Artificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbean

In the face of decades of unsustainable development that has led to significant depletion of resources and environmental imbalances, the need for advanced methods to understand and mitigate adverse environmental effects has never been more critical. This study introduces an innovative approach using...

Full description

Autores:
van der Woude, David
Castro Nieto, Gilmer Yovani
Moros Ochoa, Maria Andreina
Llorente Portillo, Carolina
Quintero Español, Anderson
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Colegio de Estudios Superiores de Administración
Repositorio:
Repositorio CESA
Idioma:
eng
OAI Identifier:
oai:repository.cesa.edu.co:10726/5787
Acceso en línea:
http://hdl.handle.net/10726/5787
https://link-springer-com.cvirtual.cesa.edu.co/article/10.1007/s10668-024-05101-7
Palabra clave:
Artificial Neural Networks (ANN)
Biocapacity
Ecological footprint
Forest land
Sustainable development
Rights
License
Acceso Restringido
id CESA2_29bef6a317e7ded0d2497f0be37007b6
oai_identifier_str oai:repository.cesa.edu.co:10726/5787
network_acronym_str CESA2
network_name_str Repositorio CESA
repository_id_str
spelling van der Woude, Davidce909421-1a2f-4362-af5e-fa251792ee37-1Castro Nieto, Gilmer Yovanib81eb0f0-0911-44a8-af58-64803570dd83-1Moros Ochoa, Maria Andreinab98524b0-f1c7-4063-9323-54828213b01f-1Llorente Portillo, Carolinaf42a3773-c434-437e-b7c9-7799cb73d169-1Quintero Español, Anderson9a238274-8767-458d-a316-910bf44c9208-1van der Woude, David [0000-0003-1682-9481]Castro Nieto, Gilmer Yovani [0000-0001-9861-5588]Moros Ochoa, María Andreína [0000-0001-8428-9056]Llorente Portillo, Carolina [0000-0002-2350-5891]Quintero Español, Anderson [0000-0002-6562-6245]van der Woude, David [57204114134]Castro Nieto, Gilmer Yovani [24544764500]Moros Ochoa, María Andreína [57195503017]Llorente Portillo, Carolina [57888736900]Quintero Español, Anderson [57888736800]2025-02-25T20:43:32Z2025-02-25T20:43:32Z2024-06-141387-585Xhttp://hdl.handle.net/10726/5787Art014instname:Colegio de Estudios Superiores de Administración – CESAreponame:Biblioteca Digital – CESArepourl:https://repository.cesa.edu.co/1573-2975https://link-springer-com.cvirtual.cesa.edu.co/article/10.1007/s10668-024-05101-7engSpringerArtificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbeanarticlehttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_71e4c1898caa6e32Acceso Restringidohttp://purl.org/coar/access_right/c_16ecIn the face of decades of unsustainable development that has led to significant depletion of resources and environmental imbalances, the need for advanced methods to understand and mitigate adverse environmental effects has never been more critical. This study introduces an innovative approach using Artificial Neural Networks (ANN) to predict the biocapacity and ecological footprint, focusing on the forest land indicator in Latin America and the Caribbean up to 2030, aligning with the Sustainable Development Goals (SDGs). Utilizing the Python programming language and leveraging the TensorFlow library for its robustness in handling complex datasets, we designed a neural network model that underwent thirty thousand iterations to identify the optimal processing time, approximately five minutes per dataset. Our analysis includes 57 annual records across 128 countries, highlighting the region’s rich natural resources. The findings underscore the critical importance of developing sustainable business models that responsibly harness these resources, offering stakeholders fresh opportunities to engage in sustainable development practices actively. Moreover, the study serves as a vital roadmap for other developing regions aspiring to enhance their environmental sustainability strategies and climate change mitigation efforts. By accurately predicting biocapacity and ecological footprints, this research not only aids in the strategic planning of sustainable development but also sets a precedent for applying artificial intelligence in environmental science, offering a novel approach for policymakers and business practitioners alike in Latin America and the Caribbean. These findings provide a practical guide for policymakers and business practitioners to develop sustainable business models and enhance environmental sustainability strategies.https://orcid.org/0000-0003-1682-9481https://orcid.org/0000-0001-9861-5588https://orcid.org/0000-0001-8428-9056https://orcid.org/0000-0002-2350-5891https://orcid.org/0000-0002-6562-6245https://www.scopus.com/authid/detail.uri?authorId=57204114134https://www.scopus.com/authid/detail.uri?authorId=24544764500https://www.scopus.com/authid/detail.uri?authorId=57195503017https://www.scopus.com/authid/detail.uri?authorId=57888736900https://www.scopus.com/authid/detail.uri?authorId=57888736800Environment, Development and SustainabilityArtificial Neural Networks (ANN)BiocapacityEcological footprintForest landSustainable development10726/5787oai:repository.cesa.edu.co:10726/57872025-02-25 15:43:32.614metadata only accessBiblioteca Digital - CESAbiblioteca@cesa.edu.co
dc.title.eng.fl_str_mv Artificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbean
title Artificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbean
spellingShingle Artificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbean
Artificial Neural Networks (ANN)
Biocapacity
Ecological footprint
Forest land
Sustainable development
title_short Artificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbean
title_full Artificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbean
title_fullStr Artificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbean
title_full_unstemmed Artificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbean
title_sort Artificial intelligence in biocapacity and ecological footprint prediction in latin America and the caribbean
dc.creator.fl_str_mv van der Woude, David
Castro Nieto, Gilmer Yovani
Moros Ochoa, Maria Andreina
Llorente Portillo, Carolina
Quintero Español, Anderson
dc.contributor.author.none.fl_str_mv van der Woude, David
Castro Nieto, Gilmer Yovani
Moros Ochoa, Maria Andreina
Llorente Portillo, Carolina
Quintero Español, Anderson
dc.contributor.orcid.none.fl_str_mv van der Woude, David [0000-0003-1682-9481]
Castro Nieto, Gilmer Yovani [0000-0001-9861-5588]
Moros Ochoa, María Andreína [0000-0001-8428-9056]
Llorente Portillo, Carolina [0000-0002-2350-5891]
Quintero Español, Anderson [0000-0002-6562-6245]
dc.contributor.scopus.none.fl_str_mv van der Woude, David [57204114134]
Castro Nieto, Gilmer Yovani [24544764500]
Moros Ochoa, María Andreína [57195503017]
Llorente Portillo, Carolina [57888736900]
Quintero Español, Anderson [57888736800]
dc.subject.proposal.none.fl_str_mv Artificial Neural Networks (ANN)
Biocapacity
Ecological footprint
Forest land
Sustainable development
topic Artificial Neural Networks (ANN)
Biocapacity
Ecological footprint
Forest land
Sustainable development
description In the face of decades of unsustainable development that has led to significant depletion of resources and environmental imbalances, the need for advanced methods to understand and mitigate adverse environmental effects has never been more critical. This study introduces an innovative approach using Artificial Neural Networks (ANN) to predict the biocapacity and ecological footprint, focusing on the forest land indicator in Latin America and the Caribbean up to 2030, aligning with the Sustainable Development Goals (SDGs). Utilizing the Python programming language and leveraging the TensorFlow library for its robustness in handling complex datasets, we designed a neural network model that underwent thirty thousand iterations to identify the optimal processing time, approximately five minutes per dataset. Our analysis includes 57 annual records across 128 countries, highlighting the region’s rich natural resources. The findings underscore the critical importance of developing sustainable business models that responsibly harness these resources, offering stakeholders fresh opportunities to engage in sustainable development practices actively. Moreover, the study serves as a vital roadmap for other developing regions aspiring to enhance their environmental sustainability strategies and climate change mitigation efforts. By accurately predicting biocapacity and ecological footprints, this research not only aids in the strategic planning of sustainable development but also sets a precedent for applying artificial intelligence in environmental science, offering a novel approach for policymakers and business practitioners alike in Latin America and the Caribbean. These findings provide a practical guide for policymakers and business practitioners to develop sustainable business models and enhance environmental sustainability strategies.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-06-14
dc.date.accessioned.none.fl_str_mv 2025-02-25T20:43:32Z
dc.date.available.none.fl_str_mv 2025-02-25T20:43:32Z
dc.type.none.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.issn.none.fl_str_mv 1387-585X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10726/5787
dc.identifier.local.none.fl_str_mv Art014
dc.identifier.instname.none.fl_str_mv instname:Colegio de Estudios Superiores de Administración – CESA
dc.identifier.reponame.none.fl_str_mv reponame:Biblioteca Digital – CESA
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.cesa.edu.co/
dc.identifier.eissn.none.fl_str_mv 1573-2975
dc.identifier.url.none.fl_str_mv https://link-springer-com.cvirtual.cesa.edu.co/article/10.1007/s10668-024-05101-7
identifier_str_mv 1387-585X
Art014
instname:Colegio de Estudios Superiores de Administración – CESA
reponame:Biblioteca Digital – CESA
repourl:https://repository.cesa.edu.co/
1573-2975
url http://hdl.handle.net/10726/5787
https://link-springer-com.cvirtual.cesa.edu.co/article/10.1007/s10668-024-05101-7
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Environment, Development and Sustainability
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.local.none.fl_str_mv Acceso Restringido
rights_invalid_str_mv Acceso Restringido
http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
institution Colegio de Estudios Superiores de Administración
repository.name.fl_str_mv Biblioteca Digital - CESA
repository.mail.fl_str_mv biblioteca@cesa.edu.co
_version_ 1831930141501030400