Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia
Surface gauge measurements have been commonly employed to analyze the precipitation's high spatial and temporal variability. However, incomplete area coverage and deficiencies over most tropical and complex topography mean significant limitations of this measurement type. Satellite-derived data...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/44787
- Acceso en línea:
- https://doi.org/10.1016/j.jsames.2024.104898
https://repository.urosario.edu.co/handle/10336/44787
- Palabra clave:
- Performance metrics
Bias-correction
Climate variability
Gridded datasets
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
EDOCUR2_8d8358e1c6727e4286bd8a499ae7dbf4 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/44787 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia |
title |
Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia |
spellingShingle |
Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia Performance metrics Bias-correction Climate variability Gridded datasets |
title_short |
Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia |
title_full |
Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia |
title_fullStr |
Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia |
title_full_unstemmed |
Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia |
title_sort |
Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia |
dc.subject.spa.fl_str_mv |
Performance metrics Bias-correction Climate variability Gridded datasets |
topic |
Performance metrics Bias-correction Climate variability Gridded datasets |
description |
Surface gauge measurements have been commonly employed to analyze the precipitation's high spatial and temporal variability. However, incomplete area coverage and deficiencies over most tropical and complex topography mean significant limitations of this measurement type. Satellite-derived datasets, combined with the integration of in-situ observations with satellite data, are an alternative to address these limitations by offering a more spatially homogeneous and temporally comprehensive coverage for scarce data areas of the globe. Nevertheless, applying a bias correction technique on the precipitation datasets is still necessary before they are used for research due to their considerable bias. Here, we analyze the performance of CHIRPS, WorldClim, and TerraClimate datasets compared to data from 30 rain gauge stations over the South-West of Colombia, specifically in the Upper Cauca River Basin-UCRB between 1981 and 2018. Additionally, we applied the Quantile Mapping correction to all gridded precipitation products, and subsequently, the corrected rainfall is compared to the observed data on the monthly, seasonal, and annual scale. Our results show that the CHIRPS dataset better captures the seasonal and monthly variability. CHIRPS presents the best performance during less rainy seasons and at low elevation zones (900–2000 m above sea level-m.a.s.l.), followed by TerraClimate. Utilizing the bias correction methodology, we generated a new, corrected, and more reliable monthly precipitation time series for each location from all gridded precipitation products. Additionally, we found that the correction of the CHIRPS dataset presented the best performance across all spatiotemporal scales in the UCRB. Therefore, this study provides an accurate precipitation database for a complex topographic tropical region with limited data availability. |
publishDate |
2024 |
dc.date.created.spa.fl_str_mv |
2024-07-15 |
dc.date.issued.spa.fl_str_mv |
2024-07-15 |
dc.date.accessioned.none.fl_str_mv |
2025-01-26T18:26:55Z |
dc.date.available.none.fl_str_mv |
2025-01-26T18:26:55Z |
dc.type.spa.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.jsames.2024.104898 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/44787 |
url |
https://doi.org/10.1016/j.jsames.2024.104898 https://repository.urosario.edu.co/handle/10336/44787 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
Journal of South American Earth Sciences |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Journal of South American Earth Sciences |
dc.source.spa.fl_str_mv |
Journal of South American Earth Sciences |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/d3f88cc7-c93f-4907-ac89-da8907dbd1aa/download https://repository.urosario.edu.co/bitstreams/36237859-4f6e-4cce-9308-0ab2a454516e/download https://repository.urosario.edu.co/bitstreams/387402c6-7eed-4b1d-96bb-7363a998f8e4/download |
bitstream.checksum.fl_str_mv |
9d1dfb1ae99412d3e4fdddec6459963c 6a32da4738bf1f2da5d3775770c1b55e d2109be88007a9fc18144fb55ca67416 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1831928328046510080 |
spelling |
b8bca805-4781-4868-90cb-f2e79effc3283a8b1659-4eae-4e1a-985a-c8ed34af9c4982972160007f39fa0-5f6e-44a5-a8e2-2a63d3a980be5f751a34-1bc0-4848-bbc6-9b75461b78de89e15aef-2879-468c-ab91-fd13b154cc1b7657925b-2252-4b03-8ad4-fd20455f6e13d250f9bf-c572-41b0-805c-38694d9472512025-01-26T18:26:55Z2025-01-26T18:26:55Z2024-07-152024-07-15Surface gauge measurements have been commonly employed to analyze the precipitation's high spatial and temporal variability. However, incomplete area coverage and deficiencies over most tropical and complex topography mean significant limitations of this measurement type. Satellite-derived datasets, combined with the integration of in-situ observations with satellite data, are an alternative to address these limitations by offering a more spatially homogeneous and temporally comprehensive coverage for scarce data areas of the globe. Nevertheless, applying a bias correction technique on the precipitation datasets is still necessary before they are used for research due to their considerable bias. Here, we analyze the performance of CHIRPS, WorldClim, and TerraClimate datasets compared to data from 30 rain gauge stations over the South-West of Colombia, specifically in the Upper Cauca River Basin-UCRB between 1981 and 2018. Additionally, we applied the Quantile Mapping correction to all gridded precipitation products, and subsequently, the corrected rainfall is compared to the observed data on the monthly, seasonal, and annual scale. Our results show that the CHIRPS dataset better captures the seasonal and monthly variability. CHIRPS presents the best performance during less rainy seasons and at low elevation zones (900–2000 m above sea level-m.a.s.l.), followed by TerraClimate. Utilizing the bias correction methodology, we generated a new, corrected, and more reliable monthly precipitation time series for each location from all gridded precipitation products. Additionally, we found that the correction of the CHIRPS dataset presented the best performance across all spatiotemporal scales in the UCRB. Therefore, this study provides an accurate precipitation database for a complex topographic tropical region with limited data availability.application/pdfhttps://doi.org/10.1016/j.jsames.2024.104898https://repository.urosario.edu.co/handle/10336/44787engJournal of South American Earth SciencesJournal of South American Earth SciencesAttribution-NonCommercial-NoDerivatives 4.0 InternationalAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Journal of South American Earth Sciencesinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURPerformance metricsBias-correctionClimate variabilityGridded datasetsBias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in ColombiaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Romero-Hernández, Clara MarcelaÁvila Díaz, Alvaro JavierQuesada, Benjamín RaphaelMedeiros, FelipeCerón, Wilmar L.Guzman-Escalante, JuanOcampo-Marulanda, CamiloRodrigues Torres, Roger Cristian Felipe ZuluagaORIGINALBias-corrected_high-resolution_precipitation_datasets_assessment_over_a_tropical_mountainous.pdfapplication/pdf21587161https://repository.urosario.edu.co/bitstreams/d3f88cc7-c93f-4907-ac89-da8907dbd1aa/download9d1dfb1ae99412d3e4fdddec6459963cMD51TEXTBias-corrected_high-resolution_precipitation_datasets_assessment_over_a_tropical_mountainous.pdf.txtBias-corrected_high-resolution_precipitation_datasets_assessment_over_a_tropical_mountainous.pdf.txtExtracted texttext/plain91252https://repository.urosario.edu.co/bitstreams/36237859-4f6e-4cce-9308-0ab2a454516e/download6a32da4738bf1f2da5d3775770c1b55eMD52THUMBNAILBias-corrected_high-resolution_precipitation_datasets_assessment_over_a_tropical_mountainous.pdf.jpgBias-corrected_high-resolution_precipitation_datasets_assessment_over_a_tropical_mountainous.pdf.jpgGenerated Thumbnailimage/jpeg4430https://repository.urosario.edu.co/bitstreams/387402c6-7eed-4b1d-96bb-7363a998f8e4/downloadd2109be88007a9fc18144fb55ca67416MD5310336/44787oai:repository.urosario.edu.co:10336/447872025-01-27 03:07:44.493http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |