Improved neonatal seizure detection using adaptive learning
In neonatal intensive care units performing continuous EEG monitoring, there is an unmet need for around-the-clock interpretation of EEG, especially for recognizing seizures. In recent years, a few automated seizure detection algorithms have been proposed. However, these are suboptimal in detecting...
- Autores:
 
- Tipo de recurso:
 
- Fecha de publicación:
 - 2017
 
- Institución:
 - Universidad del Rosario
 
- Repositorio:
 - Repositorio EdocUR - U. Rosario
 
- Idioma:
 -           eng          
 - OAI Identifier:
 - oai:repository.urosario.edu.co:10336/28672
 - Acceso en línea:
 -           https://doi.org/10.1109/EMBC.2017.8037441
          
https://repository.urosario.edu.co/handle/10336/28672
 - Palabra clave:
 -           Pediatrics          
Detectors
Electroencephalography
Feature extraction
Monitoring
Training
Sensitivity
 - Rights
 - License
 - Restringido (Acceso a grupos específicos)
 
| id | 
                  EDOCUR2_aa36382024c5a184c005e73c33c0d1e2 | 
    
|---|---|
| oai_identifier_str | 
                  oai:repository.urosario.edu.co:10336/28672 | 
    
| network_acronym_str | 
                  EDOCUR2 | 
    
| network_name_str | 
                  Repositorio EdocUR - U. Rosario | 
    
| repository_id_str | 
                   | 
    
| spelling | 
                  06b5407b-13bc-4091-8510-b24e71589dde-175072eb4-bdfc-4e2a-a312-e7ef31b9133b-121e3cc2b-385f-4821-a9ca-d9d7303f84ce-13183bdf3-ff03-450d-ae46-40944441d817-138de6b05-427b-4843-8821-5161b28c7324-113e85339-b951-4e4f-84a3-92c720dbe6e0-12020-08-28T15:49:32Z2020-08-28T15:49:32Z2017-09-14In neonatal intensive care units performing continuous EEG monitoring, there is an unmet need for around-the-clock interpretation of EEG, especially for recognizing seizures. In recent years, a few automated seizure detection algorithms have been proposed. However, these are suboptimal in detecting brief-duration seizures (<; 30s), which frequently occur in neonates with severe neurological problems. Recently, a multi-stage neonatal seizure detector, composed of a heuristic and a data-driven classifier was proposed by our group and showed improved detection of brief seizures. In the present work, we propose to add a third stage to the detector in order to use feedback of the Clinical Neurophysiologist and adaptively retune a threshold of the second stage to improve the performance of detection of brief seizures. As a result, the false alarm rate (FAR) of the brief seizure detections decreased by 50% and the positive predictive value (PPV) increased by 18%. At the same time, for all detections, the FAR decreased by 35% and PPV increased by 5% while the good detection rate remained unchanged.application/pdfhttps://doi.org/10.1109/EMBC.2017.8037441ISBN: 978-1-5090-2810-8EISBN: 978-1-5090-2809-2https://repository.urosario.edu.co/handle/10336/28672engIEEE281328102017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), ISBN: 978-1-5090-2810-8;EISBN: 978-1-5090-2809-2 (2017); pp. 2810-2813https://ieeexplore.ieee.org/abstract/document/8037441Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURPediatricsDetectorsElectroencephalographyFeature extractionMonitoringTrainingSensitivityImproved neonatal seizure detection using adaptive learningDetección mejorada de convulsiones neonatales mediante aprendizaje adaptativobookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Ansari, A. H.Cherian, P. J.Caicedo, A.De Vos, M.Naulaers, G.Van Huffel, S.10336/28672oai:repository.urosario.edu.co:10336/286722021-06-03 00:49:53.864https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co | 
    
| dc.title.spa.fl_str_mv | 
                  Improved neonatal seizure detection using adaptive learning | 
    
| dc.title.TranslatedTitle.spa.fl_str_mv | 
                  Detección mejorada de convulsiones neonatales mediante aprendizaje adaptativo | 
    
| title | 
                  Improved neonatal seizure detection using adaptive learning | 
    
| spellingShingle | 
                  Improved neonatal seizure detection using adaptive learning Pediatrics Detectors Electroencephalography Feature extraction Monitoring Training Sensitivity  | 
    
| title_short | 
                  Improved neonatal seizure detection using adaptive learning | 
    
| title_full | 
                  Improved neonatal seizure detection using adaptive learning | 
    
| title_fullStr | 
                  Improved neonatal seizure detection using adaptive learning | 
    
| title_full_unstemmed | 
                  Improved neonatal seizure detection using adaptive learning | 
    
| title_sort | 
                  Improved neonatal seizure detection using adaptive learning | 
    
| dc.subject.keyword.spa.fl_str_mv | 
                  Pediatrics Detectors Electroencephalography Feature extraction Monitoring Training Sensitivity  | 
    
| topic | 
                  Pediatrics Detectors Electroencephalography Feature extraction Monitoring Training Sensitivity  | 
    
| description | 
                  In neonatal intensive care units performing continuous EEG monitoring, there is an unmet need for around-the-clock interpretation of EEG, especially for recognizing seizures. In recent years, a few automated seizure detection algorithms have been proposed. However, these are suboptimal in detecting brief-duration seizures (<; 30s), which frequently occur in neonates with severe neurological problems. Recently, a multi-stage neonatal seizure detector, composed of a heuristic and a data-driven classifier was proposed by our group and showed improved detection of brief seizures. In the present work, we propose to add a third stage to the detector in order to use feedback of the Clinical Neurophysiologist and adaptively retune a threshold of the second stage to improve the performance of detection of brief seizures. As a result, the false alarm rate (FAR) of the brief seizure detections decreased by 50% and the positive predictive value (PPV) increased by 18%. At the same time, for all detections, the FAR decreased by 35% and PPV increased by 5% while the good detection rate remained unchanged. | 
    
| publishDate | 
                  2017 | 
    
| dc.date.created.spa.fl_str_mv | 
                  2017-09-14 | 
    
| dc.date.accessioned.none.fl_str_mv | 
                  2020-08-28T15:49:32Z | 
    
| dc.date.available.none.fl_str_mv | 
                  2020-08-28T15:49:32Z | 
    
| dc.type.eng.fl_str_mv | 
                  bookPart | 
    
| dc.type.coarversion.fl_str_mv | 
                  http://purl.org/coar/version/c_970fb48d4fbd8a85 | 
    
| dc.type.coar.fl_str_mv | 
                  http://purl.org/coar/resource_type/c_3248 | 
    
| dc.type.spa.spa.fl_str_mv | 
                  Parte de libro | 
    
| dc.identifier.doi.none.fl_str_mv | 
                  https://doi.org/10.1109/EMBC.2017.8037441 | 
    
| dc.identifier.issn.none.fl_str_mv | 
                  ISBN: 978-1-5090-2810-8 EISBN: 978-1-5090-2809-2  | 
    
| dc.identifier.uri.none.fl_str_mv | 
                  https://repository.urosario.edu.co/handle/10336/28672 | 
    
| url | 
                  https://doi.org/10.1109/EMBC.2017.8037441 https://repository.urosario.edu.co/handle/10336/28672  | 
    
| identifier_str_mv | 
                  ISBN: 978-1-5090-2810-8 EISBN: 978-1-5090-2809-2  | 
    
| dc.language.iso.spa.fl_str_mv | 
                  eng | 
    
| language | 
                  eng | 
    
| dc.relation.citationEndPage.none.fl_str_mv | 
                  2813 | 
    
| dc.relation.citationStartPage.none.fl_str_mv | 
                  2810 | 
    
| dc.relation.citationTitle.none.fl_str_mv | 
                  2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) | 
    
| dc.relation.ispartof.spa.fl_str_mv | 
                  39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), ISBN: 978-1-5090-2810-8;EISBN: 978-1-5090-2809-2 (2017); pp. 2810-2813 | 
    
| dc.relation.uri.spa.fl_str_mv | 
                  https://ieeexplore.ieee.org/abstract/document/8037441 | 
    
| dc.rights.coar.fl_str_mv | 
                  http://purl.org/coar/access_right/c_16ec | 
    
| dc.rights.acceso.spa.fl_str_mv | 
                  Restringido (Acceso a grupos específicos) | 
    
| rights_invalid_str_mv | 
                  Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec  | 
    
| dc.format.mimetype.none.fl_str_mv | 
                  application/pdf | 
    
| dc.publisher.spa.fl_str_mv | 
                  IEEE | 
    
| dc.source.spa.fl_str_mv | 
                  2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) | 
    
| institution | 
                  Universidad del Rosario | 
    
| dc.source.instname.none.fl_str_mv | 
                  instname:Universidad del Rosario | 
    
| dc.source.reponame.none.fl_str_mv | 
                  reponame:Repositorio Institucional EdocUR | 
    
| repository.name.fl_str_mv | 
                  Repositorio institucional EdocUR | 
    
| repository.mail.fl_str_mv | 
                  edocur@urosario.edu.co | 
    
| _version_ | 
                  1837007590834307072 | 
    
