgT0JMSUdBQ0lPTkVTIFJFUVVFUklET1MgUE9SIEVMIFJFU1BFQ1RJVk8gQ09OVFJBVE8gTyBBQ1VFUkRPLgo= |