The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro

The coronavirus disease 2019 (COVID-19) has become a serious problem for public health since it was identified in the province of Wuhan (China) and spread around the world producing high mortality rates and economic losses. Nowadays, WHO recognizes traditional, complementary, and alternative medicin...

Full description

Autores:
Zapata Builes, Wildeman
Rugeles López, María Teresa
Yepes, Lina M.
Zapata Cardona, María Isabel
Flórez Álvarez, Lizdany
Aguilar Jiménez, Wbeimar
Oliveros, Cristian
Yepes Perez, Andres
Herrera Calderon, Oscar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/33487
Acceso en línea:
https://hdl.handle.net/20.500.12494/33487
Palabra clave:
SARS-CoV-2
COVID-19
Uncaria tomentosa
Cat´s claw
Antivirals
Severe acute respiratory syndrome coronavirus 2
SARS-CoV-2
COVID-19
Uncaria tomentosa
Cat´s claw
Antivirals
Severe acute respiratory syndrome coronavirus 2
Rights
openAccess
License
Atribución
id COOPER2_eb57345a36cbb8e74eb046b4fbf0fff1
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/33487
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro
title The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro
spellingShingle The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro
SARS-CoV-2
COVID-19
Uncaria tomentosa
Cat´s claw
Antivirals
Severe acute respiratory syndrome coronavirus 2
SARS-CoV-2
COVID-19
Uncaria tomentosa
Cat´s claw
Antivirals
Severe acute respiratory syndrome coronavirus 2
title_short The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro
title_full The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro
title_fullStr The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro
title_full_unstemmed The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro
title_sort The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro
dc.creator.fl_str_mv Zapata Builes, Wildeman
Rugeles López, María Teresa
Yepes, Lina M.
Zapata Cardona, María Isabel
Flórez Álvarez, Lizdany
Aguilar Jiménez, Wbeimar
Oliveros, Cristian
Yepes Perez, Andres
Herrera Calderon, Oscar
dc.contributor.author.none.fl_str_mv Zapata Builes, Wildeman
Rugeles López, María Teresa
Yepes, Lina M.
Zapata Cardona, María Isabel
Flórez Álvarez, Lizdany
Aguilar Jiménez, Wbeimar
Oliveros, Cristian
Yepes Perez, Andres
Herrera Calderon, Oscar
dc.subject.spa.fl_str_mv SARS-CoV-2
COVID-19
Uncaria tomentosa
Cat´s claw
Antivirals
Severe acute respiratory syndrome coronavirus 2
topic SARS-CoV-2
COVID-19
Uncaria tomentosa
Cat´s claw
Antivirals
Severe acute respiratory syndrome coronavirus 2
SARS-CoV-2
COVID-19
Uncaria tomentosa
Cat´s claw
Antivirals
Severe acute respiratory syndrome coronavirus 2
dc.subject.other.spa.fl_str_mv SARS-CoV-2
COVID-19
Uncaria tomentosa
Cat´s claw
Antivirals
Severe acute respiratory syndrome coronavirus 2
description The coronavirus disease 2019 (COVID-19) has become a serious problem for public health since it was identified in the province of Wuhan (China) and spread around the world producing high mortality rates and economic losses. Nowadays, WHO recognizes traditional, complementary, and alternative medicine for treating COVID-19 symptoms. Therefore, we investigated the antiviral potential of the hydroalcoholic extract of Uncaria tomentosa stem bark from Peru against SARS-CoV-2 in vitro. The antiviral activity of U. tomentosa against SARS-CoV-2 in vitro was assessed in Vero E6 cells using cytopathic effect (CPE) and plaque reduction assay. After 48h of treatment, U. tomentosa showed an inhibition of 92.7 % of SARS-CoV-2 at 25.0 µg/mL (p<0.0001) by plaque reduction assay on Vero E6 cells. In addition, U. tomentosa, induced a reduction of 98.6 % (p=0.02) and 92.7 % (p=0.03) in the CPE caused by SARS-CoV-2 on Vero E6 cells at 25 µg/mL and 12.5 µg/mL, respectively. The EC50 calculated for U. tomentosa extract by plaque reduction assay was 6.6 µg/mL (4.89 – 8.85 µg/mL) for a selectivity index of 4.1. The EC50 calculated for U. tomentosa extract by TCID50 assay was 2.57 µg/mL (1.05 – 3.75 µg/mL) for a selectivity index of 10.54. These results showed that U. tomentosa known as Cat´s claw has antiviral effect against SARS-CoV-2 observed as a reduction in the viral titer and CPE after 48h of treatment on Vero E6 cells. Therefore, we hypothesized that U. tomentosa stem bark, could be promissory to the development of new therapeutic strategies against SARS-CoV-2.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-03-01T13:05:22Z
dc.date.available.none.fl_str_mv 2021-03-01T13:05:22Z
dc.date.issued.none.fl_str_mv 2021-02-24
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1741-4288
dc.identifier.uri.spa.fl_str_mv 10.1155/2021/6679761
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/33487
dc.identifier.bibliographicCitation.spa.fl_str_mv Yepes Pérez, A. F., Herrera Calderón, O., Oliveros, C. A., Flórez Álvarez, L., Zapata Cardona, M. I., Yepes, L., Aguilar Jiménez, W., Rugeles, M. T. and Zapata, W. (2021). The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. Evidence-Based Complementary and Alternative Medicine, vol. 2021, Article ID 6679761, 1-11. https://doi.org/10.1155/2021/6679761.
identifier_str_mv 1741-4288
10.1155/2021/6679761
Yepes Pérez, A. F., Herrera Calderón, O., Oliveros, C. A., Flórez Álvarez, L., Zapata Cardona, M. I., Yepes, L., Aguilar Jiménez, W., Rugeles, M. T. and Zapata, W. (2021). The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. Evidence-Based Complementary and Alternative Medicine, vol. 2021, Article ID 6679761, 1-11. https://doi.org/10.1155/2021/6679761.
url https://hdl.handle.net/20.500.12494/33487
dc.relation.isversionof.spa.fl_str_mv https://www.hindawi.com/journals/ecam/2021/6679761/
dc.relation.ispartofjournal.spa.fl_str_mv Evidence-Based Complementary and Alternative Medicine
dc.relation.references.spa.fl_str_mv J. Harcourt, A. Tamin, X. Lu et al., “Severe acute respiratory syndrome coronavirus 2 from patient with coronavirus disease, United States,” Emerging Infectious Diseases, vol. 26, no. 6, pp. 1266–1273, 2020.
Y. Takeda, T. Murata, D. Jamsransuren et al., “Saxifraga spinulosa-derived components rapidly inactivate multiple viruses including SARS-CoV-2,” Viruses, vol. 12, no. 7, 699 pages, 2020.
World Health Organization (WHO), World Health Organization, “WHO coronavirus disease (COVID-19) dashboard,” 2020, https://covid19.who.int.
J. A. Poterico and O. Mestanza, “Genetic variants and source of introduction of SARS-CoV-2 in South America,” Journal of Medical Virology, vol. 92, no. 10, 2020.
C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, and P.-R. Hsueh, “Severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges,” International Journal of Antimicrobial Agents, vol. 55, no. 3, Article ID 105924, 2020.
WHO, “WHO supports scientifically-proven traditional medicine no title,” 2020, https://www.afro.who.int/news/ who-supports-scientifically-proven-traditional-medicine.
L. Z. De Oliveira, I. L. G. Farias, M. L. Rigo et al., “Effect of Uncaria tomentosa extract on apoptosis triggered by oxaliplatin exposure on HT29 cells,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 274786, 10 pages, 2014.
M. E. Heitzman, C. C. Neto, E. Winiarz, A. J. Vaisberg, and G. B. Hammond, “Ethnobotany, phytochemistry and pharmacology of uncaria (Rubiaceae),” Phytochemistry, vol. 66, no. 1, pp. 5–29, 2005.
O. Lock, E. Perez, M. Villar, D. Flores, and R. Rojas, “Bioactive compounds from plants used in peruvian traditional medicine,” Natural Product Communications, vol. 11, no. 3, pp. 315–337, 2016.
S. R. I. N. Reis, L. M. M. Valente, A. L. Sampaio et al., “Immunomodulating and antiviral activities of uncaria tomentosa on human monocytes infected with dengue virus- 2,” International Immunopharmacology, vol. 8, no. 3, pp. 468–476, 2008.
T. Caon, S. Kaiser, C. Feltrin et al., “Antimutagenic and antiherpetic activities of different preparations from uncaria tomentosa (cat’s claw),” Food and Chemical Toxicology, vol. 66, pp. 30–35, 2014.
A. F. Yepes-P´erez, O. Herrera-Calderon, J.-E. S´anchez- Aparicio et al., “Investigating potential inhibitory effect of uncaria tomentosa (cat’s claw) against the main protease 3CLpro of SARS-CoV-2 by molecular modeling,” Evidence- Based Complementary and Alternative Medicine, vol. 2020, pp. 1–14, 2020.
A. F. Yepes-P´erez, O. Herrera-Calderon, and J. Quintero- Saumeth, “Uncaria tomentosa (cat’s claw): a promising herbal medicine against SARS-CoV-2/ACE-2 junction and SARSCoV- 2 spike protein based on molecular modeling,” Journal of Biomolecular Structure and Dynamics, vol. 117 pages, 2020.
M. Sandoval-Chac´on, J. H. -ompson, X. J. Zhang et al., “Antiinflammatory actions of cat’s claw: the role of NF-κB,” Alimentary Pharmacology & Eerapeutics, vol. 12, no. 12, pp. 1279–1289, 1998.
J. Kolodziejczyk-Czepas, M. Ponczek, M. Sady-Janczak, R. Pilarski, and B. Bukowska, “Extracts from Uncaria tomentosa as antiplatelet agents and thrombin inhibitors –the in vitro and in silico study,” Journal of Ethnopharmacology, vol. 267, Article ID 113494, 2020.
R. M. Lenzi, L. H. Campestrini, L. M. Okumura et al., “Effects of aqueous fractions of uncaria tomentosa (Willd.) D.C. on macrophage modulatory activities,” Food Research International, vol. 53, no. 2, pp. 767–779, 2013.
M. Navarro-Hoyos, R. Lebr´on-Aguilar, J. E. Quintanilla- L´opez et al., “Proanthocyanidin characterization and bioactivity of extracts from different parts of uncaria tomentosa L. (cat’s claw),” Antioxidants, vol. 6, no. 1, 2017.
F. Dietrich, S. Kaiser, L. Rockenbach et al., “Quinovic acid glycosides purified fraction from uncaria tomentosa induces cell death by apoptosis in the T24 human bladder cancer cell line,” Food and Chemical Toxicology, vol. 67, pp. 222–229, 2014.
R. Aquino, N. De Tommasi, F. De Simone, and C. Pizza, “Triterpenes and quinovic acid glycosides from uncaria tomentosa,” Phytochemistry, vol. 45, no. 5, pp. 1035–1040, 1997.
E. M. C. Peñaloza, S. Kaiser, P. E. De Resende et al., “Chemical composition variability in the uncaria tomentosa (cat’s claw) wild population,” Qu´ımica Nova, vol. 38, no. 3, pp. 378–386, 2015.
M. D. Sacco, C. Ma, P. Lagarias et al., “Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against M pro and cathepsin L,” Science Advances, vol. 6, no. 50, 2020.
K. Takayama, “Vitro and animal models for SARS-CoV-2 research,” Trends in Pharmacological Sciences, vol. 41, no. 8, pp. 513–517, 2020.
M. K. Bohn, A. Hall, L. Sepiashvili et al., “Pathophysiology of COVID-19: mechanisms underlying disease severity and progression,” Physiology, vol. 35, no. 5, 2020.
A. O. Ferreira, H. C. Polonini, and E. C. F. Dijkers, “Postulated adjuvant therapeutic strategies for COVID-19,” Journal of Personalized Medicine, vol. 10, no. 3, p. 80, 2020.
F. J. D´ıaz, W. Aguilar-Jim´enez, L. Fl´orez- ´ Alvarez et al., “Aislamiento y caracterizaci´on de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medell´ın, Colombia,” Biomedica, vol. 40, no. 2, pp. 148–158, 2020.
S. Xu and Y. Li, “Beware of the second wave of COVID-19,” Ee Lancet, vol. 395, pp. 1321-1322, Article ID 10233, 2020.
A. A. Rabaan, S. H. Al-Ahmed, R. Sah et al., “SARS-CoV-2/ COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic,” Annals of Clinical Microbiology and Antimicrobials, vol. 19, no. 1, p. 40, 2020.
L. Ni, L. Zhou, M. Zhou, J. Zhao, and D. W. Wang, “Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19,” Frontiers of Medicine, vol. 14, no. 2, pp. 210–214, 2020.
R. R. Narkhede, A. V. Pise, R. S. Cheke, and S. D. Shinde, “Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): in-silico evidences,” Natural Products and Bioprospecting, vol. 10, no. 5, pp. 297– 306, 2020.
X. Xiong, P. Wang, K. Su, W. C. Cho, and Y. Xing, “Chinese herbal medicine for coronavirus disease 2019: a systematic review and meta-analysis,” Pharmacological Research, vol. 160, Article ID 105056, 2020.
W. Dai, B. Zhang, X.-M. Jiang et al., “Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease,” Science, vol. 368, no. 6497, pp. 1331–1335, 2020.
N. S. Ogando, T. J. Dalebout, J. C. Zevenhoven-Dobbe et al., “SARS-coronavirus-2 replication in vero E6 cells: replication kinetics, rapid adaptation and cytopathology,” Journal of General Virology, vol. 101, no. 9, pp. 925–940, 2020.
L. Zhang, D. Lin, X. Sun et al., “Crystal structure of SARSCoV- 2 main protease provides a basis for design of improved α-ketoamide inhibitors,” Science, vol. 368, no. 6489, pp. 409–412, Apr. 2020.
C. Ma, M. D. Sacco, B. Hurst et al., “Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease,” Cell Research, vol. 30, no. 8, pp. 678–692, 2020.
R. Aquino, F. De Simone, C. Pizza, C. Conti, and M. L. Stein, “Plant metabolites. Structure and in vitro antiviral activity of quinovic acid glycosides from uncaria tomentosa and guettarda platypoda,” Journal of Natural Products, vol. 61, no. 7, pp. 936–938, 1989.
J. Signer, H. R. Jonsdottir, W. C. Albrich et al., “In vitro virucidal activity of echinaforce®, an echinacea purpurea preparation, against coronaviruses, including common cold coronavirus 229E and SARS-CoV-2,” Virology Journal, vol. 17, no. 1, 136 pages, 2020.
Q. Ma, W. Pan, R. Li et al., “Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway,” Pharmacological Research, vol. 158, Article ID 104850, 2020.
Q. Ma, R. Li, W. Pan et al., “Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway,” Phytomedicine, vol. 78, Article ID 153296, 2020.
P. S. Kwon, H. Oh, S.-J. Kwon et al., “Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro,” Cell Discovery, vol. 6, no. 1, p. 50, 2020.
A. I. Trujillo-Correa, D. C. Quintero-Gil, F. Diaz-Castillo et al., “In vitro and in silico anti-dengue activity of compounds obtained from psidium guajava through bioprospecting,” BMC Complementary and Alternative Medicine, vol. 19, no. 1, 298 pages, 2019.
T. Maruoka, A. Kitanaka, Y. Kubota et al., “Lemongrass essential oil and citral inhibit Src/Stat3 activity and suppress the proliferation/survival of small-cell lung cancer cells, alone or in combination with chemotherapeutic agents,” International Journal of Oncology, vol. 1, pp. 1738–1748, 2018.
S. Wichit, R. Hamel, E. Bernard et al., “Imipramine inhibits chikungunya virus replication in human skin fibroblasts through interference with intracellular cholesterol trafficking,” Scientific Reports, vol. 7, 3145 pages, 2017.
F. Tabatabaei, M. Moezizadeh, and F. Javand, “Effects of extracts of Salvadora persica on proliferation and viability of human dental pulp stem cells,” Journal of Conservative Dentistry: JCD, vol. 18, no. 4, pp. 315–320, 2015.
R. Rojas-Duran, G. Gonz´alez-Aspajo, C. Ruiz-Martel et al., “Anti-inflammatory activity of mitraphylline isolated from uncaria tomentosa bark,” Journal of Ethnopharmacology, vol. 143, no. 3, pp. 801–804, 2012.
A. C. Cheng, C. B. Jian, Y. T. Huang et al., “Induction of apoptosis by uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells,” Food and Chemical Toxicology, vol. 45, no. 11, pp. 2206–2218, 2007.
R. S. Lima-Junior, C. Da Silva Mello, C. F. Kubelka, A. C. Siani, and L. M. M. Valente, “Uncaria tomentosa alkaloidal fraction reduces paracellular permeability, il-8 and ns1 production on human microvascular endothelial cells infected with dengue virus,” Natural Product Communications, vol. 8, no. 11, pp. 1547–1550, 2013.
M. Sandoval, R. M. Charbonnet, N. N. Okuhama et al., “Cat’s claw inhibits TNFα production and scavenges free radicals: role in cytoprotection,” Free Radical Biology and Medicine, vol. 29, no. 1, pp. 71–78, 2000.
P. T. W. Law, C. H. Wong, T. C. C. Au et al., “-e 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in vero E6 cells,” Journal of General Virology, vol. 86, no. 7, pp. 1921–1930, 2005.
F. J. Cisneros, M. Jayo, and L. Niedziela, “An uncaria tomentosa (cat’s claw) extract protects mice against ozoneinduced lung inflammation,” Journal of Ethnopharmacology, vol. 96, no. 3, pp. 355–364, 2005.
L. Chen, J. Ma, X. Wang, and M. Zhang, “Simultaneous determination of six uncaria alkaloids in mouse blood by UPLC-MS/MS and its application in pharmacokinetics and bioavailability,” BioMed Research International, vol. 2020, Article ID 1030269, 11 pages, 2020.
G. E.-S. Batiha, A. Magdy Beshbishy, L. Wasef et al., “Uncaria tomentosa (Willd. ex Schult.) DC.: a review on chemical constituents and biological activities,” Applied Sciences, vol. 10, no. 8, p. 2668, 2020.
Y. Sheng, “DNA repair enhancement of aqueous extracts of in a human volunteer study,” Phytomedicine, vol. 8, no. 4, pp. 275–282, 2001.
L. G. Valerio and G. F. Gonzales, “Toxicological aspects of the South American herbs cat’s claw (uncaria tomentosa) and maca (lepidium meyenii): a critical synopsis,” Toxicological Reviews, vol. 24, no. 1, 11 pages, 2005.
L. C. L. De Paula, F. Fonseca, F. Perazzo et al., “Uncaria tomentosa (cat’s claw) improves quality of life in patients with advanced solid tumors,” Journal of Alternative and Complementary Medicine, vol. 21, no. 1, pp. 22–30, 2015.
M. R. C. Schetinger, I. L. G. Farias, M. C. S. Ara´ujo et al., “Uncaria tomentosa for reducing side effects caused by chemotherapy in CRC patients: clinical trial,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 892182, 8 pages, 2012.
K. Keplinger, G. Laus, M. Wurm, M. P. Dierich, and H. Teppner, “Uncaria tomentosa (Willd.) DC. - ethnomedicinal use and new pharmacological, toxicological and botanical results,” Journal of Ethnopharmacology, vol. 64, no. 1, pp. 23–34, 1998.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11
dc.coverage.temporal.spa.fl_str_mv 2021
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y Envigado
Zheng Feei Ma
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/cd5ea5bf-f1ec-4957-88db-5d044e60259a/download
https://repository.ucc.edu.co/bitstreams/ab6fab92-6123-41ad-8d5f-63bf87e7c5a3/download
https://repository.ucc.edu.co/bitstreams/2f2bec7d-5444-4fb8-beb7-90b35c2480ba/download
https://repository.ucc.edu.co/bitstreams/18bfb1db-861d-4985-be2d-099dbd12055c/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
5f6e6d3a74a7a6e2899b213cb1d2cb17
8822315773e8a64537b850e5acf06575
b484323f18b0903244832f55693e9d99
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565546802511872
spelling Zapata Builes, WildemanRugeles López, María TeresaYepes, Lina M.Zapata Cardona, María IsabelFlórez Álvarez, LizdanyAguilar Jiménez, WbeimarOliveros, CristianYepes Perez, AndresHerrera Calderon, Oscar20212021-03-01T13:05:22Z2021-03-01T13:05:22Z2021-02-241741-428810.1155/2021/6679761https://hdl.handle.net/20.500.12494/33487Yepes Pérez, A. F., Herrera Calderón, O., Oliveros, C. A., Flórez Álvarez, L., Zapata Cardona, M. I., Yepes, L., Aguilar Jiménez, W., Rugeles, M. T. and Zapata, W. (2021). The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. Evidence-Based Complementary and Alternative Medicine, vol. 2021, Article ID 6679761, 1-11. https://doi.org/10.1155/2021/6679761.The coronavirus disease 2019 (COVID-19) has become a serious problem for public health since it was identified in the province of Wuhan (China) and spread around the world producing high mortality rates and economic losses. Nowadays, WHO recognizes traditional, complementary, and alternative medicine for treating COVID-19 symptoms. Therefore, we investigated the antiviral potential of the hydroalcoholic extract of Uncaria tomentosa stem bark from Peru against SARS-CoV-2 in vitro. The antiviral activity of U. tomentosa against SARS-CoV-2 in vitro was assessed in Vero E6 cells using cytopathic effect (CPE) and plaque reduction assay. After 48h of treatment, U. tomentosa showed an inhibition of 92.7 % of SARS-CoV-2 at 25.0 µg/mL (p<0.0001) by plaque reduction assay on Vero E6 cells. In addition, U. tomentosa, induced a reduction of 98.6 % (p=0.02) and 92.7 % (p=0.03) in the CPE caused by SARS-CoV-2 on Vero E6 cells at 25 µg/mL and 12.5 µg/mL, respectively. The EC50 calculated for U. tomentosa extract by plaque reduction assay was 6.6 µg/mL (4.89 – 8.85 µg/mL) for a selectivity index of 4.1. The EC50 calculated for U. tomentosa extract by TCID50 assay was 2.57 µg/mL (1.05 – 3.75 µg/mL) for a selectivity index of 10.54. These results showed that U. tomentosa known as Cat´s claw has antiviral effect against SARS-CoV-2 observed as a reduction in the viral titer and CPE after 48h of treatment on Vero E6 cells. Therefore, we hypothesized that U. tomentosa stem bark, could be promissory to the development of new therapeutic strategies against SARS-CoV-2.The coronavirus disease 2019 (COVID-19) has become a serious problem for public health since it was identified in the province of Wuhan (China) and spread around the world producing high mortality rates and economic losses. Nowadays, WHO recognizes traditional, complementary, and alternative medicine for treating COVID-19 symptoms. Therefore, we investigated the antiviral potential of the hydroalcoholic extract of Uncaria tomentosa stem bark from Peru against SARS-CoV-2 in vitro. The antiviral activity of U. tomentosa against SARS-CoV-2 in vitro was assessed in Vero E6 cells using cytopathic effect (CPE) and plaque reduction assay. After 48h of treatment, U. tomentosa showed an inhibition of 92.7 % of SARS-CoV-2 at 25.0 µg/mL (p<0.0001) by plaque reduction assay on Vero E6 cells. In addition, U. tomentosa, induced a reduction of 98.6 % (p=0.02) and 92.7 % (p=0.03) in the CPE caused by SARS-CoV-2 on Vero E6 cells at 25 µg/mL and 12.5 µg/mL, respectively. The EC50 calculated for U. tomentosa extract by plaque reduction assay was 6.6 µg/mL (4.89 – 8.85 µg/mL) for a selectivity index of 4.1. The EC50 calculated for U. tomentosa extract by TCID50 assay was 2.57 µg/mL (1.05 – 3.75 µg/mL) for a selectivity index of 10.54. These results showed that U. tomentosa known as Cat´s claw has antiviral effect against SARS-CoV-2 observed as a reduction in the viral titer and CPE after 48h of treatment on Vero E6 cells. Therefore, we hypothesized that U. tomentosa stem bark, could be promissory to the development of new therapeutic strategies against SARS-CoV-2.https://scienti.minciencias.gov.co/cvlac/EnProdArticulo/query.do?cod_producto=73&cod_rh=0000157775https://orcid.org/0000-0002-7351-8738COL0112548wildeman.zapatab@campusucc.edu.cohttps://scholar.google.com.co/citations?hl=en&user=VLZxl1UAAAAJ11Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y EnvigadoZheng Feei MaMedicinaMedellínhttps://www.hindawi.com/journals/ecam/2021/6679761/Evidence-Based Complementary and Alternative MedicineJ. Harcourt, A. Tamin, X. Lu et al., “Severe acute respiratory syndrome coronavirus 2 from patient with coronavirus disease, United States,” Emerging Infectious Diseases, vol. 26, no. 6, pp. 1266–1273, 2020.Y. Takeda, T. Murata, D. Jamsransuren et al., “Saxifraga spinulosa-derived components rapidly inactivate multiple viruses including SARS-CoV-2,” Viruses, vol. 12, no. 7, 699 pages, 2020.World Health Organization (WHO), World Health Organization, “WHO coronavirus disease (COVID-19) dashboard,” 2020, https://covid19.who.int.J. A. Poterico and O. Mestanza, “Genetic variants and source of introduction of SARS-CoV-2 in South America,” Journal of Medical Virology, vol. 92, no. 10, 2020.C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, and P.-R. Hsueh, “Severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges,” International Journal of Antimicrobial Agents, vol. 55, no. 3, Article ID 105924, 2020.WHO, “WHO supports scientifically-proven traditional medicine no title,” 2020, https://www.afro.who.int/news/ who-supports-scientifically-proven-traditional-medicine.L. Z. De Oliveira, I. L. G. Farias, M. L. Rigo et al., “Effect of Uncaria tomentosa extract on apoptosis triggered by oxaliplatin exposure on HT29 cells,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 274786, 10 pages, 2014.M. E. Heitzman, C. C. Neto, E. Winiarz, A. J. Vaisberg, and G. B. Hammond, “Ethnobotany, phytochemistry and pharmacology of uncaria (Rubiaceae),” Phytochemistry, vol. 66, no. 1, pp. 5–29, 2005.O. Lock, E. Perez, M. Villar, D. Flores, and R. Rojas, “Bioactive compounds from plants used in peruvian traditional medicine,” Natural Product Communications, vol. 11, no. 3, pp. 315–337, 2016.S. R. I. N. Reis, L. M. M. Valente, A. L. Sampaio et al., “Immunomodulating and antiviral activities of uncaria tomentosa on human monocytes infected with dengue virus- 2,” International Immunopharmacology, vol. 8, no. 3, pp. 468–476, 2008.T. Caon, S. Kaiser, C. Feltrin et al., “Antimutagenic and antiherpetic activities of different preparations from uncaria tomentosa (cat’s claw),” Food and Chemical Toxicology, vol. 66, pp. 30–35, 2014.A. F. Yepes-P´erez, O. Herrera-Calderon, J.-E. S´anchez- Aparicio et al., “Investigating potential inhibitory effect of uncaria tomentosa (cat’s claw) against the main protease 3CLpro of SARS-CoV-2 by molecular modeling,” Evidence- Based Complementary and Alternative Medicine, vol. 2020, pp. 1–14, 2020.A. F. Yepes-P´erez, O. Herrera-Calderon, and J. Quintero- Saumeth, “Uncaria tomentosa (cat’s claw): a promising herbal medicine against SARS-CoV-2/ACE-2 junction and SARSCoV- 2 spike protein based on molecular modeling,” Journal of Biomolecular Structure and Dynamics, vol. 117 pages, 2020.M. Sandoval-Chac´on, J. H. -ompson, X. J. Zhang et al., “Antiinflammatory actions of cat’s claw: the role of NF-κB,” Alimentary Pharmacology & Eerapeutics, vol. 12, no. 12, pp. 1279–1289, 1998.J. Kolodziejczyk-Czepas, M. Ponczek, M. Sady-Janczak, R. Pilarski, and B. Bukowska, “Extracts from Uncaria tomentosa as antiplatelet agents and thrombin inhibitors –the in vitro and in silico study,” Journal of Ethnopharmacology, vol. 267, Article ID 113494, 2020.R. M. Lenzi, L. H. Campestrini, L. M. Okumura et al., “Effects of aqueous fractions of uncaria tomentosa (Willd.) D.C. on macrophage modulatory activities,” Food Research International, vol. 53, no. 2, pp. 767–779, 2013.M. Navarro-Hoyos, R. Lebr´on-Aguilar, J. E. Quintanilla- L´opez et al., “Proanthocyanidin characterization and bioactivity of extracts from different parts of uncaria tomentosa L. (cat’s claw),” Antioxidants, vol. 6, no. 1, 2017.F. Dietrich, S. Kaiser, L. Rockenbach et al., “Quinovic acid glycosides purified fraction from uncaria tomentosa induces cell death by apoptosis in the T24 human bladder cancer cell line,” Food and Chemical Toxicology, vol. 67, pp. 222–229, 2014.R. Aquino, N. De Tommasi, F. De Simone, and C. Pizza, “Triterpenes and quinovic acid glycosides from uncaria tomentosa,” Phytochemistry, vol. 45, no. 5, pp. 1035–1040, 1997.E. M. C. Peñaloza, S. Kaiser, P. E. De Resende et al., “Chemical composition variability in the uncaria tomentosa (cat’s claw) wild population,” Qu´ımica Nova, vol. 38, no. 3, pp. 378–386, 2015.M. D. Sacco, C. Ma, P. Lagarias et al., “Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against M pro and cathepsin L,” Science Advances, vol. 6, no. 50, 2020.K. Takayama, “Vitro and animal models for SARS-CoV-2 research,” Trends in Pharmacological Sciences, vol. 41, no. 8, pp. 513–517, 2020.M. K. Bohn, A. Hall, L. Sepiashvili et al., “Pathophysiology of COVID-19: mechanisms underlying disease severity and progression,” Physiology, vol. 35, no. 5, 2020.A. O. Ferreira, H. C. Polonini, and E. C. F. Dijkers, “Postulated adjuvant therapeutic strategies for COVID-19,” Journal of Personalized Medicine, vol. 10, no. 3, p. 80, 2020.F. J. D´ıaz, W. Aguilar-Jim´enez, L. Fl´orez- ´ Alvarez et al., “Aislamiento y caracterizaci´on de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medell´ın, Colombia,” Biomedica, vol. 40, no. 2, pp. 148–158, 2020.S. Xu and Y. Li, “Beware of the second wave of COVID-19,” Ee Lancet, vol. 395, pp. 1321-1322, Article ID 10233, 2020.A. A. Rabaan, S. H. Al-Ahmed, R. Sah et al., “SARS-CoV-2/ COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic,” Annals of Clinical Microbiology and Antimicrobials, vol. 19, no. 1, p. 40, 2020.L. Ni, L. Zhou, M. Zhou, J. Zhao, and D. W. Wang, “Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19,” Frontiers of Medicine, vol. 14, no. 2, pp. 210–214, 2020.R. R. Narkhede, A. V. Pise, R. S. Cheke, and S. D. Shinde, “Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): in-silico evidences,” Natural Products and Bioprospecting, vol. 10, no. 5, pp. 297– 306, 2020.X. Xiong, P. Wang, K. Su, W. C. Cho, and Y. Xing, “Chinese herbal medicine for coronavirus disease 2019: a systematic review and meta-analysis,” Pharmacological Research, vol. 160, Article ID 105056, 2020.W. Dai, B. Zhang, X.-M. Jiang et al., “Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease,” Science, vol. 368, no. 6497, pp. 1331–1335, 2020.N. S. Ogando, T. J. Dalebout, J. C. Zevenhoven-Dobbe et al., “SARS-coronavirus-2 replication in vero E6 cells: replication kinetics, rapid adaptation and cytopathology,” Journal of General Virology, vol. 101, no. 9, pp. 925–940, 2020.L. Zhang, D. Lin, X. Sun et al., “Crystal structure of SARSCoV- 2 main protease provides a basis for design of improved α-ketoamide inhibitors,” Science, vol. 368, no. 6489, pp. 409–412, Apr. 2020.C. Ma, M. D. Sacco, B. Hurst et al., “Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease,” Cell Research, vol. 30, no. 8, pp. 678–692, 2020.R. Aquino, F. De Simone, C. Pizza, C. Conti, and M. L. Stein, “Plant metabolites. Structure and in vitro antiviral activity of quinovic acid glycosides from uncaria tomentosa and guettarda platypoda,” Journal of Natural Products, vol. 61, no. 7, pp. 936–938, 1989.J. Signer, H. R. Jonsdottir, W. C. Albrich et al., “In vitro virucidal activity of echinaforce®, an echinacea purpurea preparation, against coronaviruses, including common cold coronavirus 229E and SARS-CoV-2,” Virology Journal, vol. 17, no. 1, 136 pages, 2020.Q. Ma, W. Pan, R. Li et al., “Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway,” Pharmacological Research, vol. 158, Article ID 104850, 2020.Q. Ma, R. Li, W. Pan et al., “Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway,” Phytomedicine, vol. 78, Article ID 153296, 2020.P. S. Kwon, H. Oh, S.-J. Kwon et al., “Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro,” Cell Discovery, vol. 6, no. 1, p. 50, 2020.A. I. Trujillo-Correa, D. C. Quintero-Gil, F. Diaz-Castillo et al., “In vitro and in silico anti-dengue activity of compounds obtained from psidium guajava through bioprospecting,” BMC Complementary and Alternative Medicine, vol. 19, no. 1, 298 pages, 2019.T. Maruoka, A. Kitanaka, Y. Kubota et al., “Lemongrass essential oil and citral inhibit Src/Stat3 activity and suppress the proliferation/survival of small-cell lung cancer cells, alone or in combination with chemotherapeutic agents,” International Journal of Oncology, vol. 1, pp. 1738–1748, 2018.S. Wichit, R. Hamel, E. Bernard et al., “Imipramine inhibits chikungunya virus replication in human skin fibroblasts through interference with intracellular cholesterol trafficking,” Scientific Reports, vol. 7, 3145 pages, 2017.F. Tabatabaei, M. Moezizadeh, and F. Javand, “Effects of extracts of Salvadora persica on proliferation and viability of human dental pulp stem cells,” Journal of Conservative Dentistry: JCD, vol. 18, no. 4, pp. 315–320, 2015.R. Rojas-Duran, G. Gonz´alez-Aspajo, C. Ruiz-Martel et al., “Anti-inflammatory activity of mitraphylline isolated from uncaria tomentosa bark,” Journal of Ethnopharmacology, vol. 143, no. 3, pp. 801–804, 2012.A. C. Cheng, C. B. Jian, Y. T. Huang et al., “Induction of apoptosis by uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells,” Food and Chemical Toxicology, vol. 45, no. 11, pp. 2206–2218, 2007.R. S. Lima-Junior, C. Da Silva Mello, C. F. Kubelka, A. C. Siani, and L. M. M. Valente, “Uncaria tomentosa alkaloidal fraction reduces paracellular permeability, il-8 and ns1 production on human microvascular endothelial cells infected with dengue virus,” Natural Product Communications, vol. 8, no. 11, pp. 1547–1550, 2013.M. Sandoval, R. M. Charbonnet, N. N. Okuhama et al., “Cat’s claw inhibits TNFα production and scavenges free radicals: role in cytoprotection,” Free Radical Biology and Medicine, vol. 29, no. 1, pp. 71–78, 2000.P. T. W. Law, C. H. Wong, T. C. C. Au et al., “-e 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in vero E6 cells,” Journal of General Virology, vol. 86, no. 7, pp. 1921–1930, 2005.F. J. Cisneros, M. Jayo, and L. Niedziela, “An uncaria tomentosa (cat’s claw) extract protects mice against ozoneinduced lung inflammation,” Journal of Ethnopharmacology, vol. 96, no. 3, pp. 355–364, 2005.L. Chen, J. Ma, X. Wang, and M. Zhang, “Simultaneous determination of six uncaria alkaloids in mouse blood by UPLC-MS/MS and its application in pharmacokinetics and bioavailability,” BioMed Research International, vol. 2020, Article ID 1030269, 11 pages, 2020.G. E.-S. Batiha, A. Magdy Beshbishy, L. Wasef et al., “Uncaria tomentosa (Willd. ex Schult.) DC.: a review on chemical constituents and biological activities,” Applied Sciences, vol. 10, no. 8, p. 2668, 2020.Y. Sheng, “DNA repair enhancement of aqueous extracts of in a human volunteer study,” Phytomedicine, vol. 8, no. 4, pp. 275–282, 2001.L. G. Valerio and G. F. Gonzales, “Toxicological aspects of the South American herbs cat’s claw (uncaria tomentosa) and maca (lepidium meyenii): a critical synopsis,” Toxicological Reviews, vol. 24, no. 1, 11 pages, 2005.L. C. L. De Paula, F. Fonseca, F. Perazzo et al., “Uncaria tomentosa (cat’s claw) improves quality of life in patients with advanced solid tumors,” Journal of Alternative and Complementary Medicine, vol. 21, no. 1, pp. 22–30, 2015.M. R. C. Schetinger, I. L. G. Farias, M. C. S. Ara´ujo et al., “Uncaria tomentosa for reducing side effects caused by chemotherapy in CRC patients: clinical trial,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 892182, 8 pages, 2012.K. Keplinger, G. Laus, M. Wurm, M. P. Dierich, and H. Teppner, “Uncaria tomentosa (Willd.) DC. - ethnomedicinal use and new pharmacological, toxicological and botanical results,” Journal of Ethnopharmacology, vol. 64, no. 1, pp. 23–34, 1998.SARS-CoV-2COVID-19Uncaria tomentosaCat´s clawAntiviralsSevere acute respiratory syndrome coronavirus 2SARS-CoV-2COVID-19Uncaria tomentosaCat´s clawAntiviralsSevere acute respiratory syndrome coronavirus 2The Hydroalcoholic Extract of Uncaria tomentosa (Cat’s Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In VitroArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/cd5ea5bf-f1ec-4957-88db-5d044e60259a/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINALuncaria tomentosa UCC 2021.pdfuncaria tomentosa UCC 2021.pdfArtículoapplication/pdf2260143https://repository.ucc.edu.co/bitstreams/ab6fab92-6123-41ad-8d5f-63bf87e7c5a3/download5f6e6d3a74a7a6e2899b213cb1d2cb17MD51THUMBNAILuncaria tomentosa UCC 2021.pdf.jpguncaria tomentosa UCC 2021.pdf.jpgGenerated Thumbnailimage/jpeg5636https://repository.ucc.edu.co/bitstreams/2f2bec7d-5444-4fb8-beb7-90b35c2480ba/download8822315773e8a64537b850e5acf06575MD53TEXTuncaria tomentosa UCC 2021.pdf.txtuncaria tomentosa UCC 2021.pdf.txtExtracted texttext/plain51123https://repository.ucc.edu.co/bitstreams/18bfb1db-861d-4985-be2d-099dbd12055c/downloadb484323f18b0903244832f55693e9d99MD5420.500.12494/33487oai:repository.ucc.edu.co:20.500.12494/334872024-08-10 22:47:43.638restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=