Lyapunov Exponents to Predict the Behavior of the Product of Random Matrices

In this thesis, we investigate the asymptotic behavior of products of random matrices through Lyapunov exponents. Our theoretical framework is grounded in Kingman’s Subadditive Ergodic Theorem, from which we derive the Furstenberg-Kesten Theorem and Oseledets’ Theorem in two dimensions. These result...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/45741
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/45741
Palabra clave:
Exponentes de Lyapunov
Matrices aleatorios
Caos
Teoría ergódica
Lyapunov Exponents
Random Matrices
Chaos
Ergodic Theory
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id EDOCUR2_9ac62c88f94b4cae9c3b705279542e2c
oai_identifier_str oai:repository.urosario.edu.co:10336/45741
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.none.fl_str_mv Lyapunov Exponents to Predict the Behavior of the Product of Random Matrices
dc.title.TranslatedTitle.none.fl_str_mv Exponentes de Lyapunov para predecir el comportamiento del producto de matrices aleatorias
title Lyapunov Exponents to Predict the Behavior of the Product of Random Matrices
spellingShingle Lyapunov Exponents to Predict the Behavior of the Product of Random Matrices
Exponentes de Lyapunov
Matrices aleatorios
Caos
Teoría ergódica
Lyapunov Exponents
Random Matrices
Chaos
Ergodic Theory
title_short Lyapunov Exponents to Predict the Behavior of the Product of Random Matrices
title_full Lyapunov Exponents to Predict the Behavior of the Product of Random Matrices
title_fullStr Lyapunov Exponents to Predict the Behavior of the Product of Random Matrices
title_full_unstemmed Lyapunov Exponents to Predict the Behavior of the Product of Random Matrices
title_sort Lyapunov Exponents to Predict the Behavior of the Product of Random Matrices
dc.contributor.advisor.none.fl_str_mv Artigiani, Mauro
Martínez, Cristian
dc.subject.none.fl_str_mv Exponentes de Lyapunov
Matrices aleatorios
Caos
Teoría ergódica
topic Exponentes de Lyapunov
Matrices aleatorios
Caos
Teoría ergódica
Lyapunov Exponents
Random Matrices
Chaos
Ergodic Theory
dc.subject.keyword.none.fl_str_mv Lyapunov Exponents
Random Matrices
Chaos
Ergodic Theory
description In this thesis, we investigate the asymptotic behavior of products of random matrices through Lyapunov exponents. Our theoretical framework is grounded in Kingman’s Subadditive Ergodic Theorem, from which we derive the Furstenberg-Kesten Theorem and Oseledets’ Theorem in two dimensions. These results provide the tools to quantify exponential growth rates and directional behavior in random matrix products. To visualize our theoretical conclusions, we present a series of simulations that illustrate the emergence of Lyapunov exponents and their predictive power in practical settings.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-19T14:33:07Z
dc.date.available.none.fl_str_mv 2025-06-19T14:33:07Z
dc.date.created.none.fl_str_mv 2025-06-09
dc.type.none.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.spa.none.fl_str_mv Trabajo de grado
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/45741
url https://repository.urosario.edu.co/handle/10336/45741
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.none.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
Abierto (Texto Completo)
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 40 pp
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad del Rosario
dc.publisher.department.none.fl_str_mv Escuela de Ingeniería, Ciencia y Tecnología
dc.publisher.program.none.fl_str_mv Programa de Matemáticas Aplicadas y Ciencias de la Computación - MACC
publisher.none.fl_str_mv Universidad del Rosario
institution Universidad del Rosario
dc.source.bibliographicCitation.none.fl_str_mv Robert G. Bartle. The Elements of Integration and Lebesgue Measure. 1st ed. Wiley Clas- sics Library v.92. Hoboken: John Wiley & Sons, Incorporated, 1995. 1 p. isbn: 9780471042228 9781118164488.
Walter Rudin. Real and complex analysis. 3. ed., internat. ed., [Nachdr.] McGraw-Hill international editions Mathematics series. New York, NY: McGraw-Hill, 2013. 416 pp. isbn: 978-0-07-100276-9 978-0-07-054234-1.
Donald L. Cohn. Measure Theory: Second Edition. Birkhäuser Advanced Texts Basler Lehrbücher. New York, NY: Springer New York, 2013. isbn: 978-1-4614-6955-1 978-1- 4614-6956-8. doi: 10.1007/978-1-4614-6956-8. url: https://link.springer.com/ 10.1007/978-1-4614-6956-8 (visited on 08/14/2024).
Elias M. Stein and Rami Shakarchi. Real analysis: measure theory, integration, and Hilbert spaces. Princeton lectures in analysis v. 3. Princeton, N.J: Princeton University Press, 2005. 402 pp. isbn: 9780691113869.
Manfred Einsiedler and Thomas Ward. Ergodic Theory: with a view towards Number The- ory. London: Springer London, 2011. isbn: 978-0-85729-020-5 978-0-85729-021-2. doi: 10.1007/978- 0- 85729- 021- 2. url: https://link.springer.com/10.1007/978- 0-85729-021-2 (visited on 08/14/2024).
Daniel W. Stroock. Probability theory: an analytic view. 2nd ed. Cambridge New York: Cambridge University Press, 2011. 1 p. isbn: 978-0-521-76158-1 978-0-511-97424-3 978-1- 139-01188-4
Sheldon M. Ross. Introduction to probability models. Tenth edition. Amsterdam Boston: Academic Press, an imprint of Elsevier, 2010. 1 p. isbn: 978-0-12-375686-2 978-0-12- 375687-9.
Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to probability. 2nd ed. Optimiza- tion and computation series. Belmont: Athena scientific, 2008. isbn: 978-1-886529-23-6.
Patrick Billingsley. Probability and measure. 3rd ed. Wiley series in probability and math- ematical statistics. New York: Wiley, 1995. 593 pp. isbn: 978-0-471-00710-4.
Paul E. Pfeiffer. Probability for Applications. Springer Texts in Statistics. New York, NY: Springer New York, 1990. 679 pp. isbn: 978-1-4615-7676-1. doi: 10.1007/978-1-4615- 7676-1.
Queen Mary University of London. Lecture 2: Second Language Acquisition. https:// qmplus . qmul . ac . uk / pluginfile . php / 2470175 / mod _ resource / content / 13 / L2 - 2022.pdf. Accessed: 2025-04-21. 2022.
Alessandro Rinaldo. Lecture Notes: February 20, 2018. https://www.stat.cmu.edu/ ~arinaldo/Teaching/36752/S18/Scribed_Lectures/Feb20.pdf. Scribed lecture notes for 36-752: Advanced Probability Overview, Spring 2018, Carnegie Mellon University. 2018.
David A. Stephens. The Borel-Cantelli Lemma. https://www.math.mcgill.ca/dstephens/ OldCourses/556-2006/Math556-BorelCantelli.pdf. Lecture notes for Math 556: Math- ematical Statistics I, McGill University. 2006.
Jeffrey S. Rosenthal. A first look at rigorous probability theory. 2. ed., reprinted. New Jersey: World Scientific, 2010. 219 pp. isbn: 978-981-270-371-2.
Marcelo Viana. Lectures on Lyapunov exponents. Cambridge studies in advanced math- ematics 145. Cambridge ; New York: Cambridge University Press, 2014. 202 pp. isbn: 978-1-107-08173-4.
Peter Walters. An introduction to ergodic theory. 1. softcover printing. Graduate texts in mathematics 79. New York: Springer, 2000. 250 pp. isbn: 9780387951522.
Artur Avila and Jairo Bochi. “On the Subadditive Ergodic Theorem”. In: Ergodic The- ory and Dynamical Systems 29.1 (Jan. 2009). Publisher: Cambridge University Press,pp. 1–16. doi: 10 . 1017 / S014338570800067X. url: https : / / doi . org / 10 . 1017 / S014338570800067X.
Hillel Furstenberg and Harry Kesten. “Products of Random Matrices”. In: The Annals of Mathematical Statistics 31.2 (June 1960), pp. 457–469. issn: 0003-4851. doi: 10.1214/ aoms/1177705909. url: http://projecteuclid.org/euclid.aoms/1177705909 (visited on 08/14/2024).
Walter Rudin. Functional analysis. 2nd ed. International series in pure and applied math- ematics. New York: McGraw-Hill, 1991. 424 pp. isbn: 9780070542365.
Jean H. Gallier. Geometric methods and applications: for computer science and engineer- ing. 2nd ed. Texts in applied mathematics 38. New York: Springer, 2011. 680 pp. isbn: 9781441999603 9781441999610.
Geon Ho Choe. Computational ergodic theory. Algorithms and computation in mathemat- ics v. 13. Berlin: Springer, 2005. 453 pp. isbn: 978-3-540-23121-9.
Walter Gander. Algorithms for the QR-Decomposition. Tech. rep. 80-021. Re-typed in LATEX in October 2003, In memory of Prof. H. Rutishauser. Zürich, Switzerland: Seminar für Angewandte Mathematik, Eidgenössische Technische Hochschule, 1980. url: https: //people.inf.ethz.ch/gander/papers/qrneu.pdf.
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/d543af69-06e4-4768-87f8-daf367c03aad/download
https://repository.urosario.edu.co/bitstreams/295020ba-9259-4319-827f-559fdf66e8d4/download
https://repository.urosario.edu.co/bitstreams/52bc6b9e-619a-4133-95b8-0c01309b1882/download
https://repository.urosario.edu.co/bitstreams/cf24de7a-b25b-4b0d-83d7-123055cce5e5/download
https://repository.urosario.edu.co/bitstreams/1e33ff55-b93d-4f0c-abfd-1b14948cd1c3/download
bitstream.checksum.fl_str_mv b2825df9f458e9d5d96ee8b7cd74fde6
3b6ce8e9e36c89875e8cf39962fe8920
3bafe456515dabaf1e15b69eb6601550
39d66c70ae1c63659844e55dfbe11464
4c720d7595ec9beace1df12a764d6083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1837007685460951040
spelling Artigiani, Mauro7b7040ca-f33d-4b80-bcbf-806c727430d5-1Martínez, Cristian73c3e106-5afb-4ee5-8229-c1f263876f29-1Bermúdez Guzmán, JulianaProfesional en Matemáticas Aplicadas y Ciencias de la ComputaciónProfesional en Matemáticas Aplicadas y Ciencias de la ComputaciónPregrado47eddce6-d6d7-44b2-86d5-d869861a22c6-12025-06-19T14:33:07Z2025-06-19T14:33:07Z2025-06-09In this thesis, we investigate the asymptotic behavior of products of random matrices through Lyapunov exponents. Our theoretical framework is grounded in Kingman’s Subadditive Ergodic Theorem, from which we derive the Furstenberg-Kesten Theorem and Oseledets’ Theorem in two dimensions. These results provide the tools to quantify exponential growth rates and directional behavior in random matrix products. To visualize our theoretical conclusions, we present a series of simulations that illustrate the emergence of Lyapunov exponents and their predictive power in practical settings.In this thesis, we investigate the asymptotic behavior of products of random matrices through Lyapunov exponents. Our theoretical framework is grounded in Kingman’s Subadditive Ergodic Theorem, from which we derive the Furstenberg-Kesten Theorem and Oseledets’ Theorem in two dimensions. These results provide the tools to quantify exponential growth rates and directional behavior in random matrix products. To visualize our theoretical conclusions, we present a series of simulations that illustrate the emergence of Lyapunov exponents and their predictive power in practical settings.40 ppapplication/pdfhttps://repository.urosario.edu.co/handle/10336/45741engUniversidad del RosarioEscuela de Ingeniería, Ciencia y TecnologíaPrograma de Matemáticas Aplicadas y Ciencias de la Computación - MACCAttribution-NonCommercial-NoDerivatives 4.0 InternationalAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Robert G. Bartle. The Elements of Integration and Lebesgue Measure. 1st ed. Wiley Clas- sics Library v.92. Hoboken: John Wiley & Sons, Incorporated, 1995. 1 p. isbn: 9780471042228 9781118164488.Walter Rudin. Real and complex analysis. 3. ed., internat. ed., [Nachdr.] McGraw-Hill international editions Mathematics series. New York, NY: McGraw-Hill, 2013. 416 pp. isbn: 978-0-07-100276-9 978-0-07-054234-1.Donald L. Cohn. Measure Theory: Second Edition. Birkhäuser Advanced Texts Basler Lehrbücher. New York, NY: Springer New York, 2013. isbn: 978-1-4614-6955-1 978-1- 4614-6956-8. doi: 10.1007/978-1-4614-6956-8. url: https://link.springer.com/ 10.1007/978-1-4614-6956-8 (visited on 08/14/2024).Elias M. Stein and Rami Shakarchi. Real analysis: measure theory, integration, and Hilbert spaces. Princeton lectures in analysis v. 3. Princeton, N.J: Princeton University Press, 2005. 402 pp. isbn: 9780691113869.Manfred Einsiedler and Thomas Ward. Ergodic Theory: with a view towards Number The- ory. London: Springer London, 2011. isbn: 978-0-85729-020-5 978-0-85729-021-2. doi: 10.1007/978- 0- 85729- 021- 2. url: https://link.springer.com/10.1007/978- 0-85729-021-2 (visited on 08/14/2024).Daniel W. Stroock. Probability theory: an analytic view. 2nd ed. Cambridge New York: Cambridge University Press, 2011. 1 p. isbn: 978-0-521-76158-1 978-0-511-97424-3 978-1- 139-01188-4Sheldon M. Ross. Introduction to probability models. Tenth edition. Amsterdam Boston: Academic Press, an imprint of Elsevier, 2010. 1 p. isbn: 978-0-12-375686-2 978-0-12- 375687-9.Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to probability. 2nd ed. Optimiza- tion and computation series. Belmont: Athena scientific, 2008. isbn: 978-1-886529-23-6.Patrick Billingsley. Probability and measure. 3rd ed. Wiley series in probability and math- ematical statistics. New York: Wiley, 1995. 593 pp. isbn: 978-0-471-00710-4.Paul E. Pfeiffer. Probability for Applications. Springer Texts in Statistics. New York, NY: Springer New York, 1990. 679 pp. isbn: 978-1-4615-7676-1. doi: 10.1007/978-1-4615- 7676-1.Queen Mary University of London. Lecture 2: Second Language Acquisition. https:// qmplus . qmul . ac . uk / pluginfile . php / 2470175 / mod _ resource / content / 13 / L2 - 2022.pdf. Accessed: 2025-04-21. 2022.Alessandro Rinaldo. Lecture Notes: February 20, 2018. https://www.stat.cmu.edu/ ~arinaldo/Teaching/36752/S18/Scribed_Lectures/Feb20.pdf. Scribed lecture notes for 36-752: Advanced Probability Overview, Spring 2018, Carnegie Mellon University. 2018.David A. Stephens. The Borel-Cantelli Lemma. https://www.math.mcgill.ca/dstephens/ OldCourses/556-2006/Math556-BorelCantelli.pdf. Lecture notes for Math 556: Math- ematical Statistics I, McGill University. 2006.Jeffrey S. Rosenthal. A first look at rigorous probability theory. 2. ed., reprinted. New Jersey: World Scientific, 2010. 219 pp. isbn: 978-981-270-371-2.Marcelo Viana. Lectures on Lyapunov exponents. Cambridge studies in advanced math- ematics 145. Cambridge ; New York: Cambridge University Press, 2014. 202 pp. isbn: 978-1-107-08173-4.Peter Walters. An introduction to ergodic theory. 1. softcover printing. Graduate texts in mathematics 79. New York: Springer, 2000. 250 pp. isbn: 9780387951522.Artur Avila and Jairo Bochi. “On the Subadditive Ergodic Theorem”. In: Ergodic The- ory and Dynamical Systems 29.1 (Jan. 2009). Publisher: Cambridge University Press,pp. 1–16. doi: 10 . 1017 / S014338570800067X. url: https : / / doi . org / 10 . 1017 / S014338570800067X.Hillel Furstenberg and Harry Kesten. “Products of Random Matrices”. In: The Annals of Mathematical Statistics 31.2 (June 1960), pp. 457–469. issn: 0003-4851. doi: 10.1214/ aoms/1177705909. url: http://projecteuclid.org/euclid.aoms/1177705909 (visited on 08/14/2024).Walter Rudin. Functional analysis. 2nd ed. International series in pure and applied math- ematics. New York: McGraw-Hill, 1991. 424 pp. isbn: 9780070542365.Jean H. Gallier. Geometric methods and applications: for computer science and engineer- ing. 2nd ed. Texts in applied mathematics 38. New York: Springer, 2011. 680 pp. isbn: 9781441999603 9781441999610.Geon Ho Choe. Computational ergodic theory. Algorithms and computation in mathemat- ics v. 13. Berlin: Springer, 2005. 453 pp. isbn: 978-3-540-23121-9.Walter Gander. Algorithms for the QR-Decomposition. Tech. rep. 80-021. Re-typed in LATEX in October 2003, In memory of Prof. H. Rutishauser. Zürich, Switzerland: Seminar für Angewandte Mathematik, Eidgenössische Technische Hochschule, 1980. url: https: //people.inf.ethz.ch/gander/papers/qrneu.pdf.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURExponentes de LyapunovMatrices aleatoriosCaosTeoría ergódicaLyapunov ExponentsRandom MatricesChaosErgodic TheoryLyapunov Exponents to Predict the Behavior of the Product of Random MatricesExponentes de Lyapunov para predecir el comportamiento del producto de matrices aleatoriasbachelorThesisTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Ingeniería, Ciencia y TecnologíaBogotáLICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/d543af69-06e4-4768-87f8-daf367c03aad/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repository.urosario.edu.co/bitstreams/295020ba-9259-4319-827f-559fdf66e8d4/download3b6ce8e9e36c89875e8cf39962fe8920MD54ORIGINALLyapunov_Exponents_to_Predict_Bermudez_Guzman_Juliana.pdfLyapunov_Exponents_to_Predict_Bermudez_Guzman_Juliana.pdfapplication/pdf667354https://repository.urosario.edu.co/bitstreams/52bc6b9e-619a-4133-95b8-0c01309b1882/download3bafe456515dabaf1e15b69eb6601550MD55TEXTLyapunov_Exponents_to_Predict_Bermudez_Guzman_Juliana.pdf.txtLyapunov_Exponents_to_Predict_Bermudez_Guzman_Juliana.pdf.txtExtracted texttext/plain74196https://repository.urosario.edu.co/bitstreams/cf24de7a-b25b-4b0d-83d7-123055cce5e5/download39d66c70ae1c63659844e55dfbe11464MD56THUMBNAILLyapunov_Exponents_to_Predict_Bermudez_Guzman_Juliana.pdf.jpgLyapunov_Exponents_to_Predict_Bermudez_Guzman_Juliana.pdf.jpgGenerated Thumbnailimage/jpeg2623https://repository.urosario.edu.co/bitstreams/1e33ff55-b93d-4f0c-abfd-1b14948cd1c3/download4c720d7595ec9beace1df12a764d6083MD5710336/45741oai:repository.urosario.edu.co:10336/457412025-06-20 03:02:40.496http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg==