Pronóstico de la volatilidad financiera y los shocks de los precios del petróleo en las economías emergentes: un enfoque de frecuencia mixta
En la actualidad la predicción de la volatilidad en los mercados emergentes más específicamente en América latina representa un desafío significativo a causa de la inestabilidad estructural, la calidad de los datos y las relaciones no lineales entre variables macroeconómicas. Teniendo en cuenta lo a...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/45711
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/45711
- Palabra clave:
- Predicción de volatilidad
Mercados emergentes
GARCH-MIDAS
Shocks petroleros
Modelos de riesgo financiero
Volatility forecasting, Emerging markets, GARCH-MIDAS, Oil shocks, financial risk models.
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
EDOCUR2_e3c080da415e686cb1bbc009ee7ad7f4 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/45711 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Pronóstico de la volatilidad financiera y los shocks de los precios del petróleo en las economías emergentes: un enfoque de frecuencia mixta |
dc.title.TranslatedTitle.none.fl_str_mv |
Forecasting Financial Volatility and Oil Price Shocks in Emerging Economies: A Mixed-Frequency Approach |
dc.title.alternative.none.fl_str_mv |
Volatilidad financiera y petróleo en economías emergentes |
title |
Pronóstico de la volatilidad financiera y los shocks de los precios del petróleo en las economías emergentes: un enfoque de frecuencia mixta |
spellingShingle |
Pronóstico de la volatilidad financiera y los shocks de los precios del petróleo en las economías emergentes: un enfoque de frecuencia mixta Predicción de volatilidad Mercados emergentes GARCH-MIDAS Shocks petroleros Modelos de riesgo financiero Volatility forecasting, Emerging markets, GARCH-MIDAS, Oil shocks, financial risk models. |
title_short |
Pronóstico de la volatilidad financiera y los shocks de los precios del petróleo en las economías emergentes: un enfoque de frecuencia mixta |
title_full |
Pronóstico de la volatilidad financiera y los shocks de los precios del petróleo en las economías emergentes: un enfoque de frecuencia mixta |
title_fullStr |
Pronóstico de la volatilidad financiera y los shocks de los precios del petróleo en las economías emergentes: un enfoque de frecuencia mixta |
title_full_unstemmed |
Pronóstico de la volatilidad financiera y los shocks de los precios del petróleo en las economías emergentes: un enfoque de frecuencia mixta |
title_sort |
Pronóstico de la volatilidad financiera y los shocks de los precios del petróleo en las economías emergentes: un enfoque de frecuencia mixta |
dc.contributor.advisor.none.fl_str_mv |
Molina Muñoz, Jesus Enrique Juan Carlos, Espinosa Mendez |
dc.subject.none.fl_str_mv |
Predicción de volatilidad Mercados emergentes GARCH-MIDAS Shocks petroleros Modelos de riesgo financiero |
topic |
Predicción de volatilidad Mercados emergentes GARCH-MIDAS Shocks petroleros Modelos de riesgo financiero Volatility forecasting, Emerging markets, GARCH-MIDAS, Oil shocks, financial risk models. |
dc.subject.keyword.none.fl_str_mv |
Volatility forecasting, Emerging markets, GARCH-MIDAS, Oil shocks, financial risk models. |
description |
En la actualidad la predicción de la volatilidad en los mercados emergentes más específicamente en América latina representa un desafío significativo a causa de la inestabilidad estructural, la calidad de los datos y las relaciones no lineales entre variables macroeconómicas. Teniendo en cuenta lo anterior, los modelos tradicionales como GARCH cuenta con limitaciones más específicamente con su capacidad para capturar la complejidad de los factores que afectan la volatilidad en estos mercados. Como alternativa, el modelo GARCH-MIDAS ha ganado reconocimiento, integrando datos de diferentes frecuencias para mejorar la precisión en el análisis financiero (Serrano Bautista y Núñez Mora, 2021). El analisis de las fluctuasiones en cuanto a los precios del petroleo y los oil shoks resulta puntualmente clave al momento de entender su verdadero impacto en la volatilidad de los mercados financieros emergentes. La alta dependencia de estos paises en los ingresos petroleros y su vulnerabilidas ante las perturbaciones economicas globales los hace especialmente sensibles a estos fenomenos (Chaluisa Ante y Jiménez Silva, 2023). Este estudio indaga en una detallada revisión de literatura sobre el uso del modelo GARCH-MIDAS en mercados emergentes especialmente en América Latina, evaluando su eficacia en la identificación de patrones de volatilidad provocados por los oil shoks. Los resultados indican especialmente que existen incrementos repentinos en los precios del petróleo los cuales tienen efectos positivos y significativos de modelos econométricos más sofisticados para gestionar los riesgos financieros (Barbosa Camargo et al., 2019). Las investigaciones futuras podrían centrarse en el perfecionamiento del modelo GARCH-MIDAS y sus variantes, con el fin de evaluar estrategias de gestión de riesgos en portafolios y a incertidumbre macroeconómica. Además, ampliar los estudios y en economías de América latina y mercados emergentes, sumando a una mayor cooperación internacional, contribuiría significativamente al desarrollo de investigaciones sobre la volatilidad en estos mercados (Mota Aragón et al., 2021). |
publishDate |
2023 |
dc.date.created.none.fl_str_mv |
2023-08-01 |
dc.date.accessioned.none.fl_str_mv |
2025-06-17T14:47:01Z |
dc.date.available.none.fl_str_mv |
2025-06-17T14:47:01Z |
dc.date.embargoEnd.none.fl_str_mv |
info:eu-repo/date/embargoEnd/2027-06-17 |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.spa.none.fl_str_mv |
Artículo |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/45711 |
url |
https://repository.urosario.edu.co/handle/10336/45711 |
dc.language.iso.none.fl_str_mv |
spa eng |
language |
spa eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.acceso.none.fl_str_mv |
Restringido (Temporalmente bloqueado) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International Restringido (Temporalmente bloqueado) http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
dc.format.extent.none.fl_str_mv |
33 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Escuela de Administración |
dc.publisher.program.none.fl_str_mv |
Pregrado en Marketing y Negocios Digitales |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
Alper, C. E., Ardıç, O. P., & Fendoglu, S. (2012). The economics of the Istanbul Stock Exchange. Emerging Markets Review, 13(2), 230- 247. https://doi.org/10.1016/j.ememar.2012.01.004 Barbosa Camargo, M. I., Salazar Sarmiento, A., & Peñaloza Gómez, K. J. (2019). Valoración de riesgo mediante modelos GARCH y simulación Montecarlo: evidencia del mercado accionario colombiano. Semestre Económico, 22(53). https://doi.org/10.22395/seec.v22n53a3 Bernanke, B. S., Gertler, M., & Watson, M. (1997). Systematic monetary policy and the effects of oil price shocks. Brookings Papers on Economic Activity, 1997(1), 91–157. https://doi.org/10.2307/2534702 Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 Bollerslev, T., Engle, R. F., & Nelson, D. B. (1994). ARCH models. Handbook of Econometrics, 4, 2959–3038. https://doi.org/10.1016/S1573-4412(05)80018-2 Chaluisa Ante, E., & Jiménez-Silva, E. (2023). Evaluación de la volatilidad del precio internacional del barril de petróleo y su implicación en los estados financieros de las entidades públicas, caso empresas petroleras, periodos semestrales 2020-2021. 593 Digital Publisher CEIT, 8(3), 955-968. https://doi.org/10.33386/593dp.2023.3.1793 Chen, S.-S., Huang, S., & Lin, T.-Y. (2022). How do oil prices affect emerging market sovereign bond spreads?. Journal of International Money and Finance, 128, 102700. https://doi.org/10.1016/j.jimonfin.2022.102700 Da Silva Souza, R., & de Mattos, L.B. (2023). Macroeconomic effects of oil price shocks on an emerging market economy. Economic Change and Restructuring, 56, 803–824 https://doi.org/10.1007/s10644-022-09445-w Engle, R., & Kelly, B. (2012). Dynamic Equicorrelation. Journal of Business & Economic Statistics, 30(2), 212–228. https://doi.org/10.1080/07350015.2011.652048 Ghysels, E., Santa-Clara, P., & Valkanov, R. (2006). Predicting volatility: Getting the most out of return data sampled at different frequencies. Journal of Econometrics, 131(1–2), 59–95. https://doi.org/10.1016/j.jeconom.2005.01.004 Hamilton, J. D. (2013). Oil prices and economic activity. Handbook of Energy and Climate Change, 1(1), 29-61. https://doi.org/10.3386/w17759 Hong, H., Lee, C., & Park, J. (2023). The impact of financial liberalization on volatility in emerging markets. Emerging Markets Finance and Trade, 59(4), 567-589. https://doi.org/10.1006/jcec.2000.1651 Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011 Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. American Economic Review, 99(3), 1053–1069. https://doi.org/10.1257/aer.99.3.1053 Mota Aragón, M. B., Álvarez del Castillo, R., & Núñez Mora, J. A. (2021). Índice de estrés financiero en los mercados emergentes. Análisis Económico, 36(92). https://doi.org/10.24275/uam/azc/dcsh/ae/2021v36n92/mota Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347-370. https://doi.org/10.2307/2938260 Oladunni, S. (2020). Oil price shocks and macroeconomic dynamics in an oil-exporting emerging economy: A New Keynesian DSGE approach. CBN Journal of Applied Statistics, 11(1), 1-34. https://doi.org/10.33429/CJAS.11120.1/5 Salisu, A. A., Ogbonna, A. E., Lasisi, L., & Olaniran, A. (2022). Geopolitical risk and stock market volatility in emerging markets: A GARCH–MIDAS approach. The North American Journal of Economics and Finance, 62, 101755. https://doi.org/10.1016/j.najef.2022.101755 Serrano Bautista, R., & Núñez Mora, J. A. (2021). Value-at-risk predictive performance: A comparison between the CaViaR and GARCH models for the MILA and ASEAN-5 stock markets. Journal of Economics, Finance and Administrative Science, 26(52), 197-221. https://doi.org/10.1108/JEFAS-03-2021-0009 The World Bank. (2023). Global Economic Prospects, June 2023. Banco Mundial. https://www.bancomundial.org/es/publication/global-economic-prospects Tumala, M. M., Salisu, A. A., & Gambo, A. I. (2023). Disentangled oil shocks and stock market volatility in Nigeria and South Africa: A GARCH-MIDAS approach. Economic Analysis and Policy, 78, 707-717. https://doi.org/10.1016/j.eap.2023.04.009 Wang, Y., & Li, J. (2023). Economic policy uncertainty and stock market dynamics in emerging markets. International Review of Economics & Finance, 85, 102345. https://doi.org/10.1016/j.irfa.2025.104203 Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645-678. https://doi.org/10.1109/TNN.2005.845141 Yu, X., Zhang, Y., & Wang, L. (2021). Financial market volatility and macroeconomic uncertainty in emerging economies. Journal of Economic Dynamics and Control, 125, 104093. https://doi.org/10.1016/j.jedc.2021.104093 |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/77ee8838-d261-4dfc-8f13-c922ac427dc9/download https://repository.urosario.edu.co/bitstreams/9013c7f2-4435-454c-bf0f-dcf6c5b7568e/download https://repository.urosario.edu.co/bitstreams/054f9715-c23d-46d4-a3c9-ecde24c48a4e/download https://repository.urosario.edu.co/bitstreams/c1f85be0-d2ce-427c-b612-5fedbc610381/download https://repository.urosario.edu.co/bitstreams/c5b68960-b214-44cb-8d8d-239496261579/download |
bitstream.checksum.fl_str_mv |
b2825df9f458e9d5d96ee8b7cd74fde6 3b6ce8e9e36c89875e8cf39962fe8920 867ca6128cc22ddd2f9cbbe1a4467cc0 59da1c69a6c121b4196754cf8bc7a1c3 81e5bff535d170bec78a692dab91efc9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1837007725680132096 |
spelling |
Molina Muñoz, Jesus Enriqueca9c2e57-4198-4cb6-a94f-7a586604a67c-1Juan Carlos, Espinosa Mendezf0a980bb-0a0f-4cf6-8a84-067698e83d14-1Perez Gonzalez, Paula ValentinaDussan Tellez, JulianaMolina Muñoz, Jesus EnriqueProfesional en Marketing y Negocios Digitales9a49655a-37a9-4d7f-bb5a-9991cd872ad8-10911ec67-805a-4ea8-9f50-2ba2b6284d8d-1ccc2c742-e65f-4717-8879-51c18b1f3f51-12025-06-17T14:47:01Z2025-06-17T14:47:01Z2023-08-01info:eu-repo/date/embargoEnd/2027-06-17En la actualidad la predicción de la volatilidad en los mercados emergentes más específicamente en América latina representa un desafío significativo a causa de la inestabilidad estructural, la calidad de los datos y las relaciones no lineales entre variables macroeconómicas. Teniendo en cuenta lo anterior, los modelos tradicionales como GARCH cuenta con limitaciones más específicamente con su capacidad para capturar la complejidad de los factores que afectan la volatilidad en estos mercados. Como alternativa, el modelo GARCH-MIDAS ha ganado reconocimiento, integrando datos de diferentes frecuencias para mejorar la precisión en el análisis financiero (Serrano Bautista y Núñez Mora, 2021). El analisis de las fluctuasiones en cuanto a los precios del petroleo y los oil shoks resulta puntualmente clave al momento de entender su verdadero impacto en la volatilidad de los mercados financieros emergentes. La alta dependencia de estos paises en los ingresos petroleros y su vulnerabilidas ante las perturbaciones economicas globales los hace especialmente sensibles a estos fenomenos (Chaluisa Ante y Jiménez Silva, 2023). Este estudio indaga en una detallada revisión de literatura sobre el uso del modelo GARCH-MIDAS en mercados emergentes especialmente en América Latina, evaluando su eficacia en la identificación de patrones de volatilidad provocados por los oil shoks. Los resultados indican especialmente que existen incrementos repentinos en los precios del petróleo los cuales tienen efectos positivos y significativos de modelos econométricos más sofisticados para gestionar los riesgos financieros (Barbosa Camargo et al., 2019). Las investigaciones futuras podrían centrarse en el perfecionamiento del modelo GARCH-MIDAS y sus variantes, con el fin de evaluar estrategias de gestión de riesgos en portafolios y a incertidumbre macroeconómica. Además, ampliar los estudios y en economías de América latina y mercados emergentes, sumando a una mayor cooperación internacional, contribuiría significativamente al desarrollo de investigaciones sobre la volatilidad en estos mercados (Mota Aragón et al., 2021).Currently, forecasting volatility in emerging markets, particularly in Latin America, presents a significant challenge due to structural instability, data quality, and nonlinear relationships between macroeconomic variables. Traditional models, such as GARCH, face limitations in capturing the complexity of factors influencing volatility in these markets. As an alternative, the GARCH-MIDAS model has gained recognition by integrating data from different frequencies to improve financial analysis accuracy (Serrano Bautista y Núñez Mora, 2021). The analysis of oil price fluctuations and oil shocks is crucial to understanding their true impact on the volatility of emerging financial markets. The strong dependence of these countries on oil revenues and their vulnerability to global economic disruptions make them particularly sensitive to these phenomena (Chaluisa Ante y Jiménez Silva, 2023). This study conducts a comprehensive literature review on the application of the GARCH-MIDAS model in emerging markets, with a particular focus on Latin America, assessing its effectiveness in identifying volatility patterns triggered by oil shocks. The findings suggest that sudden increases in oil prices have positive and significant effects, emphasizing the need for more sophisticated econometric models to manage financial risks (Barbosa Camargo et al., 2019). Future research could focus on refining the GARCH-MIDAS model and its variants to evaluate risk management strategies in portfolios and macroeconomic uncertainty. Additionally, expanding studies on Latin American economies and other emerging markets, along with greater international cooperation, would significantly contribute to the development of research on market volatility (Mota Aragón et al., 2021).33 ppapplication/pdfhttps://repository.urosario.edu.co/handle/10336/45711spaengUniversidad del RosarioEscuela de AdministraciónPregrado en Marketing y Negocios DigitalesAttribution-NonCommercial-NoDerivatives 4.0 InternationalRestringido (Temporalmente bloqueado)http://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_f1cfAlper, C. E., Ardıç, O. P., & Fendoglu, S. (2012). The economics of the Istanbul Stock Exchange. Emerging Markets Review, 13(2), 230- 247. https://doi.org/10.1016/j.ememar.2012.01.004Barbosa Camargo, M. I., Salazar Sarmiento, A., & Peñaloza Gómez, K. J. (2019). Valoración de riesgo mediante modelos GARCH y simulación Montecarlo: evidencia del mercado accionario colombiano. Semestre Económico, 22(53). https://doi.org/10.22395/seec.v22n53a3Bernanke, B. S., Gertler, M., & Watson, M. (1997). Systematic monetary policy and the effects of oil price shocks. Brookings Papers on Economic Activity, 1997(1), 91–157. https://doi.org/10.2307/2534702Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1Bollerslev, T., Engle, R. F., & Nelson, D. B. (1994). ARCH models. Handbook of Econometrics, 4, 2959–3038. https://doi.org/10.1016/S1573-4412(05)80018-2Chaluisa Ante, E., & Jiménez-Silva, E. (2023). Evaluación de la volatilidad del precio internacional del barril de petróleo y su implicación en los estados financieros de las entidades públicas, caso empresas petroleras, periodos semestrales 2020-2021. 593 Digital Publisher CEIT, 8(3), 955-968. https://doi.org/10.33386/593dp.2023.3.1793Chen, S.-S., Huang, S., & Lin, T.-Y. (2022). How do oil prices affect emerging market sovereign bond spreads?. Journal of International Money and Finance, 128, 102700. https://doi.org/10.1016/j.jimonfin.2022.102700Da Silva Souza, R., & de Mattos, L.B. (2023). Macroeconomic effects of oil price shocks on an emerging market economy. Economic Change and Restructuring, 56, 803–824 https://doi.org/10.1007/s10644-022-09445-wEngle, R., & Kelly, B. (2012). Dynamic Equicorrelation. Journal of Business & Economic Statistics, 30(2), 212–228. https://doi.org/10.1080/07350015.2011.652048Ghysels, E., Santa-Clara, P., & Valkanov, R. (2006). Predicting volatility: Getting the most out of return data sampled at different frequencies. Journal of Econometrics, 131(1–2), 59–95. https://doi.org/10.1016/j.jeconom.2005.01.004Hamilton, J. D. (2013). Oil prices and economic activity. Handbook of Energy and Climate Change, 1(1), 29-61. https://doi.org/10.3386/w17759Hong, H., Lee, C., & Park, J. (2023). The impact of financial liberalization on volatility in emerging markets. Emerging Markets Finance and Trade, 59(4), 567-589. https://doi.org/10.1006/jcec.2000.1651Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. American Economic Review, 99(3), 1053–1069. https://doi.org/10.1257/aer.99.3.1053Mota Aragón, M. B., Álvarez del Castillo, R., & Núñez Mora, J. A. (2021). Índice de estrés financiero en los mercados emergentes. Análisis Económico, 36(92). https://doi.org/10.24275/uam/azc/dcsh/ae/2021v36n92/motaNelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347-370. https://doi.org/10.2307/2938260Oladunni, S. (2020). Oil price shocks and macroeconomic dynamics in an oil-exporting emerging economy: A New Keynesian DSGE approach. CBN Journal of Applied Statistics, 11(1), 1-34. https://doi.org/10.33429/CJAS.11120.1/5Salisu, A. A., Ogbonna, A. E., Lasisi, L., & Olaniran, A. (2022). Geopolitical risk and stock market volatility in emerging markets: A GARCH–MIDAS approach. The North American Journal of Economics and Finance, 62, 101755. https://doi.org/10.1016/j.najef.2022.101755Serrano Bautista, R., & Núñez Mora, J. A. (2021). Value-at-risk predictive performance: A comparison between the CaViaR and GARCH models for the MILA and ASEAN-5 stock markets. Journal of Economics, Finance and Administrative Science, 26(52), 197-221. https://doi.org/10.1108/JEFAS-03-2021-0009The World Bank. (2023). Global Economic Prospects, June 2023. Banco Mundial. https://www.bancomundial.org/es/publication/global-economic-prospectsTumala, M. M., Salisu, A. A., & Gambo, A. I. (2023). Disentangled oil shocks and stock market volatility in Nigeria and South Africa: A GARCH-MIDAS approach. Economic Analysis and Policy, 78, 707-717. https://doi.org/10.1016/j.eap.2023.04.009Wang, Y., & Li, J. (2023). Economic policy uncertainty and stock market dynamics in emerging markets. International Review of Economics & Finance, 85, 102345. https://doi.org/10.1016/j.irfa.2025.104203Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645-678. https://doi.org/10.1109/TNN.2005.845141Yu, X., Zhang, Y., & Wang, L. (2021). Financial market volatility and macroeconomic uncertainty in emerging economies. Journal of Economic Dynamics and Control, 125, 104093. https://doi.org/10.1016/j.jedc.2021.104093instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURPredicción de volatilidadMercados emergentesGARCH-MIDASShocks petrolerosModelos de riesgo financieroVolatility forecasting, Emerging markets, GARCH-MIDAS, Oil shocks, financial risk models.Pronóstico de la volatilidad financiera y los shocks de los precios del petróleo en las economías emergentes: un enfoque de frecuencia mixtaForecasting Financial Volatility and Oil Price Shocks in Emerging Economies: A Mixed-Frequency ApproachVolatilidad financiera y petróleo en economías emergentesbachelorThesisArtículohttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_7a1fEscuela de AdministraciónBogotáLICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/77ee8838-d261-4dfc-8f13-c922ac427dc9/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repository.urosario.edu.co/bitstreams/9013c7f2-4435-454c-bf0f-dcf6c5b7568e/download3b6ce8e9e36c89875e8cf39962fe8920MD52ORIGINALPronóstico_de_la_volatilidad_financiera_y_los_shocks_Perez_Gonzalez_Paula_Valentina.pdfPronóstico_de_la_volatilidad_financiera_y_los_shocks_Perez_Gonzalez_Paula_Valentina.pdfapplication/pdf626062https://repository.urosario.edu.co/bitstreams/054f9715-c23d-46d4-a3c9-ecde24c48a4e/download867ca6128cc22ddd2f9cbbe1a4467cc0MD53TEXTPronóstico_de_la_volatilidad_financiera_y_los_shocks_Perez_Gonzalez_Paula_Valentina.pdf.txtPronóstico_de_la_volatilidad_financiera_y_los_shocks_Perez_Gonzalez_Paula_Valentina.pdf.txtExtracted texttext/plain41160https://repository.urosario.edu.co/bitstreams/c1f85be0-d2ce-427c-b612-5fedbc610381/download59da1c69a6c121b4196754cf8bc7a1c3MD54THUMBNAILPronóstico_de_la_volatilidad_financiera_y_los_shocks_Perez_Gonzalez_Paula_Valentina.pdf.jpgPronóstico_de_la_volatilidad_financiera_y_los_shocks_Perez_Gonzalez_Paula_Valentina.pdf.jpgGenerated Thumbnailimage/jpeg2325https://repository.urosario.edu.co/bitstreams/c5b68960-b214-44cb-8d8d-239496261579/download81e5bff535d170bec78a692dab91efc9MD5510336/45711oai:repository.urosario.edu.co:10336/457112025-06-20 08:51:24.794http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |