Holistic workload scaling : A new approach to compute acceleration in the cloud
Workload scaling is an approach to accelerating computation and thus improving response times by replicating the exact same request multiple times and processing it in parallel on multiple nodes and accepting the result from the first node to finish. This is not unlike a TV game show, where the same...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/19089
- Acceso en línea:
- http://repository.urosario.edu.co/handle/10336/19089
- Palabra clave:
- Cloud Computing
Stochastic Systems
Cloud Environments
Inter Processor Communication
Mapreudce
Model And Analysis
Optimal Approaches
Parallelilzation
Performance Modeling And Analysis
Stochastic Variation
Economic And Social Effects
Probabilidades & matemáticas aplicadas
Sistemas estocásticos
Comercio electrónico
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_1b3ed66d8a9eea4763f92feec2e58222 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/19089 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
800352026000147e376-d298-48f5-9cfe-06fb0bb74c74600833fb15d-e3ae-4784-b79a-9cb81eb2737f6000ca59cc4-82f4-4bc5-a457-59af8e18fb986002019-02-15T19:41:21Z2019-02-15T19:41:21Z20182018Workload scaling is an approach to accelerating computation and thus improving response times by replicating the exact same request multiple times and processing it in parallel on multiple nodes and accepting the result from the first node to finish. This is not unlike a TV game show, where the same question is given to multiple contestants and the (correct) answer is accepted from the first to respond. This is different than traditional strategies for parallelization as used in, say, MapReduce workloads, where each node runs a subset of the overall workload. There are a variety of strategies that trade off metrics such as cost, utilization, performance, and interprocessor communication requirements. Performance modeling can help determine optimal approaches for different environments and goals. This is important, because poor performance can lead to application and domain-specific losses, such as e-commerce conversions and sales. Performance modeling and analysis plays an important role in designing and driving the selection of resource scaling mechanisms. Such modeling and analysis is complex due to time-varying workload arrival rates and request sizes, and even more complex in cloud environments due to the additional stochastic variation caused by performance interference due to resource sharing across co-located tenants. Moreover, little is known on how to multi-scale, i.e., dynamically and simultaneously scale resources vertically, horizontally, and through workload scaling. In this article, we first demonstrate the effectiveness of multi-scaling in reducing latency, and then discuss the performance modeling challenges, particularly for workload scaling. © 2014 IEEE.application/pdf10.1109/MCC.2018.0117917112325-6095http://repository.urosario.edu.co/handle/10336/19089eng3020IEEE Cloud ComputingVol. 5IEEE Cloud Computing, ISSN:2325-6095, Vol. 5 (2018) pp. 20-30https://www.computer.org/csdl/mags/cd/2018/01/mcd2018010020.pdfAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Metrics, K., Blog, , https://blog.kissmetrics.com/loading-timeinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCloud ComputingStochastic SystemsCloud EnvironmentsInter Processor CommunicationMapreudceModel And AnalysisOptimal ApproachesParallelilzationPerformance Modeling And AnalysisStochastic VariationEconomic And Social EffectsProbabilidades & matemáticas aplicadas519600Sistemas estocásticosComercio electrónicoHolistic workload scaling : A new approach to compute acceleration in the cloudarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Pérez, Juan F.Chen, Lydia Y.Villari, MassimoRanjan, RajivPérez, Juan F.Chen, Lydia Y.Villari, MassimoRanjan, RajivORIGINAL113.pdfapplication/pdf560657https://repository.urosario.edu.co/bitstreams/1d276c63-12db-40a5-b09a-df6c547b2285/download738aad6d261d897d953405295b328cbcMD51TEXT113.pdf.txt113.pdf.txtExtracted texttext/plain40076https://repository.urosario.edu.co/bitstreams/108a4905-3fba-4cfa-b9c2-f71b48848a63/download89488270a8f2793dcceb6bcc9e829027MD52THUMBNAIL113.pdf.jpg113.pdf.jpgGenerated Thumbnailimage/jpeg4714https://repository.urosario.edu.co/bitstreams/9eb95170-94ac-4c9e-af16-ca7b7466b7e0/downloadef96ccf948276bf6278298cd267664f6MD5310336/19089oai:repository.urosario.edu.co:10336/190892019-09-19 07:37:54.609585https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Holistic workload scaling : A new approach to compute acceleration in the cloud |
title |
Holistic workload scaling : A new approach to compute acceleration in the cloud |
spellingShingle |
Holistic workload scaling : A new approach to compute acceleration in the cloud Cloud Computing Stochastic Systems Cloud Environments Inter Processor Communication Mapreudce Model And Analysis Optimal Approaches Parallelilzation Performance Modeling And Analysis Stochastic Variation Economic And Social Effects Probabilidades & matemáticas aplicadas Sistemas estocásticos Comercio electrónico |
title_short |
Holistic workload scaling : A new approach to compute acceleration in the cloud |
title_full |
Holistic workload scaling : A new approach to compute acceleration in the cloud |
title_fullStr |
Holistic workload scaling : A new approach to compute acceleration in the cloud |
title_full_unstemmed |
Holistic workload scaling : A new approach to compute acceleration in the cloud |
title_sort |
Holistic workload scaling : A new approach to compute acceleration in the cloud |
dc.subject.spa.fl_str_mv |
Cloud Computing Stochastic Systems Cloud Environments Inter Processor Communication Mapreudce Model And Analysis Optimal Approaches Parallelilzation Performance Modeling And Analysis Stochastic Variation Economic And Social Effects |
topic |
Cloud Computing Stochastic Systems Cloud Environments Inter Processor Communication Mapreudce Model And Analysis Optimal Approaches Parallelilzation Performance Modeling And Analysis Stochastic Variation Economic And Social Effects Probabilidades & matemáticas aplicadas Sistemas estocásticos Comercio electrónico |
dc.subject.ddc.spa.fl_str_mv |
Probabilidades & matemáticas aplicadas |
dc.subject.lemb.spa.fl_str_mv |
Sistemas estocásticos Comercio electrónico |
description |
Workload scaling is an approach to accelerating computation and thus improving response times by replicating the exact same request multiple times and processing it in parallel on multiple nodes and accepting the result from the first node to finish. This is not unlike a TV game show, where the same question is given to multiple contestants and the (correct) answer is accepted from the first to respond. This is different than traditional strategies for parallelization as used in, say, MapReduce workloads, where each node runs a subset of the overall workload. There are a variety of strategies that trade off metrics such as cost, utilization, performance, and interprocessor communication requirements. Performance modeling can help determine optimal approaches for different environments and goals. This is important, because poor performance can lead to application and domain-specific losses, such as e-commerce conversions and sales. Performance modeling and analysis plays an important role in designing and driving the selection of resource scaling mechanisms. Such modeling and analysis is complex due to time-varying workload arrival rates and request sizes, and even more complex in cloud environments due to the additional stochastic variation caused by performance interference due to resource sharing across co-located tenants. Moreover, little is known on how to multi-scale, i.e., dynamically and simultaneously scale resources vertically, horizontally, and through workload scaling. In this article, we first demonstrate the effectiveness of multi-scaling in reducing latency, and then discuss the performance modeling challenges, particularly for workload scaling. © 2014 IEEE. |
publishDate |
2018 |
dc.date.created.none.fl_str_mv |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2019-02-15T19:41:21Z |
dc.date.available.none.fl_str_mv |
2019-02-15T19:41:21Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
10.1109/MCC.2018.011791711 |
dc.identifier.issn.none.fl_str_mv |
2325-6095 |
dc.identifier.uri.none.fl_str_mv |
http://repository.urosario.edu.co/handle/10336/19089 |
identifier_str_mv |
10.1109/MCC.2018.011791711 2325-6095 |
url |
http://repository.urosario.edu.co/handle/10336/19089 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
30 |
dc.relation.citationStartPage.none.fl_str_mv |
20 |
dc.relation.citationTitle.none.fl_str_mv |
IEEE Cloud Computing |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 5 |
dc.relation.ispartof.spa.fl_str_mv |
IEEE Cloud Computing, ISSN:2325-6095, Vol. 5 (2018) pp. 20-30 |
dc.relation.uri.spa.fl_str_mv |
https://www.computer.org/csdl/mags/cd/2018/01/mcd2018010020.pdf |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.spa.fl_str_mv |
Metrics, K., Blog, , https://blog.kissmetrics.com/loading-time |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/1d276c63-12db-40a5-b09a-df6c547b2285/download https://repository.urosario.edu.co/bitstreams/108a4905-3fba-4cfa-b9c2-f71b48848a63/download https://repository.urosario.edu.co/bitstreams/9eb95170-94ac-4c9e-af16-ca7b7466b7e0/download |
bitstream.checksum.fl_str_mv |
738aad6d261d897d953405295b328cbc 89488270a8f2793dcceb6bcc9e829027 ef96ccf948276bf6278298cd267664f6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1831928237293305856 |