Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia

Surface gauge measurements have been commonly employed to analyze the precipitation's high spatial and temporal variability. However, incomplete area coverage and deficiencies over most tropical and complex topography mean significant limitations of this measurement type. Satellite-derived data...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/44787
Acceso en línea:
https://doi.org/10.1016/j.jsames.2024.104898
https://repository.urosario.edu.co/handle/10336/44787
Palabra clave:
Performance metrics
Bias-correction
Climate variability
Gridded datasets
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id EDOCUR2_8d8358e1c6727e4286bd8a499ae7dbf4
oai_identifier_str oai:repository.urosario.edu.co:10336/44787
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia
title Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia
spellingShingle Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia
Performance metrics
Bias-correction
Climate variability
Gridded datasets
title_short Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia
title_full Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia
title_fullStr Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia
title_full_unstemmed Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia
title_sort Bias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in Colombia
dc.subject.spa.fl_str_mv Performance metrics
Bias-correction
Climate variability
Gridded datasets
topic Performance metrics
Bias-correction
Climate variability
Gridded datasets
description Surface gauge measurements have been commonly employed to analyze the precipitation's high spatial and temporal variability. However, incomplete area coverage and deficiencies over most tropical and complex topography mean significant limitations of this measurement type. Satellite-derived datasets, combined with the integration of in-situ observations with satellite data, are an alternative to address these limitations by offering a more spatially homogeneous and temporally comprehensive coverage for scarce data areas of the globe. Nevertheless, applying a bias correction technique on the precipitation datasets is still necessary before they are used for research due to their considerable bias. Here, we analyze the performance of CHIRPS, WorldClim, and TerraClimate datasets compared to data from 30 rain gauge stations over the South-West of Colombia, specifically in the Upper Cauca River Basin-UCRB between 1981 and 2018. Additionally, we applied the Quantile Mapping correction to all gridded precipitation products, and subsequently, the corrected rainfall is compared to the observed data on the monthly, seasonal, and annual scale. Our results show that the CHIRPS dataset better captures the seasonal and monthly variability. CHIRPS presents the best performance during less rainy seasons and at low elevation zones (900–2000 m above sea level-m.a.s.l.), followed by TerraClimate. Utilizing the bias correction methodology, we generated a new, corrected, and more reliable monthly precipitation time series for each location from all gridded precipitation products. Additionally, we found that the correction of the CHIRPS dataset presented the best performance across all spatiotemporal scales in the UCRB. Therefore, this study provides an accurate precipitation database for a complex topographic tropical region with limited data availability.
publishDate 2024
dc.date.created.spa.fl_str_mv 2024-07-15
dc.date.issued.spa.fl_str_mv 2024-07-15
dc.date.accessioned.none.fl_str_mv 2025-01-26T18:26:55Z
dc.date.available.none.fl_str_mv 2025-01-26T18:26:55Z
dc.type.spa.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.jsames.2024.104898
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/44787
url https://doi.org/10.1016/j.jsames.2024.104898
https://repository.urosario.edu.co/handle/10336/44787
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv Journal of South American Earth Sciences
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
Abierto (Texto Completo)
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Journal of South American Earth Sciences
dc.source.spa.fl_str_mv Journal of South American Earth Sciences
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/d3f88cc7-c93f-4907-ac89-da8907dbd1aa/download
https://repository.urosario.edu.co/bitstreams/36237859-4f6e-4cce-9308-0ab2a454516e/download
https://repository.urosario.edu.co/bitstreams/387402c6-7eed-4b1d-96bb-7363a998f8e4/download
bitstream.checksum.fl_str_mv 9d1dfb1ae99412d3e4fdddec6459963c
6a32da4738bf1f2da5d3775770c1b55e
d2109be88007a9fc18144fb55ca67416
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1831928328046510080
spelling b8bca805-4781-4868-90cb-f2e79effc3283a8b1659-4eae-4e1a-985a-c8ed34af9c4982972160007f39fa0-5f6e-44a5-a8e2-2a63d3a980be5f751a34-1bc0-4848-bbc6-9b75461b78de89e15aef-2879-468c-ab91-fd13b154cc1b7657925b-2252-4b03-8ad4-fd20455f6e13d250f9bf-c572-41b0-805c-38694d9472512025-01-26T18:26:55Z2025-01-26T18:26:55Z2024-07-152024-07-15Surface gauge measurements have been commonly employed to analyze the precipitation's high spatial and temporal variability. However, incomplete area coverage and deficiencies over most tropical and complex topography mean significant limitations of this measurement type. Satellite-derived datasets, combined with the integration of in-situ observations with satellite data, are an alternative to address these limitations by offering a more spatially homogeneous and temporally comprehensive coverage for scarce data areas of the globe. Nevertheless, applying a bias correction technique on the precipitation datasets is still necessary before they are used for research due to their considerable bias. Here, we analyze the performance of CHIRPS, WorldClim, and TerraClimate datasets compared to data from 30 rain gauge stations over the South-West of Colombia, specifically in the Upper Cauca River Basin-UCRB between 1981 and 2018. Additionally, we applied the Quantile Mapping correction to all gridded precipitation products, and subsequently, the corrected rainfall is compared to the observed data on the monthly, seasonal, and annual scale. Our results show that the CHIRPS dataset better captures the seasonal and monthly variability. CHIRPS presents the best performance during less rainy seasons and at low elevation zones (900–2000 m above sea level-m.a.s.l.), followed by TerraClimate. Utilizing the bias correction methodology, we generated a new, corrected, and more reliable monthly precipitation time series for each location from all gridded precipitation products. Additionally, we found that the correction of the CHIRPS dataset presented the best performance across all spatiotemporal scales in the UCRB. Therefore, this study provides an accurate precipitation database for a complex topographic tropical region with limited data availability.application/pdfhttps://doi.org/10.1016/j.jsames.2024.104898https://repository.urosario.edu.co/handle/10336/44787engJournal of South American Earth SciencesJournal of South American Earth SciencesAttribution-NonCommercial-NoDerivatives 4.0 InternationalAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Journal of South American Earth Sciencesinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURPerformance metricsBias-correctionClimate variabilityGridded datasetsBias-corrected high-resolution precipitation datasets assessment over a tropical mountainous region in ColombiaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Romero-Hernández, Clara MarcelaÁvila Díaz, Alvaro JavierQuesada, Benjamín RaphaelMedeiros, FelipeCerón, Wilmar L.Guzman-Escalante, JuanOcampo-Marulanda, CamiloRodrigues Torres, Roger Cristian Felipe ZuluagaORIGINALBias-corrected_high-resolution_precipitation_datasets_assessment_over_a_tropical_mountainous.pdfapplication/pdf21587161https://repository.urosario.edu.co/bitstreams/d3f88cc7-c93f-4907-ac89-da8907dbd1aa/download9d1dfb1ae99412d3e4fdddec6459963cMD51TEXTBias-corrected_high-resolution_precipitation_datasets_assessment_over_a_tropical_mountainous.pdf.txtBias-corrected_high-resolution_precipitation_datasets_assessment_over_a_tropical_mountainous.pdf.txtExtracted texttext/plain91252https://repository.urosario.edu.co/bitstreams/36237859-4f6e-4cce-9308-0ab2a454516e/download6a32da4738bf1f2da5d3775770c1b55eMD52THUMBNAILBias-corrected_high-resolution_precipitation_datasets_assessment_over_a_tropical_mountainous.pdf.jpgBias-corrected_high-resolution_precipitation_datasets_assessment_over_a_tropical_mountainous.pdf.jpgGenerated Thumbnailimage/jpeg4430https://repository.urosario.edu.co/bitstreams/387402c6-7eed-4b1d-96bb-7363a998f8e4/downloadd2109be88007a9fc18144fb55ca67416MD5310336/44787oai:repository.urosario.edu.co:10336/447872025-01-27 03:07:44.493http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co