Avances en la aplicación de la ingeniería a la valoración de personas con la enfermedad de Parkinson

Los tres volúmenes previos de Ingeniería y Salud han reportado resultados en la investigación de las posibilidades de uso de dispositivos no especializados, más propios de los juegos electrónicos, como herramientas de captura de movimientos capaces de producir datos cuantitativos que faciliten la ev...

Full description

Autores:
García Peña, Melissa
Herrán Sánchez, Carlos Alfonso
Ordoñez Burbano, Jonatan
Urcuqui López, Christian Camilo
Navarro Cadavid, Andrés
Tipo de recurso:
Book
Fecha de publicación:
2023
Institución:
Universidad ICESI
Repositorio:
Repositorio ICESI
Idioma:
spa
OAI Identifier:
oai:repository.icesi.edu.co:10906/130436
Acceso en línea:
https://hdl.handle.net/10906/130436
https://doi.org/10.18046/EUI/iys.4.2023
Palabra clave:
Parkinson Disease
Early Diagnosis
Medical Informatics Application
Parkinson Disease
Early Diagnosis
Medical Informatics Application
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id ICESI2_e3c2c457260ccc5f2793e14a1a66a6c6
oai_identifier_str oai:repository.icesi.edu.co:10906/130436
network_acronym_str ICESI2
network_name_str Repositorio ICESI
repository_id_str
dc.title.spa.fl_str_mv Avances en la aplicación de la ingeniería a la valoración de personas con la enfermedad de Parkinson
dc.title.eng.fl_str_mv Advances in the application of engineering to the assessment of people with Parkinson’s disease.
title Avances en la aplicación de la ingeniería a la valoración de personas con la enfermedad de Parkinson
spellingShingle Avances en la aplicación de la ingeniería a la valoración de personas con la enfermedad de Parkinson
Parkinson Disease
Early Diagnosis
Medical Informatics Application
Parkinson Disease
Early Diagnosis
Medical Informatics Application
title_short Avances en la aplicación de la ingeniería a la valoración de personas con la enfermedad de Parkinson
title_full Avances en la aplicación de la ingeniería a la valoración de personas con la enfermedad de Parkinson
title_fullStr Avances en la aplicación de la ingeniería a la valoración de personas con la enfermedad de Parkinson
title_full_unstemmed Avances en la aplicación de la ingeniería a la valoración de personas con la enfermedad de Parkinson
title_sort Avances en la aplicación de la ingeniería a la valoración de personas con la enfermedad de Parkinson
dc.creator.fl_str_mv García Peña, Melissa
Herrán Sánchez, Carlos Alfonso
Ordoñez Burbano, Jonatan
Urcuqui López, Christian Camilo
Navarro Cadavid, Andrés
dc.contributor.author.none.fl_str_mv García Peña, Melissa
Herrán Sánchez, Carlos Alfonso
Ordoñez Burbano, Jonatan
Urcuqui López, Christian Camilo
Navarro Cadavid, Andrés
dc.subject.proposal.spa.fl_str_mv Parkinson Disease
Early Diagnosis
Medical Informatics Application
topic Parkinson Disease
Early Diagnosis
Medical Informatics Application
Parkinson Disease
Early Diagnosis
Medical Informatics Application
dc.subject.proposal.eng.fl_str_mv Parkinson Disease
Early Diagnosis
Medical Informatics Application
description Los tres volúmenes previos de Ingeniería y Salud han reportado resultados en la investigación de las posibilidades de uso de dispositivos no especializados, más propios de los juegos electrónicos, como herramientas de captura de movimientos capaces de producir datos cuantitativos que faciliten la evaluación clínica que realizan los profesionales de la salud para el diagnóstico y monitoreo de la evolución de la enfermedad de Parkinson. Este cuarto volumen sigue esa línea, en él se reportan dos temas: el primero, la constatación cuantitativa de la relación que existe entre las extremidades —inferiores y superiores— de las personas que padecen Parkinson, con lo que se abre una ruta para la exploración de esta relación que sirve de base para el concepto de inferencia causal; el segundo, el diseño de una herramienta que le permite al personal médico manejar la información técnica que arrojan las pruebas de marcha realizadas con e-motion, el sistema desarrollado por los proyectos previamente reportados, sin necesidad del apoyo de ingenieros, con lo que se reducen tanto los tiempos de entrega de datos útiles como los costos asociados a esta tarea.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-03-01
dc.date.accessioned.none.fl_str_mv 2025-08-12T19:28:16Z
dc.date.available.none.fl_str_mv 2025-08-12T19:28:16Z
dc.type.none.fl_str_mv book
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.local.none.fl_str_mv Libro
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/book
format http://purl.org/coar/resource_type/c_2f33
status_str publishedVersion
dc.identifier.isbn.none.fl_str_mv 9786287630062
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10906/130436
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18046/EUI/iys.4.2023
dc.identifier.instname.none.fl_str_mv instname:Universidad Icesi
dc.identifier.reponame.none.fl_str_mv reponame:Biblioteca Digital
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.icesi.edu.co/
identifier_str_mv 9786287630062
instname:Universidad Icesi
reponame:Biblioteca Digital
repourl:https://repository.icesi.edu.co/
url https://hdl.handle.net/10906/130436
https://doi.org/10.18046/EUI/iys.4.2023
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv T. A. L. Wren, C. Lening, S. A. Rethlefsen, and R. M. Kay, “Impact of gait analysis on correction of excessive hip internal rotation in ambulatory children with cerebral palsy: A randomized controlled trial,” Dev. Med. Child Neurol., vol. 55, no. 10, pp. 919–925, 2013, doi: 10.1111/dmcn.12184.
B. Munoz, Y. J. Castano-Pino, J. David Arango Paredes, and A. Na - varro, “Automated gait analysis using a kinect camera and wavelets,” 2018 IEEE 20th Int. Conf. e-Health Networking, Appl. Serv. Heal. 2018, pp. 1–5, 2018, doi: 10.1109/HealthCom.2018.8531161.
“GAITRite | World Leader in Temporospatial Gait Analysis.” ht - tps://www.gaitrite.com/ (accessed Apr. 18, 2021).
“Vicon | Award Winning Motion Capture Systems.” https://www. vicon.com/ (accessed Apr. 18, 2021).
J. D. Mejia-Trujillo et al., “KinectTM and Intel RealSenseTM D435 comparison: a preliminary study for motion analysis,” 2019 IEEE Int. Conf. E-Health Networking, Appl. Serv. Heal. 2019, no. Octo - ber, pp. 3–7, 2019, doi: 10.1109/HealthCom46333.2019.9009433.
J. A. Albert, V. Owolabi, A. Gebel, C. M. Brahms, U. Granacher, and B. Arnrich, “Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: A pilot study,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–22, 2020, doi: 10.3390/s20185104.
A. Muro-de-la-Herran, B. García-Zapirain, and A. Méndez-Zorrilla, “Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications,” Sensors (Switzerland), vol. 14, no. 2, pp. 3362–3394, 2014, doi: 10.3390/s140203362.
R. A. Noble and R. White, “Visualisation of gait analysis data,” Proc. Int. Conf. Inf. Vis., vol. 2005, pp. 247–252, 2005, doi: 10.1109/ IV.2005.139.
“Kinect - Windows app development.” https://developer.microsoft. com/en-us/windows/kinect/ (accessed Apr. 18, 2021).
A. P. Rocha, H. Choupina, J. M. Fernandes, M. J. Rosas, R. Vaz, and J. P. S. Cunha, “Parkinson’s disease assessment based on gait analy - sis using an innovative RGB-D camera system,” 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC 2014, pp. 3126–3129, 2014, doi: 10.1109/EMBC.2014.6944285.
J. D. Arango Paredes, B. Muñoz, W. Agredo, Y. Ariza-Araújo, J. L. Orozco, and A. Navarro, “A reliability assessment softwa - re using Kinect to complement the clinical evaluation of Parkin - son’s disease,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2015-Novem, pp. 6860–6863, 2015, doi: 10.1109/ EMBC.2015.7319969.
M. Unser and A. Aldroubi, “A review of wavelets in biomedical applications,” Proc. IEEE, vol. 84, no. 4, pp. 626–638, 1996, doi: 10.1109/5.488704.
T. Chau, “A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods,” Gait Posture, vol. 13, no. 2, pp. 102–120, 2001, doi: 10.1016/S0966-6362(00)00095-3.
K. Aminian, B. Najafi, C. Büla, P. F. Leyvraz, and P. Robert, “Spa - tio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes,” J. Biomech., vol. 35, no. 5, pp. 689– 699, 2002, doi: 10.1016/S0021-9290(02)00008-8.
“Parallel Computing Toolbox - MATLAB.” https://www.mathwor - ks.com/products/parallel-computing.html (accessed May 17, 2022).
A. Marowka, “On parallel software engineering education using python,” Educ. Inf. Technol., vol. 23, no. 1, pp. 357–372, 2018, doi: 10.1007/s10639-017-9607-0.
B.-C. Wang, “DIGITAL SIGNAL PROCESSING TECHNIQUES AND APPLICATIONS IN RADAR IMAGE PROCESSING.”
“Wavelet Transforms - an overview | ScienceDirect Topics.” ht - tps://www.sciencedirect.com/topics/mathematics/wavelet-trans - forms (accessed May 09, 2021).
“Algoritmo para detección de vibraciones anormales en maquina - rias utilizando la transformada wavelet.” https://www.researchgate. net/publication/37613214_Algoritmo_para_deteccion_de_vibra - ciones_anormales_en_maquinarias_utilizando_la_transformada_ wavelet (accessed May 09, 2021).
J. O. Smith III, Continuous wavelt transform, in Spectral audio signal processing', W3K Publishing, 2011. https://ccrma.stanford. edu/~jos/sasp/Continuous_Wavelet_Transform.html
M. J. Lai, “Popular wavelet families and filters and their use,” in Computational Complexity: Theory, Techniques, and Applications, vol. 9781461418009, Springer New York, 2012, pp. 2168–2225.
S. Zope-Chaudhari, P. Venkatachalam, and K. M. Buddhiraju, “As - sessment of distortion in watermarked geospatial vector data using different wavelets,” Geo-Spatial Inf. Sci., vol. 18, no. 2–3, pp. 124– 133, Jul. 2015, doi: 10.1080/10095020.2015.1071064.
Y. J. Castaño, A. Navarro, J. D. Arango, B. E. Muñoz, J. L. Orozco, and J. Valderrama, “Gait and arm swing analysis measurements for patients diagnosed with Parkinson’s disease, using digital signal pro - cessing and Kinect,” CEUR Workshop Proc., vol. 2178, pp. 71–74, 2018.
S. H. Roosta, “Parallel Processing and Parallel Algorithms,” Parallel Process. Parallel Algorithms, 2000, doi: 10.1007/978-1-4612-1220-1.
M. I. Capel, A. J. Tomeu, and A. G. Salguero, “Teaching concu - rrent and parallel programming by patterns: An interactive ICT approach,” J. Parallel Distrib. Comput., vol. 105, pp. 42–52, Jul. 2017, doi: 10.1016/J.JPDC.2017.01.010.
A. Igor Anatolyevich Kalmykov, Konstantin Aleksandrovich Katkov, Naumenko Daniil Olegovich and A. V. M. Bronislavovich Sarkisov, “Parallel modular technologies in digital signal processing,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.
C. J. Hughes, “Single-instruction multiple-data execution,” Syn - th. Lect. Comput. Archit., vol. 32, pp. 1–121, 2015, doi: 10.2200/ S00647ED1V01Y201505CAC032.
C. Shih-Lin Chien, L. Shinn-Zong, L. Chung-Chao, H. Yu-Loong, L. Chi-Wei, Ch. Shin-Yuan, “The efficacy of quantitative gait analy - sis by the GAITRite system in evaluation of parkinsonian bradyki - nesia,”Parkinson and related Disorders, Vol. 12, No. 7, pp. 438-442; 2006. https://doi.org/10.1016/j.parkreldis.2006.04.004
A. Pfister, A. M. West, S, Bronner, J. A. Noah, “Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analy - sis,” J Med Eng Technol, Vol. 38, No. 5, pp. 274, 280; 2014. doi: 10.3109/03091902.2014.909540.
J. Camilo and V. Correa, “Design and Implementation of a Portable Device for Real Time Analysis of Speech of People with Parkinson’s Disease,” 2013.
A. Procházka, O. Vyšata, M. Vališ, O. Tupa, M. Schätz, and V. Ma - rík, “Bayesian classification and analysis of gait disorders using ima - ge and depth sensors of Microsoft Kinect,” Digit. Signal Process. A Rev. J., vol. 47, pp. 169–177, 2015, doi: 10.1016/j.dsp.2015.05.011.
O. Tupa et al., “Motion tracking and gait feature estimation for re - cognising Parkinson’s disease using MS Kinect,” Biomed. Eng. Onli - ne, vol. 14, no. 1, pp. 1–20, 2015, doi: 10.1186/s12938-015-0092-7.
S. van der Walt, J. I. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, & The Scikit-Image Con - tributors, “Scikit-image: image processing in Python, PeerJ 2:e453; 2014. https://doi.org/10.7717/peerj.453
N. B. Ruparelia, “Software development lifecycle models,” ACM SIGSOFT Softw. Eng. Notes, vol. 35, no. 3, pp. 8–13, May 2010, doi: 10.1145/1764810.1764814.
M. Naveenkumar and S. Domnic, “Vector Quantization based Pairwise Joint Distance Maps (VQ-PJDM) for 3D Action Recog - nition,” Procedia Comput. Sci., vol. 133, pp. 27–36, 2018, doi: 10.1016/J.PROCS.2018.07.005.
T. W. Ng, T. L. Tay, and S. W. Khor, “Iris recognition using ra - pid Haar wavelet decomposition,” ICSPS 2010 - Proc. 2010 2nd Int. Conf. Signal Process. Syst., vol. 1, 2010, doi: 10.1109/ ICSPS.2010.5555246.
N. Ahmadi, N. Ahmadi, and M. Nilashi, “Iris Texture Recognition based on Multilevel 2-D Haar Wavelet Decomposition and Ham - ming Distance Approach,” J. Soft Comput. Decis. Support Syst., vol. 5, no. 3, pp. 16–20, Jun. 2018, Accessed: May 16, 2022. [Online]. Available: http://jscdss.com/index.php/files/article/view/168.
J. M. Redondo and F. Ortin, “A Comprehensive Evaluation of Com - mon Python Implementations,” IEEE Softw., vol. 32, no. 4, pp. 76– 84, Jul. 2015, doi: 10.1109/MS.2014.104.
R. Md Saad, M. Z. Ahmad, M. S. Abu, and M. S. Jusoh, “Hamming distance method with subjective and objective weights for personnel selection,” Sci. World J., vol. 2014, 2014, doi: 10.1155/2014/865495.
M. Norouzi, D. J. Fleet, and R. Salakhutdinov, “Hamming distance metric learning,” Adv. Neural Inf. Process. Syst., vol. 2, pp. 1061– 1069, 2012.
P. Schober and L. A. Schwarte, “Correlation coefficients: Appro - priate use and interpretation,” Anesth. Analg., vol. 126, no. 5, pp. 1763–1768, 2018, doi: 10.1213/ANE.0000000000002864.
M. Ousmer, J. Vanderdonckt, and S. Buraga, “An ontology for reasoning on body-based gestures,” Proc. ACM SIGCHI Symp. Eng. Interact. Comput. Syst. EICS 2019, Jun. 2019, doi: 10.1145/3319499.3328238.
V. F. Pacheco, “Microservice Patterns and Best Practices : Explore patterns like CQRS and event sourcing to create scalable, maintai - nable, and testable microservices.,” p. 357, 2018.
A. J. Fernández-García, L. Iribarne, A. Corral, J. Criado, and J. Z. Wang, “A microservice-based architecture for enhancing the user experience in cross-device distributed mashup UIs with multiple forms of interaction,” Univers. Access Inf. Soc., vol. 18, no. 4, pp. 747–770, Nov. 2019, doi: 10.1007/S10209-017-0606-0.
E. Stratmann, J. Ousterhout, and S. Madan, “Integrating Long Po - lling with an MVC Web Framework.”
T. Fadhilah Iskandar, M. Lubis, T. Fabrianti Kusumasari, and A. Ridho Lubis, “Comparison between client-side and server-side ren - dering in the web development,” IOP Conf. Ser. Mater. Sci. Eng., vol. 801, no. 1, 2020, doi: 10.1088/1757-899X/801/1/012136.
“React – A JavaScript library for building user interfaces.” https:// en.reactjs.org/ (accessed Nov. 25, 2021).
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 116 páginas
dc.format.medium.spa.fl_str_mv Digital
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Cali de Lat: 03 24 00 N degrees minutes Lat: 3.4000 decimal degrees Long: 076 30 00 W degrees minutes Long: -76.5000 decimal degrees.
dc.publisher.none.fl_str_mv Universidad Icesi
dc.publisher.place.none.fl_str_mv Santiago de cali
publisher.none.fl_str_mv Universidad Icesi
institution Universidad ICESI
bitstream.url.fl_str_mv https://repository.icesi.edu.co/bitstreams/31a913af-0421-4f12-ae15-7f223bf08140/download
https://repository.icesi.edu.co/bitstreams/e45b1b22-2315-40a1-b868-82c2508a8c52/download
https://repository.icesi.edu.co/bitstreams/0f67e492-7f82-4878-9d90-f757d27ac307/download
bitstream.checksum.fl_str_mv b71ae0ef9eb9b8afc97480006f5fd3b3
3b6ce8e9e36c89875e8cf39962fe8920
bb9bdc0b3349e4284e09149f943790b4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital - Universidad Icesi
repository.mail.fl_str_mv adquisicion-bib@listas.icesi.edu.co
_version_ 1841720170838491136
spelling García Peña, Melissad65f1f41-0784-4638-a663-628e8f4641c9-1Herrán Sánchez, Carlos Alfonso45d375f0-93b6-42a2-aa8e-d859695970be-1Ordoñez Burbano, Jonatan64fff9a3-34b2-4a59-98ff-1710fab08350-1Urcuqui López, Christian Camilo4f9f5cee-ba65-4777-a38b-a7e7123a61a6600Navarro Cadavid, Andrés8f076de0-dec0-4a2b-a0ef-b8c8fef2d3f4600Cali de Lat: 03 24 00 N degrees minutes Lat: 3.4000 decimal degrees Long: 076 30 00 W degrees minutes Long: -76.5000 decimal degrees.2025-08-12T19:28:16Z2025-08-12T19:28:16Z2023-03-019786287630062https://hdl.handle.net/10906/130436https://doi.org/10.18046/EUI/iys.4.2023instname:Universidad Icesireponame:Biblioteca Digitalrepourl:https://repository.icesi.edu.co/Los tres volúmenes previos de Ingeniería y Salud han reportado resultados en la investigación de las posibilidades de uso de dispositivos no especializados, más propios de los juegos electrónicos, como herramientas de captura de movimientos capaces de producir datos cuantitativos que faciliten la evaluación clínica que realizan los profesionales de la salud para el diagnóstico y monitoreo de la evolución de la enfermedad de Parkinson. Este cuarto volumen sigue esa línea, en él se reportan dos temas: el primero, la constatación cuantitativa de la relación que existe entre las extremidades —inferiores y superiores— de las personas que padecen Parkinson, con lo que se abre una ruta para la exploración de esta relación que sirve de base para el concepto de inferencia causal; el segundo, el diseño de una herramienta que le permite al personal médico manejar la información técnica que arrojan las pruebas de marcha realizadas con e-motion, el sistema desarrollado por los proyectos previamente reportados, sin necesidad del apoyo de ingenieros, con lo que se reducen tanto los tiempos de entrega de datos útiles como los costos asociados a esta tarea.The three previous volumes of Engineering and Health have reported research results on the possibilities of using non-specialized devices, more typical of electronic games, as motion capture tools capable of producing quantitative data that facilitate clinical evaluation by health professionals for the diagnosis and monitoring of Parkinson's disease evolution. This fourth volume follows that line, reporting on two topics: the first, the quantitative verification of the relationship between the lower and upper extremities of people with Parkinson's, which opens a path for the exploration of this relationship serving as a basis for the concept of causal inference; the second, the design of a tool that allows medical personnel to manage the technical information yielded by gait tests performed with e-motion, the system developed by previously reported projects, without the need for engineer support, thereby reducing both the useful data delivery times and the costs associated with this task.Nota del editor -- Presentación -- Modelo que relaciona datos provenientes de las extremidades de un paciente con posible diagnóstico de la enfermedad de Parkinson -- 1. Introducción -- 2. Marco teórico -- 3. Estado del arte -- 4. Método -- 5. La investigación -- 6. Hallazgos -- conclusiones y trabajo futuro -- 7. Referencias -- Índice de tablas -- Índice de figuras -- Anexo 1. Exploración del dataset -- Anexo 2. Diccionario de variables de balanceo de brazos y marcha -- Software automatizado para análisis de marcha que usa Kinect v1 y wavelets como complemento a la evaluación clínica de la enfermedad de Parkinson -- 1. Introducción -- 2. Marco teórico -- 3. Estado del arte -- 4. Metodología -- 5. Resultados -- 6. Discusión -- 7. Conclusiones y trabajo futuro -- 8. Referencias -- Índice de tablas -- Índice de figuras116 páginasDigitalapplication/pdfspaUniversidad IcesiSantiago de caliEL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos Toda persona que consulte ya sea la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el autor.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Avances en la aplicación de la ingeniería a la valoración de personas con la enfermedad de ParkinsonAdvances in the application of engineering to the assessment of people with Parkinson’s disease.bookhttp://purl.org/coar/resource_type/c_2f33Libroinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/bookTodo PúblicoParkinson DiseaseEarly DiagnosisMedical Informatics ApplicationParkinson DiseaseEarly DiagnosisMedical Informatics ApplicationT. A. L. Wren, C. Lening, S. A. Rethlefsen, and R. M. Kay, “Impact of gait analysis on correction of excessive hip internal rotation in ambulatory children with cerebral palsy: A randomized controlled trial,” Dev. Med. Child Neurol., vol. 55, no. 10, pp. 919–925, 2013, doi: 10.1111/dmcn.12184.B. Munoz, Y. J. Castano-Pino, J. David Arango Paredes, and A. Na - varro, “Automated gait analysis using a kinect camera and wavelets,” 2018 IEEE 20th Int. Conf. e-Health Networking, Appl. Serv. Heal. 2018, pp. 1–5, 2018, doi: 10.1109/HealthCom.2018.8531161.“GAITRite | World Leader in Temporospatial Gait Analysis.” ht - tps://www.gaitrite.com/ (accessed Apr. 18, 2021).“Vicon | Award Winning Motion Capture Systems.” https://www. vicon.com/ (accessed Apr. 18, 2021).J. D. Mejia-Trujillo et al., “KinectTM and Intel RealSenseTM D435 comparison: a preliminary study for motion analysis,” 2019 IEEE Int. Conf. E-Health Networking, Appl. Serv. Heal. 2019, no. Octo - ber, pp. 3–7, 2019, doi: 10.1109/HealthCom46333.2019.9009433.J. A. Albert, V. Owolabi, A. Gebel, C. M. Brahms, U. Granacher, and B. Arnrich, “Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: A pilot study,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–22, 2020, doi: 10.3390/s20185104.A. Muro-de-la-Herran, B. García-Zapirain, and A. Méndez-Zorrilla, “Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications,” Sensors (Switzerland), vol. 14, no. 2, pp. 3362–3394, 2014, doi: 10.3390/s140203362.R. A. Noble and R. White, “Visualisation of gait analysis data,” Proc. Int. Conf. Inf. Vis., vol. 2005, pp. 247–252, 2005, doi: 10.1109/ IV.2005.139.“Kinect - Windows app development.” https://developer.microsoft. com/en-us/windows/kinect/ (accessed Apr. 18, 2021).A. P. Rocha, H. Choupina, J. M. Fernandes, M. J. Rosas, R. Vaz, and J. P. S. Cunha, “Parkinson’s disease assessment based on gait analy - sis using an innovative RGB-D camera system,” 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC 2014, pp. 3126–3129, 2014, doi: 10.1109/EMBC.2014.6944285.J. D. Arango Paredes, B. Muñoz, W. Agredo, Y. Ariza-Araújo, J. L. Orozco, and A. Navarro, “A reliability assessment softwa - re using Kinect to complement the clinical evaluation of Parkin - son’s disease,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2015-Novem, pp. 6860–6863, 2015, doi: 10.1109/ EMBC.2015.7319969.M. Unser and A. Aldroubi, “A review of wavelets in biomedical applications,” Proc. IEEE, vol. 84, no. 4, pp. 626–638, 1996, doi: 10.1109/5.488704.T. Chau, “A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods,” Gait Posture, vol. 13, no. 2, pp. 102–120, 2001, doi: 10.1016/S0966-6362(00)00095-3.K. Aminian, B. Najafi, C. Büla, P. F. Leyvraz, and P. Robert, “Spa - tio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes,” J. Biomech., vol. 35, no. 5, pp. 689– 699, 2002, doi: 10.1016/S0021-9290(02)00008-8.“Parallel Computing Toolbox - MATLAB.” https://www.mathwor - ks.com/products/parallel-computing.html (accessed May 17, 2022).A. Marowka, “On parallel software engineering education using python,” Educ. Inf. Technol., vol. 23, no. 1, pp. 357–372, 2018, doi: 10.1007/s10639-017-9607-0.B.-C. Wang, “DIGITAL SIGNAL PROCESSING TECHNIQUES AND APPLICATIONS IN RADAR IMAGE PROCESSING.”“Wavelet Transforms - an overview | ScienceDirect Topics.” ht - tps://www.sciencedirect.com/topics/mathematics/wavelet-trans - forms (accessed May 09, 2021).“Algoritmo para detección de vibraciones anormales en maquina - rias utilizando la transformada wavelet.” https://www.researchgate. net/publication/37613214_Algoritmo_para_deteccion_de_vibra - ciones_anormales_en_maquinarias_utilizando_la_transformada_ wavelet (accessed May 09, 2021).J. O. Smith III, Continuous wavelt transform, in Spectral audio signal processing', W3K Publishing, 2011. https://ccrma.stanford. edu/~jos/sasp/Continuous_Wavelet_Transform.htmlM. J. Lai, “Popular wavelet families and filters and their use,” in Computational Complexity: Theory, Techniques, and Applications, vol. 9781461418009, Springer New York, 2012, pp. 2168–2225.S. Zope-Chaudhari, P. Venkatachalam, and K. M. Buddhiraju, “As - sessment of distortion in watermarked geospatial vector data using different wavelets,” Geo-Spatial Inf. Sci., vol. 18, no. 2–3, pp. 124– 133, Jul. 2015, doi: 10.1080/10095020.2015.1071064.Y. J. Castaño, A. Navarro, J. D. Arango, B. E. Muñoz, J. L. Orozco, and J. Valderrama, “Gait and arm swing analysis measurements for patients diagnosed with Parkinson’s disease, using digital signal pro - cessing and Kinect,” CEUR Workshop Proc., vol. 2178, pp. 71–74, 2018.S. H. Roosta, “Parallel Processing and Parallel Algorithms,” Parallel Process. Parallel Algorithms, 2000, doi: 10.1007/978-1-4612-1220-1.M. I. Capel, A. J. Tomeu, and A. G. Salguero, “Teaching concu - rrent and parallel programming by patterns: An interactive ICT approach,” J. Parallel Distrib. Comput., vol. 105, pp. 42–52, Jul. 2017, doi: 10.1016/J.JPDC.2017.01.010.A. Igor Anatolyevich Kalmykov, Konstantin Aleksandrovich Katkov, Naumenko Daniil Olegovich and A. V. M. Bronislavovich Sarkisov, “Parallel modular technologies in digital signal processing,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.C. J. Hughes, “Single-instruction multiple-data execution,” Syn - th. Lect. Comput. Archit., vol. 32, pp. 1–121, 2015, doi: 10.2200/ S00647ED1V01Y201505CAC032.C. Shih-Lin Chien, L. Shinn-Zong, L. Chung-Chao, H. Yu-Loong, L. Chi-Wei, Ch. Shin-Yuan, “The efficacy of quantitative gait analy - sis by the GAITRite system in evaluation of parkinsonian bradyki - nesia,”Parkinson and related Disorders, Vol. 12, No. 7, pp. 438-442; 2006. https://doi.org/10.1016/j.parkreldis.2006.04.004A. Pfister, A. M. West, S, Bronner, J. A. Noah, “Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analy - sis,” J Med Eng Technol, Vol. 38, No. 5, pp. 274, 280; 2014. doi: 10.3109/03091902.2014.909540.J. Camilo and V. Correa, “Design and Implementation of a Portable Device for Real Time Analysis of Speech of People with Parkinson’s Disease,” 2013.A. Procházka, O. Vyšata, M. Vališ, O. Tupa, M. Schätz, and V. Ma - rík, “Bayesian classification and analysis of gait disorders using ima - ge and depth sensors of Microsoft Kinect,” Digit. Signal Process. A Rev. J., vol. 47, pp. 169–177, 2015, doi: 10.1016/j.dsp.2015.05.011.O. Tupa et al., “Motion tracking and gait feature estimation for re - cognising Parkinson’s disease using MS Kinect,” Biomed. Eng. Onli - ne, vol. 14, no. 1, pp. 1–20, 2015, doi: 10.1186/s12938-015-0092-7.S. van der Walt, J. I. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, & The Scikit-Image Con - tributors, “Scikit-image: image processing in Python, PeerJ 2:e453; 2014. https://doi.org/10.7717/peerj.453N. B. Ruparelia, “Software development lifecycle models,” ACM SIGSOFT Softw. Eng. Notes, vol. 35, no. 3, pp. 8–13, May 2010, doi: 10.1145/1764810.1764814.M. Naveenkumar and S. Domnic, “Vector Quantization based Pairwise Joint Distance Maps (VQ-PJDM) for 3D Action Recog - nition,” Procedia Comput. Sci., vol. 133, pp. 27–36, 2018, doi: 10.1016/J.PROCS.2018.07.005.T. W. Ng, T. L. Tay, and S. W. Khor, “Iris recognition using ra - pid Haar wavelet decomposition,” ICSPS 2010 - Proc. 2010 2nd Int. Conf. Signal Process. Syst., vol. 1, 2010, doi: 10.1109/ ICSPS.2010.5555246.N. Ahmadi, N. Ahmadi, and M. Nilashi, “Iris Texture Recognition based on Multilevel 2-D Haar Wavelet Decomposition and Ham - ming Distance Approach,” J. Soft Comput. Decis. Support Syst., vol. 5, no. 3, pp. 16–20, Jun. 2018, Accessed: May 16, 2022. [Online]. Available: http://jscdss.com/index.php/files/article/view/168.J. M. Redondo and F. Ortin, “A Comprehensive Evaluation of Com - mon Python Implementations,” IEEE Softw., vol. 32, no. 4, pp. 76– 84, Jul. 2015, doi: 10.1109/MS.2014.104.R. Md Saad, M. Z. Ahmad, M. S. Abu, and M. S. Jusoh, “Hamming distance method with subjective and objective weights for personnel selection,” Sci. World J., vol. 2014, 2014, doi: 10.1155/2014/865495.M. Norouzi, D. J. Fleet, and R. Salakhutdinov, “Hamming distance metric learning,” Adv. Neural Inf. Process. Syst., vol. 2, pp. 1061– 1069, 2012.P. Schober and L. A. Schwarte, “Correlation coefficients: Appro - priate use and interpretation,” Anesth. Analg., vol. 126, no. 5, pp. 1763–1768, 2018, doi: 10.1213/ANE.0000000000002864.M. Ousmer, J. Vanderdonckt, and S. Buraga, “An ontology for reasoning on body-based gestures,” Proc. ACM SIGCHI Symp. Eng. Interact. Comput. Syst. EICS 2019, Jun. 2019, doi: 10.1145/3319499.3328238.V. F. Pacheco, “Microservice Patterns and Best Practices : Explore patterns like CQRS and event sourcing to create scalable, maintai - nable, and testable microservices.,” p. 357, 2018.A. J. Fernández-García, L. Iribarne, A. Corral, J. Criado, and J. Z. Wang, “A microservice-based architecture for enhancing the user experience in cross-device distributed mashup UIs with multiple forms of interaction,” Univers. Access Inf. Soc., vol. 18, no. 4, pp. 747–770, Nov. 2019, doi: 10.1007/S10209-017-0606-0.E. Stratmann, J. Ousterhout, and S. Madan, “Integrating Long Po - lling with an MVC Web Framework.”T. Fadhilah Iskandar, M. Lubis, T. Fabrianti Kusumasari, and A. Ridho Lubis, “Comparison between client-side and server-side ren - dering in the web development,” IOP Conf. Ser. Mater. Sci. Eng., vol. 801, no. 1, 2020, doi: 10.1088/1757-899X/801/1/012136.“React – A JavaScript library for building user interfaces.” https:// en.reactjs.org/ (accessed Nov. 25, 2021).ORIGINALgarcia_paramentro_parkinson_2023.pdfgarcia_paramentro_parkinson_2023.pdfapplication/pdf5972331https://repository.icesi.edu.co/bitstreams/31a913af-0421-4f12-ae15-7f223bf08140/downloadb71ae0ef9eb9b8afc97480006f5fd3b3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repository.icesi.edu.co/bitstreams/e45b1b22-2315-40a1-b868-82c2508a8c52/download3b6ce8e9e36c89875e8cf39962fe8920MD52LICENSElicense.txtlicense.txttext/plain1748https://repository.icesi.edu.co/bitstreams/0f67e492-7f82-4878-9d90-f757d27ac307/downloadbb9bdc0b3349e4284e09149f943790b4MD5310906/130436oai:repository.icesi.edu.co:10906/1304362025-08-12 14:28:17.996http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repository.icesi.edu.coBiblioteca Digital - Universidad Icesiadquisicion-bib@listas.icesi.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=